Ejemplo n.º 1
0
    def __init__(self, para, creator, valid, mapping, valid_batch, valid_iter,
                 input_key):
        self.para = para

        network = creator(para)
        temp_err = 0
        for i in range(valid_iter):
            data = valid.next_minibatch(valid_batch, input_map=mapping(valid))
            temp_err += network.test_minibatch(data)
        self.accuracy = 1 - temp_err / valid_iter

        model_name = os.path.join('module', '_'.join(map(str, para)))
        network.model.save(model_name)
        cpu_timer = cntk.load_model(model_name, device=cntk.cpu())

        time_cost = []
        for i in range(valid_iter):
            data = valid.next_minibatch(valid_batch, input_map=mapping(valid))
            arr = numpy.array(data[input_key].as_sequences())
            arr = numpy.reshape(arr, (-1, ) + input_key.shape)
            current_time = time.clock()
            cpu_timer.eval(arr, device=cntk.cpu())
            current_time = time.clock() - current_time
            time_cost.append(current_time)
        self.time = numpy.mean(time_cost)
Ejemplo n.º 2
0
def test_to_sequence_basic(device_id):
    dev = cntk_device(device_id)
    x = C.input_variable((C.FreeDimension, 2))
    x_seq = C.to_sequence(x)
    assert len(x_seq.dynamic_axes) == 2

    x_data = np.asarray([[[1, 2], [-1000, -1000]], [[3, 4], [5, 6]]], dtype=np.float32)
    result = x_seq.eval({x : x_data}, device=dev)
    assert np.array_equal(result, x_data)

    x = C.input_variable((C.FreeDimension, 2, 3), is_sparse=True)
    x_seq_lens = C.input_variable(())
    x_seq = C.to_sequence(x, x_seq_lens)

    seq1_data = [[[0, 1, 1], [0, 1, 0]], [[1, 0, 0], [1, 0, 1]]]
    csr_seq1 = _to_csr(seq1_data)
    ndarrayview1 = C.NDArrayView.from_csr(csr_seq1, shape=(2, 2, 3), device=C.cpu())
    seq2_data = [[0, 1, 1], [1, 1, 0]]
    csr_seq2 = _to_csr([seq2_data, [[0, 0, 0], [0, 0, 0]]])
    ndarrayview2 = C.NDArrayView.from_csr(csr_seq2, shape=(2, 2, 3), device=C.cpu())

    x_data = C.Value.create(C.input_variable((2, 2, 3), is_sparse=True), [ndarrayview1, ndarrayview2], device=dev).data
    x_seq_lens_data = np.asarray([2, 1], dtype=np.float32)
    result = x_seq.eval({x : x_data, x_seq_lens : x_seq_lens_data}, device=dev, as_numpy=False)
    result_dense = _to_dense(result, True)
    assert np.array_equal(result_dense[0], seq1_data)
    assert np.array_equal(result_dense[1], [seq2_data])
Ejemplo n.º 3
0
def test_to_sequence_basic(device_id):
    dev = cntk_device(device_id)
    x = C.input_variable((C.FreeDimension, 2))
    x_seq = C.to_sequence(x)
    assert len(x_seq.dynamic_axes) == 2

    x_data = np.asarray([[[1, 2], [-1000, -1000]], [[3, 4], [5, 6]]], dtype=np.float32)
    result = x_seq.eval({x : x_data}, device=dev)
    assert np.array_equal(result, x_data)

    x = C.input_variable((C.FreeDimension, 2, 3), is_sparse=True)
    x_seq_lens = C.input_variable(())
    x_seq = C.to_sequence(x, x_seq_lens)

    seq1_data = [[[0, 1, 1], [0, 1, 0]], [[1, 0, 0], [1, 0, 1]]]
    csr_seq1 = _to_csr(seq1_data)
    ndarrayview1 = C.NDArrayView.from_csr(csr_seq1, shape=(2, 2, 3), device=C.cpu())
    seq2_data = [[0, 1, 1], [1, 1, 0]]
    csr_seq2 = _to_csr([seq2_data, [[0, 0, 0], [0, 0, 0]]])
    ndarrayview2 = C.NDArrayView.from_csr(csr_seq2, shape=(2, 2, 3), device=C.cpu())

    x_data = C.Value.create(C.input_variable((2, 2, 3), is_sparse=True), [ndarrayview1, ndarrayview2], device=dev).data
    x_seq_lens_data = np.asarray([2, 1], dtype=np.float32)
    result = x_seq.eval({x : x_data, x_seq_lens : x_seq_lens_data}, device=dev, as_numpy=False)
    result_dense = _to_dense(result, True)
    assert np.array_equal(result_dense[0], seq1_data)
    assert np.array_equal(result_dense[1], [seq2_data])
Ejemplo n.º 4
0
def test_set_excluded_devices():
    if len(C.device.all_devices()) == 1:
        return;
    assert C.try_set_default_device(C.cpu(), False)
    assert C.try_set_default_device(C.gpu(0), False)
    C.set_excluded_devices([C.cpu()])
    assert not C.try_set_default_device(C.cpu(), False)
    C.set_excluded_devices([])
    assert C.try_set_default_device(C.cpu(), False)
Ejemplo n.º 5
0
def test_set_excluded_devices():
    if len(C.device.all_devices()) == 1:
        return
    assert C.try_set_default_device(C.cpu(), False)
    assert C.try_set_default_device(C.gpu(0), False)
    C.set_excluded_devices([C.cpu()])
    assert not C.try_set_default_device(C.cpu(), False)
    C.set_excluded_devices([])
    assert C.try_set_default_device(C.cpu(), False)
def test_2d_sparse_sequences_value(device_id):
    dev = cntk_device(device_id)
    seq1_data = [[[0, 1, 1], [0, 1, 0]], [[1, 0, 0], [1, 0, 1]]]
    csr_seq1 = _to_csr(seq1_data)
    ndarrayview1 = C.NDArrayView.from_csr(csr_seq1, shape=(2, 2, 3), device=C.cpu())
    seq2_data = [[0, 1, 1], [1, 1, 0]]
    csr_seq2 = _to_csr(seq2_data)
    ndarrayview2 = C.NDArrayView.from_csr(csr_seq2, shape=(1, 2, 3), device=C.cpu())

    x = C.sequence.input_variable((2, 3))
    sequence_value = C.Value.create(x, [ndarrayview1, ndarrayview2], device=dev)
    assert np.array_equal(_to_dense(sequence_value.data), [seq1_data, [seq2_data, [[0, 0, 0], [0, 0, 0]]]])
Ejemplo n.º 7
0
def test_output_subset_evaluation(device_id):
    try:
        gpu_device = C.gpu(0)
    except ValueError:
        pytest.skip('Test only runs when GPU available')

    device = cntk_device(device_id)
    x1 = C.input_variable(shape=())
    op1 = C.constant(value=1, shape=(1), device=device) + (C.constant(value=1, shape=(1), device=device) + x1)

    x2 = C.input_variable(shape=(1))

