Ejemplo n.º 1
0
def test_odfdeconv():
    SNR = 100
    S0 = 1

    _, fbvals, fbvecs = get_data('small_64D')
    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)
    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]))

    angles = [(0, 0), (90, 0)]
    S, sticks = multi_tensor(gtab,
                             mevals,
                             S0,
                             angles=angles,
                             fractions=[50, 50],
                             snr=SNR)

    sphere = get_sphere('symmetric362')

    odf_gt = multi_tensor_odf(sphere.vertices, mevals, angles, [50, 50])

    e1 = 15.0
    e2 = 3.0
    ratio = e2 / e1

    csd = ConstrainedSDTModel(gtab, ratio, None)

    csd_fit = csd.fit(S)
    fodf = csd_fit.odf(sphere)

    directions, _, _ = peak_directions(odf_gt, sphere)
    directions2, _, _ = peak_directions(fodf, sphere)

    ang_sim = angular_similarity(directions, directions2)

    assert_equal(ang_sim > 1.9, True)

    assert_equal(directions.shape[0], 2)
    assert_equal(directions2.shape[0], 2)

    with warnings.catch_warnings(record=True) as w:

        ConstrainedSDTModel(gtab, ratio, sh_order=10)
        assert_equal(len(w) > 0, True)

    with warnings.catch_warnings(record=True) as w:

        ConstrainedSDTModel(gtab, ratio, sh_order=8)
        assert_equal(len(w) > 0, False)

    csd_fit = csd.fit(np.zeros_like(S))
    fodf = csd_fit.odf(sphere)
    assert_array_equal(fodf, np.zeros_like(fodf))

    odf_sh = np.zeros_like(fodf)
    odf_sh[1] = np.nan

    fodf, it = odf_deconv(odf_sh, csd.R, csd.B_reg)
    assert_array_equal(fodf, np.zeros_like(fodf))
Ejemplo n.º 2
0
def test_mapmri_odf(radial_order=6):
    gtab = get_gtab_taiwan_dsi()

    # load repulsion 724 sphere
    sphere = default_sphere

    # load icosahedron sphere
    l1, l2, l3 = [0.0015, 0.0003, 0.0003]
    data, golden_directions = generate_signal_crossing(gtab,
                                                       l1,
                                                       l2,
                                                       l3,
                                                       angle2=90)
    mapmod = MapmriModel(gtab,
                         radial_order=radial_order,
                         laplacian_regularization=True,
                         laplacian_weighting=0.01)
    # repulsion724
    sphere2 = create_unit_sphere(5)
    mapfit = mapmod.fit(data)
    odf = mapfit.odf(sphere)

    directions, _, _ = peak_directions(odf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, golden_directions), 2,
                        1)

    # 5 subdivisions
    odf = mapfit.odf(sphere2)
    directions, _, _ = peak_directions(odf, sphere2, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, golden_directions), 2,
                        1)

    sb_dummies = sticks_and_ball_dummies(gtab)
    for sbd in sb_dummies:
        data, golden_directions = sb_dummies[sbd]
        asmfit = mapmod.fit(data)
        odf = asmfit.odf(sphere2)
        directions, _, _ = peak_directions(odf, sphere2, .35, 25)
        if len(directions) <= 3:
            assert_equal(len(directions), len(golden_directions))
        if len(directions) > 3:
            assert_equal(gfa(odf) < 0.1, True)

    # for the isotropic implementation check if the odf spherical harmonics
    # actually represent the discrete sphere function.
    mapmod = MapmriModel(gtab,
                         radial_order=radial_order,
                         laplacian_regularization=True,
                         laplacian_weighting=0.01,
                         anisotropic_scaling=False)
    mapfit = mapmod.fit(data)
    odf = mapfit.odf(sphere)
    odf_sh = mapfit.odf_sh()
    odf_from_sh = sh_to_sf(odf_sh, sphere, radial_order, basis_type=None)
    assert_almost_equal(odf, odf_from_sh, 10)
Ejemplo n.º 3
0
def test_odfdeconv():
    SNR = 100
    S0 = 1

