class BotTrainer(object): def __init__(self, corpus_dir): self.graph = tf.Graph() with self.graph.as_default(): tokenized_data = TokenizedData(corpus_dir=corpus_dir) self.hparams = tokenized_data.hparams self.train_batch = tokenized_data.get_training_batch() self.model = ModelCreator(training=True, tokenized_data=tokenized_data, batch_input=self.train_batch) def train(self, result_dir, target=""): """Train a seq2seq model.""" # Summary writer summary_name = "train_log" summary_writer = tf.summary.FileWriter( os.path.join(result_dir, summary_name), self.graph) log_device_placement = self.hparams.log_device_placement num_epochs = self.hparams.num_epochs config_proto = tf.ConfigProto( log_device_placement=log_device_placement, allow_soft_placement=True) config_proto.gpu_options.allow_growth = True with tf.Session(target=target, config=config_proto, graph=self.graph) as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.tables_initializer()) global_step = self.model.global_step.eval(session=sess) # Initialize all of the iterators sess.run(self.train_batch.initializer) # Initialize the statistic variables ckpt_loss, ckpt_predict_count = 0.0, 0.0 train_perp, last_record_perp = 2000.0, 2.0 train_epoch = 0 print("# Training loop started @ {}".format( time.strftime("%Y-%m-%d %H:%M:%S"))) epoch_start_time = time.time() while train_epoch < num_epochs: # Each run of this while loop is a training step, multiple time/steps will trigger # the train_epoch to be increased. learning_rate = self._get_learning_rate(train_perp) try: step_result = self.model.train_step( sess, learning_rate=learning_rate) (_, step_loss, step_predict_count, step_summary, global_step, step_word_count, batch_size) = step_result # Write step summary. summary_writer.add_summary(step_summary, global_step) # update statistics ckpt_loss += (step_loss * batch_size) ckpt_predict_count += step_predict_count except tf.errors.OutOfRangeError: # Finished going through the training dataset. Go to next epoch. train_epoch += 1 mean_loss = ckpt_loss / ckpt_predict_count train_perp = math.exp( float(mean_loss)) if mean_loss < 300 else math.inf epoch_dur = time.time() - epoch_start_time print( "# Finished epoch {:2d} @ step {:5d} @ {}. In the epoch, learning rate = {:.6f}, " "mean loss = {:.4f}, perplexity = {:8.4f}, and {:.2f} seconds elapsed." .format(train_epoch, global_step, time.strftime("%Y-%m-%d %H:%M:%S"), learning_rate, mean_loss, train_perp, round(epoch_dur, 2))) epoch_start_time = time.time( ) # The start time of the next epoch summary = tf.Summary(value=[ tf.Summary.Value(tag="train_perp", simple_value=train_perp) ]) summary_writer.add_summary(summary, global_step) # Save checkpoint if train_perp < 1.6 and train_perp < last_record_perp: self.model.saver.save(sess, os.path.join( result_dir, "basic"), global_step=global_step) last_record_perp = train_perp ckpt_loss, ckpt_predict_count = 0.0, 0.0 sess.run(self.model.batch_input.initializer) continue # Done training self.model.saver.save(sess, os.path.join(result_dir, "basic"), global_step=global_step) summary_writer.close() @staticmethod def _get_learning_rate(perplexity): if perplexity <= 1.48: return 9.6e-5 elif perplexity <= 1.64: return 1e-4 elif perplexity <= 2.0: return 1.2e-4 elif perplexity <= 2.4: return 1.6e-4 elif perplexity <= 3.2: return 2e-4 elif perplexity <= 4.8: return 2.4e-4 elif perplexity <= 8.0: return 3.2e-4 elif perplexity <= 16.0: return 4e-4 elif perplexity <= 32.0: return 6e-4 else: return 8e-4
class BotTrainer(object): def __init__(self, corpus_dir): """ Constructor of the BotTrainer. Args: corpus_dir: The folder to save all the training related data. """ self.graph = tf.Graph() with self.graph.as_default(): tokenized_data = TokenizedData(corpus_dir=corpus_dir) self.hparams = tokenized_data.hparams self.train_batch = tokenized_data.get_training_batch() self.model = ModelCreator(training=True, tokenized_data=tokenized_data, batch_input=self.train_batch) def train(self, result_dir, target="", last_end_file=None, last_end_epoch=0, last_end_lr=8e-4): """Train a seq2seq model.""" # Summary writer summary_name = "train_log" summary_writer = tf.summary.FileWriter(os.path.join(result_dir, summary_name), self.graph) log_device_placement = self.hparams.log_device_placement num_epochs = self.hparams.num_epochs config_proto = tf.ConfigProto(log_device_placement=log_device_placement, allow_soft_placement=True) config_proto.gpu_options.allow_growth = True with tf.Session(target=target, config=config_proto, graph=self.graph) as sess: # This initialization is useful even when the model is restored from the last time # because not all variables used in the model training may be saved. sess.run(tf.global_variables_initializer()) if last_end_file: # Continue training from last time #print("Restoring model weights from last time ...") self.model.saver.restore(sess, os.path.join(result_dir, last_end_file)) sess.run(tf.tables_initializer()) global_step = self.model.global_step.eval(session=sess) # Initialize all of the iterators sess.run(self.train_batch.initializer) # Initialize the statistic variables ckpt_loss, ckpt_predict_count = 0.0, 0.0 train_perp, last_record_perp = 2000.0, 200.0 train_epoch = last_end_epoch learning_rate = pre_lr = last_end_lr #print("# Training loop started @ {}".format(time.strftime("%Y-%m-%d %H:%M:%S"))) epoch_start_time = time.time() while train_epoch < num_epochs: # Each run of this while loop is a training step, multiple time/steps will trigger # the train_epoch to be increased. try: step_result = self.model.train_step(sess, learning_rate=learning_rate) (_, step_loss, step_predict_count, step_summary, global_step, step_word_count, batch_size) = step_result # Write step summary. summary_writer.add_summary(step_summary, global_step) # update statistics ckpt_loss += (step_loss * batch_size) ckpt_predict_count += step_predict_count except tf.errors.OutOfRangeError: # Finished going through the training dataset. Go to next epoch. train_epoch += 1 mean_loss = ckpt_loss / ckpt_predict_count train_perp = math.exp(float(mean_loss)) if mean_loss < 300 else math.inf epoch_dur = time.time() - epoch_start_time #print("# Finished epoch {:2d} @ step {:5d} @ {}. In the epoch, learning rate = {:.6f}, " #"mean loss = {:.4f}, perplexity = {:8.4f}, and {:.2f} seconds elapsed." .format(train_epoch, global_step, time.strftime("%Y-%m-%d %H:%M:%S"), learning_rate, mean_loss, train_perp, round(epoch_dur, 2))) epoch_start_time = time.time() # The start time of the next epoch summary = tf.Summary(value=[tf.Summary.Value(tag="train_perp", simple_value=train_perp)]) summary_writer.add_summary(summary, global_step) # Save checkpoint if train_perp < last_record_perp: self.model.saver.save(sess, os.path.join(result_dir, "basic"), global_step=train_epoch) last_record_perp = train_perp ckpt_loss, ckpt_predict_count = 0.0, 0.0 learning_rate = self._get_learning_rate(train_perp, pre_lr, train_epoch) pre_lr = learning_rate sess.run(self.model.batch_input.initializer) continue # Done training self.model.saver.save(sess, os.path.join(result_dir, "basic"), global_step=train_epoch) summary_writer.close()