p_arr = np.append(p_arr, [[po2, ptest]], axis=0)

#When T- is severely oxygen limited
parm_name = 'p_o2-p_test'
parm_name_array = ['p_o2', 'p_test']
post_path = 'Tneg-o2limited_'

cf.timeseries(pre_path=pre_path,
              parm_name=parm_name,
              parm_array=p_arr,
              parm_format=parm_format,
              plot_Tpos=False,
              post_path=post_path)
df = cf.eq_values(pre_path=pre_path,
                  parm_name=parm_name,
                  parm_array=p_arr,
                  parm_format=parm_format,
                  parm_name_array=parm_name_array,
                  post_path=post_path)
df = cf.cell_eq_ratio(df, 'Tneg', 'Tpro')
cf.plot_2parm(df=df,
              pre_path=pre_path,
              parm_name=parm_name,
              post_path=post_path,
              pri_parm=parm_name_array[0],
              sec_parm=parm_name_array[1],
              plot_y='Tneg_ratio')

# Looking closely between the phase transition, p_test = 1e-6
p_arr = np.linspace(0.0675, 0.085, 10)
parm_name = 'p_o2'
cf.timeseries(pre_path=pre_path,
Ejemplo n.º 2
0
parm_name_array = np.array(['l_lim_o2Tneg', 'u_lim_o2Tneg'])
## OG Equation
pre_path = 'EnvEq/singlecelltype/Tneg/'
cf.mkdirs(pre_path=pre_path, parm_name=parm_name)

### celleq=1E4: rho s.t T- at equilibrium is 10^4
cf.timeseries(pre_path=pre_path,
              parm_name=parm_name,
              parm_array=o2_lim_arr,
              parm_format=parm_format,
              plot_Tpos=False,
              plot_Tpro=False,
              plot_test=False)
df = cf.eq_values(pre_path=pre_path,
                  parm_name=parm_name,
                  parm_array=o2_lim_arr,
                  parm_format=parm_format,
                  parm_name_array=parm_name_array)
df['l_lim_o2Tneg'] = df['l_lim_o2Tneg'].round(1)
df['u_lim_o2Tneg'] = df['u_lim_o2Tneg'].round(1)
cf.heatmap_eqvparm(df,
                   pre_path=pre_path,
                   parm_name=parm_name,
                   parm_name_array=parm_name_array,
                   plot_Tpos=False,
                   plot_Tpro=False,
                   plot_test=False)

# Tp
## OG Equation
parm_name = 'l_lim_o2Tpro-u_lim_o2Tpro'
])

###
for scenario in scenarios:
    for p_min in p_min_arr:
        post_path = scenario + 'p={:.1e}-'.format(p_min)
        cf.timeseries(pre_path=pre_path,
                      parm_name=parm_name,
                      parm_array=parms_array,
                      parm_format=parm_format,
                      post_path=post_path,
                      plot_tot=True)
        df = cf.eq_values(pre_path=pre_path,
                          parm_name=parm_name,
                          parm_array=parms_array,
                          parm_format=parm_format,
                          post_path=post_path,
                          ttp=True,
                          limit=9000)

## High o2 efficiency, High test efficiency
parm_name = 'o2-HE_test-HE'
cf.mkdirs(pre_path=pre_path, parm_name=parm_name)
scenarios = np.array([
    '',  ### Tp:T+:T- 1:1:1 x 666 (total ~2000)
    '0.8Tp-',  ### Tp:T+:T- 8:1:1 x 200 (total 2000)
])

for scenario in scenarios:
    for p_min in p_min_arr:
        post_path = scenario + 'p={:.1e}-'.format(p_min)
Ejemplo n.º 4
0
#Input parms
p_o2_arr = np.linspace(0.1, 0.2, 20)
parm_name = 'p_o2'
parm_format = '{:.2E}'
parm_unit = '(prop/min)'

## OG Eq
pre_path = 'EnvEq/singlecelltype/Tneg/'
cf.mkdirs(pre_path=pre_path, parm_name=parm_name)

### celleq=1E4: rho s.t T- at equilibrium is 10^4
cf.timeseries(pre_path=pre_path,
              parm_name=parm_name,
              parm_array=p_o2_arr,
              parm_format=parm_format,
              plot_Tpos=False,
              plot_Tpro=False,
              plot_test=False)
df = cf.eq_values(pre_path=pre_path,
                  parm_name=parm_name,
                  parm_array=p_o2_arr,
                  parm_format=parm_format)
cf.eqvparm(df,
           pre_path=pre_path,
           parm_name=parm_name,
           parm_unit=parm_unit,
           plot_Tpos=False,
           plot_Tpro=False,
           plot_test=False)