Ejemplo n.º 1
0
def logLikelihood(model, all_obs, c, r, m, t):
    return logL_multiseq(model,
                         all_obs,
                         FIXED_COL_MAP,
                         c,
                         r,
                         m,
                         t,
                         prepare_matrices=zipHMM_prepare_matrices,
                         single_logL=zipHMM_single_logL)
Ejemplo n.º 2
0
def logLikelihood(model, all_obs, c,r,m,t):
    return logL_multiseq(model, all_obs, COL_MAP, c,r,m,t,
            prepare_matrices=zipHMM_prepare_matrices,
            single_logL=zipHMM_single_logL)
Ejemplo n.º 3
0
def logLikelihood(model, all_obs, c, r, m, t):
    return logL_multiseq(model, all_obs, COL_MAP, c, r, m, t)
Ejemplo n.º 4
0
def logLikelihood(model, all_obs, c,r,m,t):
    return logL_multiseq(model, all_obs, COL_MAP, c,r,m,t)
Ejemplo n.º 5
0
def logLikelihood(model, all_obs, c,r,m,t):
    # The simplest way to get a likelihood is to call logL_multiseq which will
    # assign actual times to your intervals, construct the matrices and run the
    # forward algorithm with the resulting matrices.
    return logL_multiseq(model, all_obs, FIXED_COL_MAP, c,r,m,t)
Ejemplo n.º 6
0
def logLikelihood(model, all_obs, c, r, m, t):
    # The simplest way to get a likelihood is to call logL_multiseq which will
    # assign actual times to your intervals, construct the matrices and run the
    # forward algorithm with the resulting matrices.
    return logL_multiseq(model, all_obs, FIXED_COL_MAP, c, r, m, t)