Ejemplo n.º 1
0
        if not os.path.exists(outpathbval) or not os.path.exists(outpathbvec) or overwrite:
            mkcdir(outpathsubj)
            writeformat="tab"
            writeformat="dsi"
            bvals = glob.glob(os.path.join(outpath, "*bvals*.txt"))
            bvecs = glob.glob(os.path.join(outpath, "*bvec*.txt"))
            if np.size(bvals)>0 and np.size(bvecs)>0:
                shutil.copy(bvals[0], outpathbval)
                shutil.copy(bvecs[0], outpathbvec)

results=[]
if subject_processes>1:
    if function_processes>1:
        pool = MyPool(subject_processes)
    else:
        pool = mp.Pool(subject_processes)

    results = pool.starmap_async(launch_preprocessing, [(proc_subjn+subject,
                                                         largerfile(glob.glob(os.path.join(os.path.join(diffpath, "*" + subject + "*")))[0]),
                                                         outpath, cleanup, nominal_bval, bonusshortcutfolder,
                                                         gunniespath, function_processes, masking, ref, transpose,
                                                         overwrite, denoise, recenter, verbose)
                                                        for subject in subjects]).get()
else:
    for subject in subjects:
        max_size=0
        subjectpath = glob.glob(os.path.join(os.path.join(diffpath, "*" + subject + "*")))[0]
        max_file=largerfile(subjectpath)
        launch_preprocessing(proc_subjn+subject, max_file, outpath, cleanup, nominal_bval, bonusshortcutfolder,
         gunniespath, function_processes, masking, ref, transpose, overwrite, denoise, recenter, verbose)
else:
    for subject in subjects:
        max_size = 0
        subjectpath = glob.glob(
            os.path.join(os.path.join(outpath,
                                      "diffusion*" + subject + "*")))[0]
        print(subjectpath)
        max_file = largerfile(subjectpath)
        max_file = os.path.join(subjectpath,
                                "nii4D_" + proc_subjn + subject + ".nii.gz")
        print(max_file)
        #command = gunniespath + "mouse_diffusion_preprocessing.bash"+ f" {subject} {max_file} {outpath}"
        subject_f = proc_subjn + subject

        if os.path.exists(
                os.path.join(
                    '/mnt/munin6/Badea/Lab/mouse/ADDeccode_symlink_pool/',
                    f'{subject_f}_subjspace_coreg.nii.gz')):
            print(
                f'Could not find subject {subject_f} in main diffusion folder but result was found in SAMBA prep folder'
            )
        #elif os.path.exists(os.path.join('/mnt/munin6/Badea/Lab/mouse/VBM_21ADDecode03_IITmean_RPI_fullrun-work/dwi/SyN_0p5_3_0p5_fa/faMDT_NoNameYet_n37_i6/reg_images/',f'{subject_f}_rd_to_MDT.nii.gz')):
        #    print(f'Could not find subject {subject_f} in main diff folder OR samba init but was in results of SAMBA')
        else:
            launch_preprocessing(proc_subjn + subject, max_file, outpath,
                                 cleanup, nominal_bval, SAMBA_inputs_folder,
                                 shortcuts_all_folder, gunniespath,
                                 function_processes, masking, ref, transpose,
                                 overwrite, denoise, verbose)
        #results.append(launch_preprocessing(subject, max_file, outpath))
Ejemplo n.º 3
0
    results = pool.starmap_async(launch_preprocessing, [
        (subject,
         largerfile(
             glob.glob(os.path.join(os.path.join(
                 dwipath, "*" + subject + "*")))[0]), outpath)
        for subject in subjects
    ]).get()
else:
    for subject in subjects:
        max_size = 0
        subjectpath = glob.glob(
            os.path.join(os.path.join(dwipath, "*" + subject + "*")))[0]
        max_file = largerfile(subjectpath)
        #command = gunniespath + "mouse_diffusion_preprocessing.bash"+ f" {subject} {max_file} {outpath}"
        launch_preprocessing(subject,
                             max_file,
                             outpath,
                             nominal_bval=800,
                             shortcutpath=shortcutpath,
                             bonusniftipath=None,
                             gunniespath="/Users/alex/bass/gitfolder/gunnies/",
                             matlabpath="/Users/alex/Documents/MATLAB/")
        #results.append(launch_preprocessing(subject, max_file, outpath))
"""
subjectlist = ["58215","58216","58217","58218","58219","58221","58222","58223","58224","58225","58226","58228","58229","58230","58231","58232","58633","58634","58635","58636","58649","58650","58651","58653","58654"]
for subj in subjectlist:
    fbvals_new = fbvals.replace("58214", subj)
    shutil.copyfile(fbvals, fbvals_new)
    fbvecs_new = fbvals.replace("58214", subj)
    shutil.copyfile(fbvals, fbvals_new)
"""