    _, fbvals, fbvecs = get_data('small_64D')
    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)
    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))

    angles = [(0, 0), (90, 0)]
    S, sticks = multi_tensor(gtab, mevals, S0, angles=angles,
                             fractions=[50, 50], snr=SNR)

    sphere = get_sphere('symmetric362')

    odf_gt = multi_tensor_odf(sphere.vertices, mevals, angles, [50, 50])

    e1 = 15.0
    e2 = 3.0
    ratio = e2 / e1

    csd = ConstrainedSDTModel(gtab, ratio, None)

    csd_fit = csd.fit(S)
    fodf = csd_fit.odf(sphere)

    directions, _, _ = peak_directions(odf_gt, sphere)
    directions2, _, _ = peak_directions(fodf, sphere)

    ang_sim = angular_similarity(directions, directions2)

    assert_equal(ang_sim > 1.9, True)

    assert_equal(directions.shape[0], 2)
    assert_equal(directions2.shape[0], 2)

    with warnings.catch_warnings(record=True) as w:

        ConstrainedSDTModel(gtab, ratio, sh_order=10)
        assert_equal(len(w) > 0, True)

    with warnings.catch_warnings(record=True) as w:

        ConstrainedSDTModel(gtab, ratio, sh_order=8)
        assert_equal(len(w) > 0, False)

    csd_fit = csd.fit(np.zeros_like(S))
    fodf = csd_fit.odf(sphere)
    assert_array_equal(fodf, np.zeros_like(fodf))

    odf_sh = np.zeros_like(fodf)
    odf_sh[1] = np.nan

    fodf, it = odf_deconv(odf_sh, csd.R, csd.B_reg)
    assert_array_equal(fodf, np.zeros_like(fodf))
Ejemplo n.º 4
0
def test_forecast_odf():
    # check FORECAST fODF at different SH order
    fm = ForecastModel(data.gtab,
                       sh_order=4,
                       dec_alg='CSD',
                       sphere=data.sphere)
    f_fit = fm.fit(data.S)
    sphere = default_sphere
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, data.sticks), 2, 1)

    fm = ForecastModel(data.gtab,
                       sh_order=6,
                       dec_alg='CSD',
                       sphere=data.sphere)
    f_fit = fm.fit(data.S)
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, data.sticks), 2, 1)

    fm = ForecastModel(data.gtab,
                       sh_order=8,
                       dec_alg='CSD',
                       sphere=data.sphere)
    f_fit = fm.fit(data.S)
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, data.sticks), 2, 1)

    # stronger regularization is required for high order SH
    fm = ForecastModel(data.gtab,
                       sh_order=10,
                       dec_alg='CSD',
                       sphere=sphere.vertices)
    f_fit = fm.fit(data.S)
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, data.sticks), 2, 1)

    fm = ForecastModel(data.gtab,
                       sh_order=12,
                       dec_alg='CSD',
                       sphere=sphere.vertices)
    f_fit = fm.fit(data.S)
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, data.sticks), 2, 1)
Ejemplo n.º 5
0
def test_r2_term_odf_sharp():
    SNR = None
    S0 = 1
    angle = 45  # 45 degrees is a very tight angle to disentangle

    _, fbvals, fbvecs = get_data('small_64D')  # get_data('small_64D')

    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)

    sphere = get_sphere('symmetric724')
    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]))

    angles = [(0, 0), (angle, 0)]

    S, sticks = multi_tensor(gtab,
                             mevals,
                             S0,
                             angles=angles,
                             fractions=[50, 50],
                             snr=SNR)

    odf_gt = multi_tensor_odf(sphere.vertices, mevals, angles, [50, 50])
    odfs_sh = sf_to_sh(odf_gt, sphere, sh_order=8, basis_type=None)
    fodf_sh = odf_sh_to_sharp(odfs_sh,
                              sphere,
                              basis=None,
                              ratio=3 / 15.,
                              sh_order=8,
                              lambda_=1.,
                              tau=0.1,
                              r2_term=True)
    fodf = sh_to_sf(fodf_sh, sphere, sh_order=8, basis_type=None)

    directions_gt, _, _ = peak_directions(odf_gt, sphere)
    directions, _, _ = peak_directions(fodf, sphere)

    ang_sim = angular_similarity(directions_gt, directions)
    assert_equal(ang_sim > 1.9, True)
    assert_equal(directions.shape[0], 2)