    # Deliberately locate the parameter on a different device
    # instead of the actual compute target device, so that
    # if we try to use this parameter, it results in an error
    if (device.type() == 0):
        parameter_device = gpu_device
    else:
        parameter_device = C.cpu()
    p = C.parameter(shape=(1), init=C.glorot_uniform(), device=parameter_device)
    op2 = (x2 - C.constant(value=10, shape=(1), device=device)) - p

    op = C.combine([op1, op2]);

    _, result = op.forward({x1 : np.asarray([1, 2, 3])}, [op1], device=device)
    assert np.array_equal(result[op1], np.asarray([[3], [4], [5]]))
def convert(model_path):
    device = C.cpu()
    model = C.Function.load(model_path, device=device)

    # Replace all python proposal layer user-functions with native proposal layer
    # user functions.
    return clone_with_native_proposal_layer(model)
Ejemplo n.º 9
0
def convert(model_path):
    device = C.cpu()
    model = C.Function.load(model_path, device=device)

    # Replace all python proposal layer user-functions with native proposal layer
    # user functions.
    return clone_with_native_proposal_layer(model)
Ejemplo n.º 10
0
def test_native_convolution(tmpdir):  
    # this test needs native binary convolution library built with halide.
    if not C.contrib.netopt.native_convolve_function_registered:     
        pytest.skip()

    z = _create_convolution_model()
    binz = qc.convert_to_binary_convolution(z, _filter)
    
    # save and load to transfer the model to CPU device as native binary
    # convolution does not run on GPU yet.
    model_file = str(tmpdir / ('binary_model.cmf'))
    binz.save(model_file)

    eval_device = C.cpu()
    model = C.Function.load(model_file, device=eval_device)

    # convert to native halide implementation.
    native_binz = qc.convert_to_native_binary_convolution(model)

    functions = C.logging.graph.depth_first_search(
                native_binz, (lambda x : type(x) == C.Function and x.op_name =='BinaryConvolveOp') , depth = 0)
    assert(len(functions) == 3)

    img_data = np.reshape(dat, (1, 1, 28, 28))

    res = native_binz.eval(img_data, device=eval_device)
    assert(len(res) > 0) # evaluation should work with the new model.
Ejemplo n.º 11
0
def test_native_convolution(tmpdir):
  
    # this test needs native binary convolution library built with halide.
    if not C.contrib.netopt.native_convolve_function_registered:     
        pytest.skip()

    z = _create_convolution_model()
    binz = qc.convert_to_binary_convolution(z, _filter)
    
    # save and load to transfer the model to CPU device as native binary
    # convolution does not run on GPU yet.
    model_file = str(tmpdir / ('binary_model.cmf'))
    binz.save(model_file)

    eval_device = C.cpu()
    model = C.Function.load(model_file, device=eval_device)
    
    # convert to native halide implementation.
    native_binz = qc.convert_to_native_binary_convolution(model)

    functions = C.logging.graph.depth_first_search(
                native_binz, (lambda x : type(x) == C.Function and x.op_name =='BinaryConvolveOp') , depth = 0)    
    assert(len(functions) == 3)
    
    img_data = np.reshape(dat, (1, 1, 28, 28))

    res = native_binz.eval(img_data, device=eval_device)
    assert(len(res) > 0) # evaluation should work with the new model.
Ejemplo n.º 12
0
def test_output_subset_evaluation(device_id):
    try:
        gpu_device = C.gpu(0)
    except ValueError:
        pytest.skip('Test only runs when GPU available')

    device = cntk_device(device_id)
    x1 = C.input_variable(shape=())
    op1 = C.constant(value=1, shape=(1), device=device) + (
        C.constant(value=1, shape=(1), device=device) + x1)

    x2 = C.input_variable(shape=(1))

    # Deliberately locate the parameter on a different device
    # instead of the actual compute target device, so that
    # if we try to use this parameter, it results in an error
    if (device.type() == 0):
        parameter_device = gpu_device
    else:
        parameter_device = C.cpu()
    p = C.parameter(shape=(1),
                    init=C.glorot_uniform(),
                    device=parameter_device)
    op2 = (x2 - C.constant(value=10, shape=(1), device=device)) - p

    op = C.combine([op1, op2])

    _, result = op.forward({x1: np.asarray([1, 2, 3])}, [op1], device=device)
    assert np.array_equal(result[op1], np.asarray([[3], [4], [5]]))
Ejemplo n.º 13
0
def test_cpu_and_gpu_devices():
    device = C.cpu()
    assert device.type() == C.device.DeviceKind.CPU
    assert device.id() == 0
    for i in range(len(C.device.all_devices()) - 1):
        device = C.gpu(i)
        assert device.type() == C.device.DeviceKind.GPU
        assert device.id() == i
Ejemplo n.º 14
0
def test(n_fold=4):
    input_xs = [np.empty([922, 93], dtype=np.float32)]
    input_xs, _ = fold_batch(xs=input_xs, n_fold=n_fold)
    cntk.device.try_set_default_device(cntk.cpu())
    nn_model = CuteModel(dim_x=93*n_fold, dim_y=199*n_fold)
    t1 = time.time()
    output = nn_model.trainer.model.eval(input_xs)
    print(output[0].shape, time.time()-t1)
Ejemplo n.º 15
0
def test_cpu_and_gpu_devices():
    device = C.cpu()
    assert device.type() == C.device.DeviceKind.CPU
    assert device.id() == 0
    for i in range(len(C.device.all_devices()) - 1):
        device = C.gpu(i)
        assert device.type() == C.device.DeviceKind.GPU
        assert device.id() == i
Ejemplo n.º 16
0
def test_use_default_device():
    # this will release any previous held device locks
    C.try_set_default_device(C.cpu(), False)
    q = Queue()
    p = Process(target=_use_default_device, args=(q,))
    p.start()
    p.join()
    assert p.exitcode == 0
    assert q.get()
Ejemplo n.º 17
0
def test_set_cpu_as_default_device():
    device = C.cpu()
    assert not is_locked(device)
    assert not C.try_set_default_device(device, True)
    assert not is_locked(device)
    assert C.try_set_default_device(device)
    assert C.try_set_default_device(device, False)
    assert not is_locked(device)
    assert device == C.use_default_device()
Ejemplo n.º 18
0
def test_use_default_device():
    # this will release any previous held device locks
    C.try_set_default_device(C.cpu(), False)
    q = Queue()
    p = Process(target=_use_default_device, args=(q, ))
    p.start()
    p.join()
    assert p.exitcode == 0
    assert q.get()
Ejemplo n.º 19
0
def test_set_cpu_as_default_device():
    device = C.cpu()
    assert not is_locked(device)
    assert not C.try_set_default_device(device, True)
    assert not is_locked(device)
    assert C.try_set_default_device(device)
    assert C.try_set_default_device(device, False)
    assert not is_locked(device)
    assert device == C.use_default_device()
Ejemplo n.º 20
0
def test_lstm_over_lstm_thought_vectors_2(device_id):
    dev = cntk_device(device_id)
    input_vocab_size=3
    emb_dim = 2
    hidden_dim = 2
    num_labels = 2
    utterances_input = C.sequence.input_variable((input_vocab_size), is_sparse=True, name='utterances')
    conversation_lengths_input = C.input_variable((), name='conversation_sequence_lengths')
    label_input = C.sequence.input_variable(num_labels, is_sparse=True, sequence_axis=C.Axis('label_sequence'), name='labels')
    with C.default_options(initial_state=0.1):
        model = C.layers.Embedding(emb_dim, name='embed')(utterances_input)
        model = C.layers.Recurrence(C.layers.LSTM(hidden_dim), go_backwards=False)(model)
        model = C.sequence.last(model)
        model = C.user_function(UtteranceBatchReshape(model, conversation_lengths_input))
        model = C.to_sequence_like(model, label_input)
        model = C.layers.Recurrence(C.layers.LSTM(hidden_dim), go_backwards=False)(model)
        model = C.layers.Dense(num_labels, name='classify')(model)

