Ejemplo n.º 1
0
    def watch(self):
        from dagster.core.serdes import unpack_value

        last_pass = False
        while True:
            if self.is_done.is_set():
                last_pass = True
            else:
                time.sleep(0.1)  # 100 ms

            with self.connect() as conn:
                res = (conn.cursor().execute(
                    RETRIEVE_LOG_RECORDS_STATEMENT,
                    (self.next_timestamp, )).fetchall())

                if res:
                    self.next_timestamp = res[-1][0] + 1
                    json_records = [r[1] for r in res]
                    for json_record in json_records:
                        base_dict = json.loads(json_record)

                        if base_dict.get('dagster_meta'):
                            base_dict['dagster_meta'] = unpack_value(
                                base_dict['dagster_meta'])

                        record = logging.makeLogRecord(base_dict)

                        for logger in self.log_manager.loggers:
                            for handler in logger.handlers:
                                # Because we're rehydrating the LogMessage, rather than passing
                                # through Logger._log again (which would obscure the original metadata)
                                # we need to filter for log level here
                                if handler.level <= record.levelno:
                                    handler.handle(record)

            if last_pass:
                conn.close()
                return
Ejemplo n.º 2
0
    def reconstitute_pipeline_context(
        self,
        output_log_path=None,
        marshal_dir=None,
        environment_dict=None,
        handle_kwargs=None,
        pipeline_run_dict=None,
        solid_subset=None,
        solid_handle_kwargs=None,
        instance_ref_dict=None,
    ):
        '''Reconstitutes a context for dagstermill-managed execution.

        You'll see this function called to reconstruct a pipeline context within the ``injected
        parameters`` cell of a dagstermill output notebook. Users should not call this function
        interactively except when debugging output notebooks.

        Use :func:`dagstermill.get_context` in the ``parameters`` cell of your notebook to define a
        context for interactive exploration and development. This call will be replaced by one to
        :func:`dagstermill.reconstitute_pipeline_context` when the notebook is executed by
        dagstermill.
        '''
        check.opt_str_param(output_log_path, 'output_log_path')
        check.opt_str_param(marshal_dir, 'marshal_dir')
        environment_dict = check.opt_dict_param(environment_dict,
                                                'environment_dict',
                                                key_type=str)
        check.dict_param(pipeline_run_dict, 'pipeline_run_dict')
        check.dict_param(handle_kwargs, 'handle_kwargs')
        check.opt_list_param(solid_subset, 'solid_subset', of_type=str)
        check.dict_param(solid_handle_kwargs, 'solid_handle_kwargs')
        check.dict_param(instance_ref_dict, 'instance_ref_dict')

        try:
            handle = load_handle.handle_for_pipeline_cli_args(
                handle_kwargs, use_default_repository_yaml=False)
        except (check.CheckError, load_handle.UsageError) as err:
            six.raise_from(
                DagstermillError(
                    'Cannot invoke a dagstermill solid from an in-memory pipeline that was not loaded '
                    'from an ExecutionTargetHandle. Run this pipeline using dagit, the dagster CLI, '
                    'through dagster-graphql, or in-memory after loading it through an '
                    'ExecutionTargetHandle.'),
                err,
            )

        try:
            instance_ref = unpack_value(instance_ref_dict)
            instance = DagsterInstance.from_ref(instance_ref)
        except Exception as err:  # pylint: disable=broad-except
            six.raise_from(
                DagstermillError(
                    'Error when attempting to resolve DagsterInstance from serialized InstanceRef'
                ),
                err,
            )

        pipeline_def = check.inst_param(
            handle.build_pipeline_definition(),
            'pipeline_def (from handle {handle_dict})'.format(
                handle_dict=handle.data._asdict()),
            PipelineDefinition,
        ).build_sub_pipeline(solid_subset)

        solid_handle = SolidHandle.from_dict(solid_handle_kwargs)
        solid_def = pipeline_def.get_solid(solid_handle)

        pipeline_run = unpack_value(pipeline_run_dict)

        self.marshal_dir = marshal_dir
        self.in_pipeline = True
        self.solid_def = solid_def
        self.pipeline_def = pipeline_def

        with scoped_pipeline_context(
                self.pipeline_def,
                environment_dict,
                pipeline_run,
                instance=instance,
                scoped_resources_builder_cm=self._setup_resources,
        ) as pipeline_context:
            self.context = DagstermillExecutionContext(pipeline_context)

        return self.context