    # This should pass as well
    sdt_model = ConstrainedSDTModel(gtab, ratio=3 / 15., sh_order=8)
    sdt_fit = sdt_model.fit(S)
    fodf = sdt_fit.odf(sphere)

    directions_gt, _, _ = peak_directions(odf_gt, sphere)
    directions, _, _ = peak_directions(fodf, sphere)
    ang_sim = angular_similarity(directions_gt, directions)
    assert_equal(ang_sim > 1.9, True)
    assert_equal(directions.shape[0], 2)
Ejemplo n.º 6
0
def test_mapmri_odf(radial_order=6):
    gtab = get_gtab_taiwan_dsi()

    # load symmetric 724 sphere
    sphere = get_sphere('symmetric724')

    # load icosahedron sphere
    l1, l2, l3 = [0.0015, 0.0003, 0.0003]
    data, golden_directions = generate_signal_crossing(gtab, l1, l2, l3,
                                                       angle2=90)
    mapmod = MapmriModel(gtab, radial_order=radial_order,
                         laplacian_regularization=True,
                         laplacian_weighting=0.01)
    # symmetric724
    sphere2 = create_unit_sphere(5)
    mapfit = mapmod.fit(data)
    odf = mapfit.odf(sphere)

    directions, _, _ = peak_directions(odf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, golden_directions), 2, 1)

    # 5 subdivisions
    odf = mapfit.odf(sphere2)
    directions, _, _ = peak_directions(odf, sphere2, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, golden_directions), 2, 1)

    sb_dummies = sticks_and_ball_dummies(gtab)
    for sbd in sb_dummies:
        data, golden_directions = sb_dummies[sbd]
        asmfit = mapmod.fit(data)
        odf = asmfit.odf(sphere2)
        directions, _, _ = peak_directions(odf, sphere2, .35, 25)
        if len(directions) <= 3:
            assert_equal(len(directions), len(golden_directions))
        if len(directions) > 3:
            assert_equal(gfa(odf) < 0.1, True)

    # for the isotropic implementation check if the odf spherical harmonics
    # actually represent the discrete sphere function.
    mapmod = MapmriModel(gtab, radial_order=radial_order,
                         laplacian_regularization=True,
                         laplacian_weighting=0.01,
                         anisotropic_scaling=False)
    mapfit = mapmod.fit(data)
    odf = mapfit.odf(sphere)
    odf_sh = mapfit.odf_sh()
    odf_from_sh = sh_to_sf(odf_sh, sphere, radial_order, basis_type=None)
    assert_almost_equal(odf, odf_from_sh, 10)
Ejemplo n.º 7
0
def test_shore_odf():
    gtab = get_isbi2013_2shell_gtab()

    # load repulsion 724 sphere
    sphere = default_sphere

    # load icosahedron sphere
    sphere2 = create_unit_sphere(5)
    data, golden_directions = sticks_and_ball(gtab,
                                              d=0.0015,
                                              S0=100,
                                              angles=[(0, 0), (90, 0)],
                                              fractions=[50, 50],
                                              snr=None)
    asm = ShoreModel(gtab,
                     radial_order=6,
                     zeta=700,
                     lambdaN=1e-8,
                     lambdaL=1e-8)
    # repulsion724
    asmfit = asm.fit(data)
    odf = asmfit.odf(sphere)
    odf_sh = asmfit.odf_sh()
    odf_from_sh = sh_to_sf(odf_sh, sphere, 6, basis_type=None, legacy=True)
    npt.assert_almost_equal(odf, odf_from_sh, 10)

    expected_phi = shore_matrix(radial_order=6, zeta=700, gtab=gtab)
    npt.assert_array_almost_equal(np.dot(expected_phi, asmfit.shore_coeff),
                                  asmfit.fitted_signal())

    directions, _, _ = peak_directions(odf, sphere, .35, 25)
    npt.assert_equal(len(directions), 2)
    npt.assert_almost_equal(angular_similarity(directions, golden_directions),
                            2, 1)

    # 5 subdivisions
    odf = asmfit.odf(sphere2)
    directions, _, _ = peak_directions(odf, sphere2, .35, 25)
    npt.assert_equal(len(directions), 2)
    npt.assert_almost_equal(angular_similarity(directions, golden_directions),
                            2, 1)

    sb_dummies = sticks_and_ball_dummies(gtab)
    for sbd in sb_dummies:
        data, golden_directions = sb_dummies[sbd]
        asmfit = asm.fit(data)
        odf = asmfit.odf(sphere2)
        directions, _, _ = peak_directions(odf, sphere2, .35, 25)
        if len(directions) <= 3:
            npt.assert_equal(len(directions), len(golden_directions))
        if len(directions) > 3:
            npt.assert_equal(gfa(odf) < 0.1, True)
Ejemplo n.º 8
0
def test_difference_with_minmax():