    z = model
    ce = C.cross_entropy_with_softmax(z, label_input)

    sentinel_utt_data = C.NDArrayView.from_csr(_to_csr([[0, 0, 1]]), device=C.cpu())
    c1_utt1_data = C.NDArrayView.from_csr(_to_csr([[0, 1, 1], [0, 1, 0], [1, 0, 0]]), device=C.cpu())
    c1_utt2_data = C.NDArrayView.from_csr(_to_csr([[0, 1, 0], [0, 1, 1]]), device=C.cpu())
    c1_utt3_data = C.NDArrayView.from_csr(_to_csr([[0, 1, 1], [0, 1, 0]]), device=C.cpu())
    c2_utt1_data = C.NDArrayView.from_csr(_to_csr([[0, 1, 1]]), device=C.cpu())
    c3_utt1_data = C.NDArrayView.from_csr(_to_csr([[0, 1, 0], [0, 1, 1], [1, 0, 0]]), device=C.cpu())
    c3_utt2_data = C.NDArrayView.from_csr(_to_csr([[0, 1, 0]]), device=C.cpu())

    all_utt_data = C.Value.create(C.sequence.input_variable((input_vocab_size), is_sparse=True), [c1_utt1_data, c1_utt2_data, c1_utt3_data, c2_utt1_data, sentinel_utt_data, sentinel_utt_data, c3_utt1_data, c3_utt2_data, sentinel_utt_data], device=C.cpu()).data
    conversation_lengths_data = np.asarray([3, 1, 2], dtype=np.float32)
    seq1_label_data = [[0, 1], [0, 1], [1, 0]]
    seq2_label_data = [[1, 0]]
    seq3_label_data = [[1, 0], [0, 1]]
    label_data = [_to_csr(seq1_label_data), _to_csr(seq2_label_data), _to_csr(seq3_label_data)]
    param_grads, loss_result = ce.grad({utterances_input : all_utt_data, label_input : label_data, conversation_lengths_input : conversation_lengths_data},
                                       wrt=ce.parameters, outputs=[ce], as_numpy=False)

    loss_result = loss_result.as_sequences()

    absolute_tolerance = 0.01
    assert np.allclose(loss_result[0], [[0.678914], [0.668076], [0.728129]], atol=absolute_tolerance)
    assert np.allclose(loss_result[1], [[0.679029]], atol=absolute_tolerance)
    assert np.allclose(loss_result[2], [[0.705393], [0.674243]], atol=absolute_tolerance)
Ejemplo n.º 21
0
def test_lstm_over_lstm_thought_vectors_2(device_id):
    dev = cntk_device(device_id)
    input_vocab_size=3
    emb_dim = 2
    hidden_dim = 2
    num_labels = 2
    utterances_input = C.sequence.input_variable((input_vocab_size), is_sparse=True, name='utterances')
    conversation_lengths_input = C.input_variable((), name='conversation_sequence_lengths')
    label_input = C.sequence.input_variable(num_labels, is_sparse=True, sequence_axis=C.Axis('label_sequence'), name='labels')
    with C.default_options(initial_state=0.1):
        model = C.layers.Embedding(emb_dim, name='embed')(utterances_input)
        model = C.layers.Recurrence(C.layers.LSTM(hidden_dim), go_backwards=False)(model)
        model = C.sequence.last(model)
        model = C.user_function(UtteranceBatchReshape(model, conversation_lengths_input))
        model = C.to_sequence_like(model, label_input)
        model = C.layers.Recurrence(C.layers.LSTM(hidden_dim), go_backwards=False)(model)
        model = C.layers.Dense(num_labels, name='classify')(model)

    z = model
    ce = C.cross_entropy_with_softmax(z, label_input)

    sentinel_utt_data = C.NDArrayView.from_csr(_to_csr([[0, 0, 1]]), device=C.cpu())
    c1_utt1_data = C.NDArrayView.from_csr(_to_csr([[0, 1, 1], [0, 1, 0], [1, 0, 0]]), device=C.cpu())
    c1_utt2_data = C.NDArrayView.from_csr(_to_csr([[0, 1, 0], [0, 1, 1]]), device=C.cpu())
    c1_utt3_data = C.NDArrayView.from_csr(_to_csr([[0, 1, 1], [0, 1, 0]]), device=C.cpu())
    c2_utt1_data = C.NDArrayView.from_csr(_to_csr([[0, 1, 1]]), device=C.cpu())
    c3_utt1_data = C.NDArrayView.from_csr(_to_csr([[0, 1, 0], [0, 1, 1], [1, 0, 0]]), device=C.cpu())
    c3_utt2_data = C.NDArrayView.from_csr(_to_csr([[0, 1, 0]]), device=C.cpu())

