p_arr = np.append(p_arr, [[po2, ptest]], axis=0) #When T- is severely oxygen limited parm_name = 'p_o2-p_test' parm_name_array = ['p_o2', 'p_test'] post_path = 'Tneg-o2limited_' cf.timeseries(pre_path=pre_path, parm_name=parm_name, parm_array=p_arr, parm_format=parm_format, plot_Tpos=False, post_path=post_path) df = cf.eq_values(pre_path=pre_path, parm_name=parm_name, parm_array=p_arr, parm_format=parm_format, parm_name_array=parm_name_array, post_path=post_path) df = cf.cell_eq_ratio(df, 'Tneg', 'Tpro') cf.plot_2parm(df=df, pre_path=pre_path, parm_name=parm_name, post_path=post_path, pri_parm=parm_name_array[0], sec_parm=parm_name_array[1], plot_y='Tneg_ratio') # Looking closely between the phase transition, p_test = 1e-6 p_arr = np.linspace(0.0675, 0.085, 10) parm_name = 'p_o2' cf.timeseries(pre_path=pre_path,
parm_name_array = np.array(['l_lim_o2Tneg', 'u_lim_o2Tneg']) ## OG Equation pre_path = 'EnvEq/singlecelltype/Tneg/' cf.mkdirs(pre_path=pre_path, parm_name=parm_name) ### celleq=1E4: rho s.t T- at equilibrium is 10^4 cf.timeseries(pre_path=pre_path, parm_name=parm_name, parm_array=o2_lim_arr, parm_format=parm_format, plot_Tpos=False, plot_Tpro=False, plot_test=False) df = cf.eq_values(pre_path=pre_path, parm_name=parm_name, parm_array=o2_lim_arr, parm_format=parm_format, parm_name_array=parm_name_array) df['l_lim_o2Tneg'] = df['l_lim_o2Tneg'].round(1) df['u_lim_o2Tneg'] = df['u_lim_o2Tneg'].round(1) cf.heatmap_eqvparm(df, pre_path=pre_path, parm_name=parm_name, parm_name_array=parm_name_array, plot_Tpos=False, plot_Tpro=False, plot_test=False) # Tp ## OG Equation parm_name = 'l_lim_o2Tpro-u_lim_o2Tpro'
]) ### for scenario in scenarios: for p_min in p_min_arr: post_path = scenario + 'p={:.1e}-'.format(p_min) cf.timeseries(pre_path=pre_path, parm_name=parm_name, parm_array=parms_array, parm_format=parm_format, post_path=post_path, plot_tot=True) df = cf.eq_values(pre_path=pre_path, parm_name=parm_name, parm_array=parms_array, parm_format=parm_format, post_path=post_path, ttp=True, limit=9000) ## High o2 efficiency, High test efficiency parm_name = 'o2-HE_test-HE' cf.mkdirs(pre_path=pre_path, parm_name=parm_name) scenarios = np.array([ '', ### Tp:T+:T- 1:1:1 x 666 (total ~2000) '0.8Tp-', ### Tp:T+:T- 8:1:1 x 200 (total 2000) ]) for scenario in scenarios: for p_min in p_min_arr: post_path = scenario + 'p={:.1e}-'.format(p_min)
#Input parms p_o2_arr = np.linspace(0.1, 0.2, 20) parm_name = 'p_o2' parm_format = '{:.2E}' parm_unit = '(prop/min)' ## OG Eq pre_path = 'EnvEq/singlecelltype/Tneg/' cf.mkdirs(pre_path=pre_path, parm_name=parm_name) ### celleq=1E4: rho s.t T- at equilibrium is 10^4 cf.timeseries(pre_path=pre_path, parm_name=parm_name, parm_array=p_o2_arr, parm_format=parm_format, plot_Tpos=False, plot_Tpro=False, plot_test=False) df = cf.eq_values(pre_path=pre_path, parm_name=parm_name, parm_array=p_o2_arr, parm_format=parm_format) cf.eqvparm(df, pre_path=pre_path, parm_name=parm_name, parm_unit=parm_unit, plot_Tpos=False, plot_Tpro=False, plot_test=False)