    # Show difference with and without minmax normalization
    # we create an odf here with 3 main peaks, 1 small sharp unwanted peak
    # (noise) and an isotropic compartment.
    mevals = np.array([[0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003], [0.0015, 0.00005, 0.00005],
                       [0.0015, 0.0015, 0.0015]])
    angles = [(0, 0), (45, 0), (90, 0), (90, 90), (0, 0)]
    fractions = [20, 20, 10, 1, 100 - 20 - 20 - 10 - 1]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles, fractions, 100,
                                            None)

    # We will show that when the minmax normalization is used we can remove
    # the noisy peak using a lower threshold.

    odf_gt_minmax = (odf_gt - odf_gt.min()) / (odf_gt.max() - odf_gt.min())

    _, values_1, _ = peak_directions(odf_gt, sphere, .30, 25.)

    assert_equal(len(values_1), 3)

    _, values_2, _ = peak_directions(odf_gt_minmax, sphere, .30, 25.)

    assert_equal(len(values_2), 3)

    # Setting the smallest value of the odf to zero is like running
    # peak_directions without the odf_min correction.
    odf_gt[odf_gt.argmin()] = 0.
    _, values_3, _ = peak_directions(
        odf_gt,
        sphere,
        .30,
        25.,
    )

    assert_equal(len(values_3), 4)

    # we show here that to actually get that noisy peak out we need to
    # increase the peak threshold considerably
    directions, values_4, indices = peak_directions(
        odf_gt,
        sphere,
        .60,
        25.,
    )

    assert_equal(len(values_4), 3)
    assert_almost_equal(values_1, values_4)
Ejemplo n.º 9
0
def test_mvoxel_gqi():
    data, gtab = dsi_voxels()
    sphere = get_sphere('symmetric724')

    gq = GeneralizedQSamplingModel(gtab, 'standard')
    gqfit = gq.fit(data)
    all_odfs = gqfit.odf(sphere)

    # Check that the first and last voxels each have 2 peaks
    odf = all_odfs[0, 0, 0]
    directions, values, indices = peak_directions(odf, sphere, .35, 25)
    assert_equal(directions.shape[0], 2)
    odf = all_odfs[-1, -1, -1]
    directions, values, indices = peak_directions(odf, sphere, .35, 25)
    assert_equal(directions.shape[0], 2)
Ejemplo n.º 10
0
def test_mvoxel_gqi():
    data, gtab = dsi_voxels()
    sphere = get_sphere('symmetric724')

    gq = GeneralizedQSamplingModel(gtab, 'standard')
    gqfit = gq.fit(data)
    all_odfs = gqfit.odf(sphere)

    # Check that the first and last voxels each have 2 peaks
    odf = all_odfs[0, 0, 0]
    directions, values, indices = peak_directions(odf, sphere, .35, 25)
    assert_equal(directions.shape[0], 2)
    odf = all_odfs[-1, -1, -1]
    directions, values, indices = peak_directions(odf, sphere, .35, 25)
    assert_equal(directions.shape[0], 2)
Ejemplo n.º 11
0
def test_forecast_odf():
    # check FORECAST fODF at different SH order
    fm = ForecastModel(data.gtab, sh_order=4,
                       dec_alg='CSD', sphere=data.sphere)
    f_fit = fm.fit(data.S)
    sphere = get_sphere('repulsion724')
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, data.sticks), 2, 1)

    fm = ForecastModel(data.gtab, sh_order=6,
                       dec_alg='CSD', sphere=data.sphere)
    f_fit = fm.fit(data.S)
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, data.sticks), 2, 1)

    fm = ForecastModel(data.gtab, sh_order=8,
                       dec_alg='CSD', sphere=data.sphere)
    f_fit = fm.fit(data.S)
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, data.sticks), 2, 1)

    # stronger regularization is required for high order SH
    fm = ForecastModel(data.gtab, sh_order=10,
                       dec_alg='CSD', sphere=sphere.vertices)
    f_fit = fm.fit(data.S)
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, data.sticks), 2, 1)

    fm = ForecastModel(data.gtab, sh_order=12,
                       dec_alg='CSD', sphere=sphere.vertices)
    f_fit = fm.fit(data.S)
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, data.sticks), 2, 1)
Ejemplo n.º 12
0
def test_shore_odf():
    gtab = get_isbi2013_2shell_gtab()