    all_utt_data = C.Value.create(C.sequence.input_variable((input_vocab_size), is_sparse=True), [c1_utt1_data, c1_utt2_data, c1_utt3_data, c2_utt1_data, sentinel_utt_data, sentinel_utt_data, c3_utt1_data, c3_utt2_data, sentinel_utt_data], device=C.cpu()).data
    conversation_lengths_data = np.asarray([3, 1, 2], dtype=np.float32)
    seq1_label_data = [[0, 1], [0, 1], [1, 0]]
    seq2_label_data = [[1, 0]]
    seq3_label_data = [[1, 0], [0, 1]]
    label_data = [_to_csr(seq1_label_data), _to_csr(seq2_label_data), _to_csr(seq3_label_data)]
    param_grads, loss_result = ce.grad({utterances_input : all_utt_data, label_input : label_data, conversation_lengths_input : conversation_lengths_data},
                                       wrt=ce.parameters, outputs=[ce], as_numpy=False)

    loss_result = loss_result.as_sequences()

    absolute_tolerance = 0.01
    assert np.allclose(loss_result[0], [[0.678914], [0.668076], [0.728129]], atol=absolute_tolerance)
    assert np.allclose(loss_result[1], [[0.679029]], atol=absolute_tolerance)
    assert np.allclose(loss_result[2], [[0.705393], [0.674243]], atol=absolute_tolerance)
Ejemplo n.º 22
0
def test_native_binary_function():
    # user functions need to be registered before being callable by python
    if not nopt.native_convolve_function_registered:
        pytest.skip("Could not find {0} library. "
                    "Please check if HALIDE_PATH is configured properly "
                    "and try building {1} again".format(
                        'Cntk.BinaryConvolution-' + C.__version__.rstrip('+'),
                        'Extnsibiliy\BinaryConvolution'))

    # be sure to only run on CPU, binary convolution does not have GPU support for now
    dev = C.cpu()
    # create an arbitrary input mimicking a realistic cifar input
    x = input((64, 28, 28))
    # random filter weights for testing
    w = parameter((64, 64, 3, 3),
                  init=np.reshape(2 * (np.random.rand(64 * 64 * 3 * 3) - .5),
                                  (64, 64, 3, 3)),
                  dtype=np.float32,
                  device=dev)

    # set the convolution parameters by passing in an attribute dictionary
    #attributes = {'stride' : 1, 'padding' : False, 'size' : 3}

    attributes = {
        'stride': 1,
        'padding': False,
        'size': 3,
        'h': 28,
        'w': 28,
        'channels': 64,
        'filters': 64
    }

    # define the binary convolution op
    op = ops.native_user_function('NativeBinaryConvolveFunction', [w, x],
                                  attributes, 'native_binary_convolve')

    # also define an op using python custom functions that should have the same output
    op2 = C.convolution(CustomMultibitKernel(w, 1),
                        CustomSign(x),
                        auto_padding=[False])
    # create random input data
    x_data = NDArrayView.from_dense(np.asarray(np.reshape(
        2 * (np.random.rand(64 * 28 * 28) - .5), (64, 28, 28)),
                                               dtype=np.float32),
                                    device=dev)
    # evaluate the CPP binary convolve
    result = op.eval({x: x_data}, device=dev)

    # evaluate the python emulator
    result2 = op2.eval({x: x_data}, device=dev)
    native_times_primitive = op.find_by_name('native_binary_convolve')
    # assert that both have the same result
    '''
def test_ndarray_properties():
    ndav = C.NDArrayView((2, 3), np.float32, device=C.cpu())

    dev = ndav.device
    assert isinstance(dev, C.DeviceDescriptor)
    assert str(dev) == 'CPU'

    assert ndav.is_read_only == False

    assert ndav.is_sparse == False

    assert ndav.dtype == np.float32
def test_value_properties():
    ndav = C.NDArrayView((1, 2, 3), np.float32, device=C.cpu())
    val = C.Value(batch=ndav)

    dev = val.device
    assert isinstance(dev, C.DeviceDescriptor)
    assert str(dev) == 'CPU'

    assert val.is_read_only == False

    assert val.is_sparse == False

    assert val.dtype == np.float32
Ejemplo n.º 25
0
def test_lstm_over_lstm_thought_vectors(device_id):
    dev = cntk_device(device_id)
    input_vocab_size=3
    emb_dim = 2
    hidden_dim = 2
    num_labels = 2
    x_seq_input = C.sequence.input_variable((C.FreeDimension, input_vocab_size), is_sparse=True, name='features')
    label_seq_input = C.sequence.input_variable(num_labels, is_sparse=True, sequence_axis=C.Axis('label_sequence'), name='labels')
    with C.default_options(initial_state=0.1):
        model = C.layers.Embedding(emb_dim, name='embed')(x_seq_input)
        model = C.layers.Recurrence(C.layers.LSTM(hidden_dim), go_backwards=False)(model)
        model = C.sequence.last(model)
        model = C.to_sequence_like(model, label_seq_input)
        model = C.layers.Recurrence(C.layers.LSTM(hidden_dim), go_backwards=False)(model)
        model = C.layers.Dense(num_labels, name='classify')(model)

    z = model
    ce = C.cross_entropy_with_softmax(z, label_seq_input)

    seq1_data = [[[0, 1, 1], [0, 1, 0], [1, 0, 0]], [[1, 1, 0], [0, 0, 1], [1, 0, 1]], [[1, 0, 0], [0, 0, 1], [1, 1, 0]]]
    csr_seq1 = _to_csr(seq1_data)
    ndarrayview1 = C.NDArrayView.from_csr(csr_seq1, shape=(3, 3, 3), device=C.cpu())
    seq2_data = [[[0, 0, 1], [0, 1, 1], [1, 0, 1]], [[0, 1, 0], [1, 0, 1], [0, 0, 0]]]
    csr_seq2 = _to_csr(seq2_data)
    ndarrayview2 = C.NDArrayView.from_csr(csr_seq2, shape=(2, 3, 3), device=C.cpu())
    x_seq_data = C.Value.create(C.sequence.input_variable((3, 3), is_sparse=True), [ndarrayview1, ndarrayview2], device=C.cpu()).data

    seq1_label_data = [[0, 1], [0, 1], [1, 0]]
    seq2_label_data = [[1, 0], [0, 1]]
    label_seq_data = [_to_csr(seq1_label_data), _to_csr(seq2_label_data)]
    param_grads, loss_result = ce.grad({x_seq_input : x_seq_data, label_seq_input : label_seq_data},
                                       wrt=ce.parameters, outputs=[ce], as_numpy=False)

    loss_result = loss_result.as_sequences()