    # load symmetric 724 sphere
    sphere = get_sphere('symmetric724')

    # load icosahedron sphere
    sphere2 = create_unit_sphere(5)
    data, golden_directions = SticksAndBall(gtab,
                                            d=0.0015,
                                            S0=100,
                                            angles=[(0, 0), (90, 0)],
                                            fractions=[50, 50],
                                            snr=None)
    asm = ShoreModel(gtab,
                     radial_order=6,
                     zeta=700,
                     lambdaN=1e-8,
                     lambdaL=1e-8)
    # symmetric724
    asmfit = asm.fit(data)
    odf = asmfit.odf(sphere)
    odf_sh = asmfit.odf_sh()
    odf_from_sh = sh_to_sf(odf_sh, sphere, 6, basis_type=None)
    assert_almost_equal(odf, odf_from_sh, 10)

    directions, _, _ = peak_directions(odf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, golden_directions), 2,
                        1)

    # 5 subdivisions
    odf = asmfit.odf(sphere2)
    directions, _, _ = peak_directions(odf, sphere2, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, golden_directions), 2,
                        1)

    sb_dummies = sticks_and_ball_dummies(gtab)
    for sbd in sb_dummies:
        data, golden_directions = sb_dummies[sbd]
        asmfit = asm.fit(data)
        odf = asmfit.odf(sphere2)
        directions, _, _ = peak_directions(odf, sphere2, .35, 25)
        if len(directions) <= 3:
            assert_equal(len(directions), len(golden_directions))
        if len(directions) > 3:
            assert_equal(gfa(odf) < 0.1, True)
Ejemplo n.º 13
0
def test_csd_superres():
    """ Check the quality of csdfit with high SH order. """
    _, fbvals, fbvecs = get_fnames('small_64D')
    bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
    gtab = gradient_table(bvals, bvecs)

    # img, gtab = read_stanford_hardi()
    evals = np.array([[1.5, .3, .3]]) * [[1.], [1.]] / 1000.
    S, sticks = multi_tensor(gtab, evals, snr=None, fractions=[55., 45.])

    with warnings.catch_warnings(record=True) as w:
        warnings.filterwarnings(action="always",
                                message="Number of parameters required.*",
                                category=UserWarning)
        model16 = ConstrainedSphericalDeconvModel(gtab, (evals[0], 3.),
                                                  sh_order=16)
        assert_greater_equal(len(w), 1)
        npt.assert_(issubclass(w[-1].category, UserWarning))

    fit16 = model16.fit(S)

    sphere = HemiSphere.from_sphere(get_sphere('symmetric724'))
    # print local_maxima(fit16.odf(default_sphere), default_sphere.edges)
    d, v, ind = peak_directions(fit16.odf(sphere), sphere,
                                relative_peak_threshold=.2,
                                min_separation_angle=0)

    # Check that there are two peaks
    assert_equal(len(d), 2)

    # Check that peaks line up with sticks
    cos_sim = abs((d * sticks).sum(1)) ** .5
    assert_(all(cos_sim > .99))
Ejemplo n.º 14
0
def test_odf_sh_to_sharp():
    SNR = None
    S0 = 1
    _, fbvals, fbvecs = get_fnames('small_64D')
    bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]))

    S, _ = multi_tensor(gtab,
                        mevals,
                        S0,
                        angles=[(10, 0), (100, 0)],
                        fractions=[50, 50],
                        snr=SNR)

    sphere = default_sphere

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        qb = QballModel(gtab, sh_order=8, assume_normed=True)

    qbfit = qb.fit(S)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        odf_gt = qbfit.odf(sphere)

    Z = np.linalg.norm(odf_gt)

    odfs_gt = np.zeros((3, 1, 1, odf_gt.shape[0]))
    odfs_gt[:, :, :] = odf_gt[:]

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        odfs_sh = sf_to_sh(odfs_gt, sphere, sh_order=8, basis_type=None)

    odfs_sh /= Z

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fodf_sh = odf_sh_to_sharp(odfs_sh,
                                  sphere,
                                  basis=None,
                                  ratio=3 / 15.,
                                  sh_order=8,
                                  lambda_=1.,
                                  tau=0.1)

        fodf = sh_to_sf(fodf_sh, sphere, sh_order=8, basis_type=None)

    directions2, _, _ = peak_directions(fodf[0, 0, 0], sphere)

    assert_equal(directions2.shape[0], 2)
Ejemplo n.º 15
0
    def _peak_directions(self, blob):
        """Gets directions using parameters provided at init.

        Blob can be any function defined on ``self.sphere``, ie an ODF, PMF,
        FOD.
        """
        return peak_directions(blob, self.sphere, **self._pf_kwargs)[0]
Ejemplo n.º 16
0
    def _peak_directions(self, blob):
        """Gets directions using parameters provided at init.

        Blob can be any function defined on ``self.sphere``, ie an ODF, PMF,
        FOD.
        """
        return peak_directions(blob, self.sphere, **self._pf_kwargs)[0]
Ejemplo n.º 17
0
def test_csd_superres():
    """ Check the quality of csdfit with high SH order. """
    _, fbvals, fbvecs = get_data('small_64D')
    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)
    gtab = gradient_table(bvals, bvecs)

    # img, gtab = read_stanford_hardi()
    evals = np.array([[1.5, .3, .3]]) * [[1.], [1.]] / 1000.
    S, sticks = multi_tensor(gtab, evals, snr=None, fractions=[55., 45.])

    model16 = ConstrainedSphericalDeconvModel(gtab, (evals[0], 3.),
                                              sh_order=16)
    fit16 = model16.fit(S)

    # print local_maxima(fit16.odf(default_sphere), default_sphere.edges)
    d, v, ind = peak_directions(fit16.odf(default_sphere),
                                default_sphere,
                                relative_peak_threshold=.2,
                                min_separation_angle=0)

    # Check that there are two peaks
    assert_equal(len(d), 2)

    # Check that peaks line up with sticks
    cos_sim = abs((d * sticks).sum(1))**.5
    assert_(all(cos_sim > .99))
Ejemplo n.º 18
0
    def test_single_voxel_fit(self):
        signal, gtab, expected = make_fake_signal()
        sphere = hemi_icosahedron.subdivide(4)

        model = self.model(gtab, sh_order=4, min_signal=1e-5,
                           assume_normed=True)
        fit = model.fit(signal)
        odf = fit.odf(sphere)
        assert_equal(odf.shape, sphere.phi.shape)
        directions, _, _ = peak_directions(odf, sphere)
        # Check the same number of directions
        n = len(expected)
        assert_equal(len(directions), n)
        # Check directions are unit vectors
        cos_similarity = (directions * directions).sum(-1)
        assert_array_almost_equal(cos_similarity, np.ones(n))
        # Check the directions == expected or -expected
        cos_similarity = (directions * expected).sum(-1)
        assert_array_almost_equal(abs(cos_similarity), np.ones(n))

        # Test normalize data
        model = self.model(gtab, sh_order=4, min_signal=1e-5,
                           assume_normed=False)
        fit = model.fit(signal * 5)
        odf_with_norm = fit.odf(sphere)
        assert_array_almost_equal(odf, odf_with_norm)
Ejemplo n.º 19
0
    def test_single_voxel_fit(self):
        signal, gtab, expected = make_fake_signal()
        sphere = hemi_icosahedron.subdivide(4)

        model = self.model(gtab,
                           sh_order=4,
                           min_signal=1e-5,
                           assume_normed=True)
        fit = model.fit(signal)
        odf = fit.odf(sphere)
        assert_equal(odf.shape, sphere.phi.shape)
        directions, _, _ = peak_directions(odf, sphere)
        # Check the same number of directions
        n = len(expected)
        assert_equal(len(directions), n)
        # Check directions are unit vectors
        cos_similarity = (directions * directions).sum(-1)
        assert_array_almost_equal(cos_similarity, np.ones(n))
        # Check the directions == expected or -expected
        cos_similarity = (directions * expected).sum(-1)
        assert_array_almost_equal(abs(cos_similarity), np.ones(n))