    absolute_tolerance = 0.02
    assert np.allclose(loss_result[0], [[0.67126], [0.676331], [0.765814]], atol=absolute_tolerance)
    assert np.allclose(loss_result[1], [[0.685199], [0.681736]], atol=absolute_tolerance)
Ejemplo n.º 26
0
def test_lstm_over_lstm_thought_vectors(device_id):
    dev = cntk_device(device_id)
    input_vocab_size=3
    emb_dim = 2
    hidden_dim = 2
    num_labels = 2
    x_seq_input = C.sequence.input_variable((C.FreeDimension, input_vocab_size), is_sparse=True, name='features')
    label_seq_input = C.sequence.input_variable(num_labels, is_sparse=True, sequence_axis=C.Axis('label_sequence'), name='labels')
    with C.default_options(initial_state=0.1):
        model = C.layers.Embedding(emb_dim, name='embed')(x_seq_input)
        model = C.layers.Recurrence(C.layers.LSTM(hidden_dim), go_backwards=False)(model)
        model = C.sequence.last(model)
        model = C.to_sequence_like(model, label_seq_input)
        model = C.layers.Recurrence(C.layers.LSTM(hidden_dim), go_backwards=False)(model)
        model = C.layers.Dense(num_labels, name='classify')(model)

    z = model
    ce = C.cross_entropy_with_softmax(z, label_seq_input)

    seq1_data = [[[0, 1, 1], [0, 1, 0], [1, 0, 0]], [[1, 1, 0], [0, 0, 1], [1, 0, 1]], [[1, 0, 0], [0, 0, 1], [1, 1, 0]]]
    csr_seq1 = _to_csr(seq1_data)
    ndarrayview1 = C.NDArrayView.from_csr(csr_seq1, shape=(3, 3, 3), device=C.cpu())
    seq2_data = [[[0, 0, 1], [0, 1, 1], [1, 0, 1]], [[0, 1, 0], [1, 0, 1], [0, 0, 0]]]
    csr_seq2 = _to_csr(seq2_data)
    ndarrayview2 = C.NDArrayView.from_csr(csr_seq2, shape=(2, 3, 3), device=C.cpu())
    x_seq_data = C.Value.create(C.sequence.input_variable((3, 3), is_sparse=True), [ndarrayview1, ndarrayview2], device=C.cpu()).data

    seq1_label_data = [[0, 1], [0, 1], [1, 0]]
    seq2_label_data = [[1, 0], [0, 1]]
    label_seq_data = [_to_csr(seq1_label_data), _to_csr(seq2_label_data)]
    param_grads, loss_result = ce.grad({x_seq_input : x_seq_data, label_seq_input : label_seq_data},
                                       wrt=ce.parameters, outputs=[ce], as_numpy=False)

    loss_result = loss_result.as_sequences()

    absolute_tolerance = 0.02
    assert np.allclose(loss_result[0], [[0.67126], [0.676331], [0.765814]], atol=absolute_tolerance)
    assert np.allclose(loss_result[1], [[0.685199], [0.681736]], atol=absolute_tolerance)
Ejemplo n.º 27
0
def test_native_user_function(tmpdir):

    if not C.cntk_py.is_native_user_function_registered('NativeUserTimesOp'):
        C.ops.register_native_user_function(
            'NativeUserTimesOp',
            'Cntk.ExtensibilityExamples-' + C.__version__.rstrip('+'),
            'CreateUserTimesFunction')

    dev = C.cpu()
    x = C.input_variable((2))
    w = C.parameter((2, 2),
                    init=np.asarray([[0.5, 2], [-0.5, 1.5]], dtype=np.float32),
                    device=dev)
    attributes = {
        'param_rank': 2,
        'padding': True,
        'none': None,
        'nested lists': [[1, 2, 3], [4, 5, 6]],
        'string': 'string',
        'some data': np.arange(1, 10, dtype=np.float32).reshape((3, 3))
    }

    def verify_attributes(udf):
        for k, v in attributes.items():
            if not isinstance(v, np.ndarray):
                assert udf.attributes[k] == v
            else:
                assert (udf.attributes[k] == v).all()

    op = C.ops.native_user_function('NativeUserTimesOp', [w, x], attributes,
                                    'native_user_times_function')

    verify_attributes(op.owner)

    filepath = str(tmpdir / 'test_native_user_function.dat')
    op.save(filepath)

    op_reloaded = Function.load(filepath, device=dev)
    x_data = C.NDArrayView.from_dense(np.asarray([[0.1, 0.2], [-0.1, 0.3]],
                                                 dtype=np.float32),
                                      device=dev)
    result = op_reloaded.eval({op_reloaded.arguments[0]: x_data}, device=dev)

    assert np.allclose(result, [[-0.05, 0.5], [-0.2, 0.25]])

    native_times_primitive = op_reloaded.find_by_name(
        'native_user_times_function')

    verify_attributes(native_times_primitive)
Ejemplo n.º 28
0
def test_set_gpu_as_default_device():
    if len(C.device.all_devices()) == 1:
        return
    # this will release any previous held device locks
    C.try_set_default_device(C.cpu(), False)
    for i in range(len(C.device.all_devices()) - 1):
        device = C.gpu(i)
        assert C.try_set_default_device(device, False)
        assert not is_locked(device)
        assert device == C.use_default_device()
        if not device.is_locked():
            assert not is_locked(device)
            assert C.try_set_default_device(device, True)
            assert device == C.use_default_device()
            assert is_locked(device)
Ejemplo n.º 29
0
def test_set_gpu_as_default_device():
    if len(C.device.all_devices()) == 1:
        return;
    # this will release any previous held device locks
    C.try_set_default_device(C.cpu(), False)
    for i in range(len(C.device.all_devices()) - 1):
        device = C.gpu(i)
        assert C.try_set_default_device(device, False)
        assert not is_locked(device)
        assert device == C.use_default_device()
        if not device.is_locked():
            assert not is_locked(device)
            assert C.try_set_default_device(device, True)
            assert device == C.use_default_device()
            assert is_locked(device)
Ejemplo n.º 30
0
def test_override_serialize(tmpdir):
    dev = C.cpu()
    a, b = 1.2322341, -0.29084
    op = MyPlusPlus([C.constant(a), C.constant(b)], '++')
    op = MyPlusPlus([op, op], '+++')
    op = MyPlusPlus([op, op], '++++')
    op = C.user_function(op)
    result1 = op.eval({}, device=dev)

    filepath = str(tmpdir / 'test_udf_with_renamed_deserialize.dat')
    op.save(filepath)

    op_reloaded = Function.load(filepath, device=dev)

    assert result1 == op_reloaded.eval({}, device=dev)
Ejemplo n.º 31
0
def test_override_serialize(tmpdir):
    dev = C.cpu()
    a, b = 1.2322341, -0.29084
    op = MyPlusPlus([C.constant(a), C.constant(b)], '++')
    op = MyPlusPlus([op, op], '+++')
    op = MyPlusPlus([op, op], '++++')
    op = C.user_function(op)
    result1 = op.eval({}, device=dev)

    filepath = str(tmpdir / 'test_udf_with_renamed_deserialize.dat')
    op.save(filepath)

    op_reloaded = Function.load(filepath, device=dev)

    assert result1 == op_reloaded.eval({}, device=dev)
def build_test_function():
    dev = C.cpu()
    w_value = np.asarray([[0.5, 2], [-0.5, 1.5]]).astype(np.float32)
    c1_value = 2.718
    c2_value = -3.141

    if not C.cntk_py.is_native_user_function_registered('NativeUserTimesOp'):
        C.ops.register_native_user_function('NativeUserTimesOp', 'Cntk.ExtensibilityExamples-' + C.__version__.rstrip('+'), 'CreateUserTimesFunction')

    x = C.input_variable((2))

    w = C.parameter((2, 2), init=w_value, device=dev)

    op = C.user_function(MyPlus(x, C.constant(c1_value)))
    op = C.ops.native_user_function('NativeUserTimesOp', [w, op], user_function_instance_name='my_times')

    return dev, w_value, c1_value, c2_value, C.user_function(MyPlus(op, C.constant(c2_value)))
Ejemplo n.º 33
0
def build_test_function():
    dev = C.cpu()
    w_value = np.asarray([[0.5, 2], [-0.5, 1.5]]).astype(np.float32)
    c1_value = 2.718
    c2_value = -3.141

    if not C.cntk_py.is_native_user_function_registered('NativeUserTimesOp'):
        C.ops.register_native_user_function('NativeUserTimesOp', 'Cntk.ExtensibilityExamples-' + C.__version__.rstrip('+'), 'CreateUserTimesFunction')

    x = C.input_variable((2))

    w = C.parameter((2, 2), init=w_value, device=dev)

    op = C.user_function(MyPlus(x, C.constant(c1_value)))
    op = C.ops.native_user_function('NativeUserTimesOp', [w, op], user_function_instance_name='my_times')

    return dev, w_value, c1_value, c2_value, C.user_function(MyPlus(op, C.constant(c2_value)))
Ejemplo n.º 34
0
def evaluate(model_path):
    # ProposalLayer currently only runs on the CPU
    eval_device = C.cpu()
    model = C.Function.load(model_path, device=eval_device)

    from FasterRCNN.FasterRCNN_config import cfg as detector_cfg
    from utils.configs.AlexNet_config import cfg as network_cfg
    from utils.configs.Grocery_config import cfg as dataset_cfg
    from utils.config_helpers import merge_configs
    from FasterRCNN.FasterRCNN_train import prepare
    from FasterRCNN.FasterRCNN_eval import compute_test_set_aps

    cfg = merge_configs([detector_cfg, network_cfg, dataset_cfg])
    cfg["CNTK"].FORCE_DETERMINISTIC = True

    prepare(cfg, False)
    eval_results = compute_test_set_aps(model, cfg)
    meanAP = np.nanmean(list(eval_results.values()))
    return meanAP
def evaluate(model_path):
    # ProposalLayer currently only runs on the CPU
    eval_device = C.cpu()
    model = C.Function.load(model_path, device=eval_device)

    from FasterRCNN.FasterRCNN_config import cfg as detector_cfg
    from utils.configs.AlexNet_config import cfg as network_cfg
    from utils.configs.Grocery_config import cfg as dataset_cfg
    from utils.config_helpers import merge_configs
    from FasterRCNN.FasterRCNN_train import prepare
    from FasterRCNN.FasterRCNN_eval import compute_test_set_aps

    cfg = merge_configs([detector_cfg, network_cfg, dataset_cfg])
    cfg["CNTK"].FORCE_DETERMINISTIC = True

    prepare(cfg, False)
    eval_results = compute_test_set_aps(model, cfg)
    meanAP = np.nanmean(list(eval_results.values()))
    return meanAP
def test_native_binary_function():
    # user functions need to be registered before being callable by python
    if not nopt.native_convolve_function_registered:
      pytest.skip("Could not find {0} library. "
        "Please check if HALIDE_PATH is configured properly "
        "and try building {1} again"
        .format('Cntk.BinaryConvolution-' + C.__version__.rstrip('+'),
        'Extnsibiliy\\BinaryConvolution'))

    # be sure to only run on CPU, binary convolution does not have GPU support for now
    dev = C.cpu()
    # create an arbitrary input mimicking a realistic cifar input
    x = input((64, 28, 28))
    # random filter weights for testing
    w = parameter((64, 64, 3, 3), init=np.reshape(2*(np.random.rand(64*64*3*3)-.5), (64, 64, 3, 3)), dtype=np.float32, device=dev)

    # set the convolution parameters by passing in an attribute dictionary
    #attributes = {'stride' : 1, 'padding' : False, 'size' : 3}

    attributes = {'stride' : 1,
                  'padding' : False,
                  'size' : 3,                       
                  'h' : 28,
                  'w' : 28,
                  'channels' : 64,
                  'filters' : 64 }

    # define the binary convolution op
    op = ops.native_user_function('NativeBinaryConvolveFunction', [w, x], attributes, 'native_binary_convolve')
    
    # also define an op using python custom functions that should have the same output
    op2 = C.convolution(CustomMultibitKernel(w, 1), CustomSign(x), auto_padding = [False])
    # create random input data
    x_data = NDArrayView.from_dense(np.asarray(np.reshape(2*(np.random.rand(64*28*28)-.5), (64, 28, 28)),dtype=np.float32), device=dev)
    # evaluate the CPP binary convolve
    result = op.eval({x : x_data}, device=dev)

    # evaluate the python emulator
    result2 = op2.eval({x : x_data}, device=dev)
    native_times_primitive = op.find_by_name('native_binary_convolve')
    # assert that both have the same result
    '''
Ejemplo n.º 37
0
def test_native_user_function(tmpdir):

    if not C.cntk_py.is_native_user_function_registered('NativeUserTimesOp'):
        C.ops.register_native_user_function('NativeUserTimesOp', 'Cntk.ExtensibilityExamples-' + C.__version__.rstrip('+'), 'CreateUserTimesFunction')

    dev = C.cpu()
    x = C.input_variable((2))
    w = C.parameter((2, 2), init=np.asarray([[0.5, 2], [-0.5, 1.5]], dtype=np.float32), device=dev)
    attributes = {'param_rank': 2,
                  'padding': True,
                  'none': None,
                  'nested lists': [[1, 2, 3], [4, 5, 6]],
                  'string': 'string',
                  'some data': np.arange(1, 10, dtype=np.float32).reshape((3, 3))
                  }

    def verify_attributes(udf):
        for k, v in attributes.items():
            if not isinstance(v, np.ndarray):
                assert udf.attributes[k] == v
            else:
                assert (udf.attributes[k] == v).all()

    op = C.ops.native_user_function('NativeUserTimesOp', [w, x], attributes, 'native_user_times_function')

    verify_attributes(op.owner)

    filepath = str(tmpdir / 'test_native_user_function.dat')
    op.save(filepath)

    op_reloaded = Function.load(filepath, device=dev)
    x_data = C.NDArrayView.from_dense(np.asarray([[0.1, 0.2], [-0.1, 0.3]], dtype=np.float32), device=dev)
    result = op_reloaded.eval({op_reloaded.arguments[0]: x_data}, device=dev)

    assert np.allclose(result, [[-0.05, 0.5], [-0.2, 0.25]])

    native_times_primitive = op_reloaded.find_by_name('native_user_times_function')

    verify_attributes(native_times_primitive)
Ejemplo n.º 38
0
def test_native_binary_function():
    # user functions need to be registered before being callable by python
    ops.register_native_user_function(
        'NativeBinaryConvolveFunction',
        'Cntk.BinaryConvolutionExample-' + C.__version__.rstrip('+'),
        'CreateBinaryConvolveFunction')
    # be sure to only run on CPU, binary convolution does not have GPU support for now
    dev = cpu()
    # create an arbitrary input mimicking a realistic cifar input
    x = input((64, 30, 30))
    # random filter weights for testing
    w = parameter((64, 64, 3, 3),
                  init=np.reshape(2 * (np.random.rand(64 * 64 * 3 * 3) - .5),
                                  (64, 64, 3, 3)),
                  dtype=np.float32,
                  device=dev)
    # set the convolution parameters by passing in an attribute dictionary
    attributes = {'stride': 1, 'padding': False, 'size': 3}
    # define the binary convolution op
    op = ops.native_user_function('NativeBinaryConvolveFunction', [w, x],
                                  attributes,
                                  'native_binary_convolve_function')
    # also define an op using python custom functions that should have the same output
    op2 = C.convolution(CustomMultibitKernel(w, 1),
                        CustomSign(x),
                        auto_padding=[False])
    # create random input data
    x_data = NDArrayView.from_dense(np.asarray(np.reshape(
        2 * (np.random.rand(64 * 30 * 30) - .5), (64, 30, 30)),
                                               dtype=np.float32),
                                    device=dev)
    # evaluate the CPP binary convolve
    result = op.eval({x: x_data}, device=dev)
    # evaluate the python emulator
    result2 = op2.eval({x: x_data}, device=dev)
    native_times_primitive = op.find_by_name('native_binary_convolve_function')
    # assert that both have the same result
    assert np.allclose(result, result2, atol=0.001)
def test_native_binary_function():
    # user functions need to be registered before being callable by python
    ops.register_native_user_function('NativeBinaryConvolveFunction', 'Cntk.BinaryConvolutionExample-' + C.__version__.rstrip('+'), 'CreateBinaryConvolveFunction')
    # be sure to only run on CPU, binary convolution does not have GPU support for now
    dev = cpu()
    # create an arbitrary input mimicking a realistic cifar input
    x = input((64, 30, 30))
    # random filter weights for testing
    w = parameter((64, 64, 3, 3), init=np.reshape(2*(np.random.rand(64*64*3*3)-.5), (64, 64, 3, 3)), dtype=np.float32, device=dev)
    # set the convolution parameters by passing in an attribute dictionary
    attributes = {'stride' : 1, 'padding' : False, 'size' : 3}
    # define the binary convolution op
    op = ops.native_user_function('NativeBinaryConvolveFunction', [w, x], attributes, 'native_binary_convolve_function')
    # also define an op using python custom functions that should have the same output
    op2 = C.convolution(CustomMultibitKernel(w, 1), CustomSign(x), auto_padding = [False])
    # create random input data
    x_data = NDArrayView.from_dense(np.asarray(np.reshape(2*(np.random.rand(64*30*30)-.5), (64, 30, 30)),dtype=np.float32), device=dev)
    # evaluate the CPP binary convolve
    result = op.eval({x : x_data}, device=dev)
    # evaluate the python emulator
    result2 = op2.eval({x : x_data}, device=dev)
    native_times_primitive = op.find_by_name('native_binary_convolve_function')
    # assert that both have the same result
    assert np.allclose(result, result2, atol=0.001)
Ejemplo n.º 40
0
def evaluate(model_path):
    # ProposalLayer currently only runs on the CPU
    eval_device = C.cpu()
    model = C.Function.load(model_path, device=eval_device)
    set_global_vars(False)
    return eval_faster_rcnn_mAP(model)
Ejemplo n.º 41
0
def is_locked_cross_process(queue, device_id):
    device = C.cpu() if device_id < 0 else C.gpu(device_id)
    queue.put(device.is_locked())
Ejemplo n.º 42
0
from ConvNet_CIFAR10_DataAug import *

############################# 
# main function boilerplate #
#############################

if __name__=='__main__':
    model = create_binary_convolution_model()
    z, criterion = get_z_and_criterion(model)
    reader_train = create_reader(os.path.join(data_path, 'train_map.txt'), os.path.join(data_path, 'CIFAR-10_mean.xml'), True)
    train_model(reader_train, z, criterion, max_epochs=80)

    # save and load (as an illustration)
    model_path = data_path + "/model.cmf"
    model.save(model_path)

    # We use the NativeBinaryConvolveFunction for testing the model, which currently only runs on the CPU
    eval_device = C.cpu()
    model = Function.load(model_path, device=eval_device)

    # For testing, replace all python binary convolution user-functions with the fast Halide generated
    # NativeBinaryConvolveFunction. Note, the NativeBinaryConvolveFunction currently only supports eval,
    # and is thus not used for training.
    model_with_native_binary_convolutions = clone_with_native_binary_convolutions(model)
    _, criterion = get_z_and_criterion(model_with_native_binary_convolutions)

    reader_test = create_reader(os.path.join(data_path, 'test_map.txt'), os.path.join(data_path, 'CIFAR-10_mean.xml'), False)

    # TODO: The NativeBinaryConvolveFunction can currently only process one image at a time
    evaluate(reader_test, criterion, device=eval_device, minibatch_size=1, max_samples=1000)
Ejemplo n.º 43
0
def setup_nn_model(model_path, dim_input=93, dim_output=199, n_fold=1):
    cntk.device.try_set_default_device(cntk.cpu())
    nn_model = CuteModel(dim_x=dim_input * n_fold, dim_y=dim_output * n_fold)
    nn_model.trainer.restore_from_checkpoint(model_path)
    return nn_model.trainer.model
Ejemplo n.º 44
0
def test_all_devices():
    assert len(C.device.all_devices()) > 0
    assert C.cpu() in C.device.all_devices()
    if (len(C.device.all_devices()) > 1):
        assert C.gpu(0) in C.device.all_devices()
Ejemplo n.º 45
0
def is_locked_cross_process(queue, device_id):
    device = C.cpu() if device_id < 0 else C.gpu(device_id)
    queue.put(device.is_locked())
Ejemplo n.º 46
0
def test_all_devices():
    assert len(C.device.all_devices()) > 0
    assert C.cpu() in C.device.all_devices()
    if (len(C.device.all_devices()) > 1):
        assert C.gpu(0) in C.device.all_devices()
#############################

if __name__ == '__main__':
    model = create_binary_convolution_model()
    z, criterion = get_z_and_criterion(model)
    reader_train = create_reader(os.path.join(data_path, 'train_map.txt'),
                                 os.path.join(data_path, 'CIFAR-10_mean.xml'),
                                 True)
    train_model(reader_train, z, criterion, max_epochs=80)

    # save and load (as an illustration)
    model_path = data_path + "/model.cmf"
    model.save(model_path)

    # We use the NativeBinaryConvolveFunction for testing the model, which currently only runs on the CPU
    eval_device = C.cpu()
    model = Function.load(model_path, device=eval_device)

    # For testing, replace all python binary convolution user-functions with the fast Halide generated
    # NativeBinaryConvolveFunction. Note, the NativeBinaryConvolveFunction currently only supports eval,
    # and is thus not used for training.
    model_with_native_binary_convolutions = clone_with_native_binary_convolutions(
        model)
    _, criterion = get_z_and_criterion(model_with_native_binary_convolutions)

    reader_test = create_reader(os.path.join(data_path, 'test_map.txt'),
                                os.path.join(data_path, 'CIFAR-10_mean.xml'),
                                False)

    # TODO: The NativeBinaryConvolveFunction can currently only process one image at a time
    evaluate(reader_test,
Ejemplo n.º 48
0
### User inputs ###

network_list = ['action+','action','action_m','feature','GRP','GRP+','GRP_feature']

parser = argparse.ArgumentParser()
parser.add_argument('model_type', type=str, action='store', choices=network_list, help='The type of model to use')
parser.add_argument('--data-file', dest='data_file', type=str, action='store', default='data/training_human_data.json')
parser.add_argument('--gpu-id', dest='gpu_id', type=int, default=-2, help="""The GPU to use. -1 for CPU, -2 for default.""");

cmdargs = parser.parse_args(sys.argv[1:])

# Set device to run on
if cmdargs.gpu_id >= 0:
	C.try_set_default_device(C.gpu(cmdargs.gpu_id))
elif cmdargs.gpu_id == -1:
	C.try_set_default_device(C.cpu())

network = cmdargs.model_type
data_file = cmdargs.data_file


######################

### DATA INPUT ###

#######################
target_dist = 30
target_var = 50000
#######################
max_velocity = 0.31
learning_rate = 0.1
Ejemplo n.º 49
0
def test_lstm_over_lstm_thought_vectors(device_id):
    previous_random_seed = C.cntk_py.get_random_seed()
    C.cntk_py.reset_random_seed(0)
    dev = cntk_device(device_id)
    input_vocab_size = 3
    emb_dim = 2
    hidden_dim = 2
    num_labels = 2
    x_seq_input = C.sequence.input((C.FreeDimension, input_vocab_size),
                                   is_sparse=True,
                                   name='features')
    label_seq_input = C.sequence.input(num_labels,
                                       is_sparse=True,
                                       sequence_axis=Axis('label_sequence'),
                                       name='labels')
    with C.default_options(initial_state=0.1):
        model = C.layers.Embedding(emb_dim, name='embed')(x_seq_input)
        model = C.layers.Recurrence(C.layers.LSTM(hidden_dim),
                                    go_backwards=False)(model)
        model = C.sequence.last(model)
        model = C.to_sequence_like(model, label_seq_input)
        model = C.layers.Recurrence(C.layers.LSTM(hidden_dim),
                                    go_backwards=False)(model)
        model = C.layers.Dense(num_labels, name='classify')(model)

    z = model
    ce = C.cross_entropy_with_softmax(z, label_seq_input)

    seq1_data = [[[0, 1, 1], [0, 1, 0], [1, 0, 0]],
                 [[1, 1, 0], [0, 0, 1], [1, 0, 1]],
                 [[1, 0, 0], [0, 0, 1], [1, 1, 0]]]
    csr_seq1 = _to_csr(seq1_data)
    ndarrayview1 = C.NDArrayView.from_csr(csr_seq1,
                                          shape=(3, 3, 3),
                                          device=C.cpu())
    seq2_data = [[[0, 0, 1], [0, 1, 1], [1, 0, 1]],
                 [[0, 1, 0], [1, 0, 1], [0, 0, 0]]]
    csr_seq2 = _to_csr(seq2_data)
    ndarrayview2 = C.NDArrayView.from_csr(csr_seq2,
                                          shape=(2, 3, 3),
                                          device=C.cpu())
    x_seq_data = C.Value.create(C.sequence.input((3, 3), is_sparse=True),
                                [ndarrayview1, ndarrayview2],
                                device=C.cpu()).data

    seq1_label_data = [[0, 1], [0, 1], [1, 0]]
    seq2_label_data = [[1, 0], [0, 1]]
    label_seq_data = [_to_csr(seq1_label_data), _to_csr(seq2_label_data)]
    param_grads, loss_result = ce.grad(
        {
            x_seq_input: x_seq_data,
            label_seq_input: label_seq_data
        },
        wrt=ce.parameters,
        outputs=[ce],
        as_numpy=False)

    loss_result = loss_result.as_sequences()

    # TODO: The tolerance here is inordinately high due to the non-determinism in initialization
    # of parameters as the individual tests are not run in separate processes resulting in the
    # addition or removal of tests to affect the random initialization of parameters in all other
    # tests that do not explicitly specify the random seed. The tolerance should be lowered to
    # 0.01 after this issue in the test infrastructure has been fixed.
    absolute_tolerance = 0.02
    assert np.allclose(loss_result[0], [[0.63504], [0.673343], [0.698446]],
                       atol=absolute_tolerance)
    assert np.allclose(loss_result[1], [[0.772344], [0.64295]],
                       atol=absolute_tolerance)

    C.cntk_py.reset_random_seed(previous_random_seed)