        # Test normalize data
        model = self.model(gtab,
                           sh_order=4,
                           min_signal=1e-5,
                           assume_normed=False)
        fit = model.fit(signal * 5)
        odf_with_norm = fit.odf(sphere)
        assert_array_almost_equal(odf, odf_with_norm)
Ejemplo n.º 20
0
def test_csd_superres():
    """ Check the quality of csdfit with high SH order. """
    _, fbvals, fbvecs = get_data('small_64D')
    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)
    gtab = gradient_table(bvals, bvecs)

    # img, gtab = read_stanford_hardi()
    evals = np.array([[1.5, .3, .3]]) * [[1.], [1.]] / 1000.
    S, sticks = multi_tensor(gtab, evals, snr=None, fractions=[55., 45.])

    model16 = ConstrainedSphericalDeconvModel(gtab, (evals[0], 3.),
                                              sh_order=16)
    fit16 = model16.fit(S)

    # print local_maxima(fit16.odf(default_sphere), default_sphere.edges)
    d, v, ind = peak_directions(fit16.odf(default_sphere), default_sphere,
                                relative_peak_threshold=.2,
                                min_separation_angle=0)

    # Check that there are two peaks
    assert_equal(len(d), 2)

    # Check that peaks line up with sticks
    cos_sim = abs((d * sticks).sum(1)) ** .5
    assert_(all(cos_sim > .99))
Ejemplo n.º 21
0
def test_dsi():
    # load repulsion 724 sphere
    sphere = default_sphere
    # load icosahedron sphere
    sphere2 = create_unit_sphere(5)
    btable = np.loadtxt(get_fnames('dsi515btable'))
    gtab = gradient_table(btable[:, 0], btable[:, 1:])
    data, golden_directions = sticks_and_ball(gtab,
                                              d=0.0015,
                                              S0=100,
                                              angles=[(0, 0), (90, 0)],
                                              fractions=[50, 50],
                                              snr=None)

    ds = DiffusionSpectrumDeconvModel(gtab)

    # repulsion724
    dsfit = ds.fit(data)
    odf = dsfit.odf(sphere)
    directions, _, _ = peak_directions(odf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, golden_directions), 2,
                        1)

    # 5 subdivisions
    dsfit = ds.fit(data)
    odf2 = dsfit.odf(sphere2)
    directions, _, _ = peak_directions(odf2, sphere2, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, golden_directions), 2,
                        1)

    assert_equal(dsfit.pdf().shape, 3 * (ds.qgrid_size, ))
    sb_dummies = sticks_and_ball_dummies(gtab)
    for sbd in sb_dummies:
        data, golden_directions = sb_dummies[sbd]
        odf = ds.fit(data).odf(sphere2)
        directions, _, _ = peak_directions(odf, sphere2, .35, 25)
        if len(directions) <= 3:
            assert_equal(len(directions), len(golden_directions))
        if len(directions) > 3:
            assert_equal(gfa(odf) < 0.1, True)

    assert_raises(ValueError,
                  DiffusionSpectrumDeconvModel,
                  gtab,
                  qgrid_size=16)
Ejemplo n.º 22
0
    def test_single_voxel_fit(self):
        signal, gtab, expected = make_fake_signal()
        sphere = hemi_icosahedron.subdivide(4)

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore",
                                    message=descoteaux07_legacy_msg,
                                    category=PendingDeprecationWarning)

            model = self.model(gtab,
                               sh_order=4,
                               min_signal=1e-5,
                               assume_normed=True)

        fit = model.fit(signal)

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore",
                                    message=descoteaux07_legacy_msg,
                                    category=PendingDeprecationWarning)

            odf = fit.odf(sphere)

        assert_equal(odf.shape, sphere.phi.shape)
        directions, _, _ = peak_directions(odf, sphere)
        # Check the same number of directions
        n = len(expected)
        assert_equal(len(directions), n)
        # Check directions are unit vectors
        cos_similarity = (directions * directions).sum(-1)
        assert_array_almost_equal(cos_similarity, np.ones(n))
        # Check the directions == expected or -expected
        cos_similarity = (directions * expected).sum(-1)
        assert_array_almost_equal(abs(cos_similarity), np.ones(n))

        # Test normalize data
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore",
                                    message=descoteaux07_legacy_msg,
                                    category=PendingDeprecationWarning)

            model = self.model(gtab,
                               sh_order=4,
                               min_signal=1e-5,
                               assume_normed=False)

        fit = model.fit(signal * 5)

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore",
                                    message=descoteaux07_legacy_msg,
                                    category=PendingDeprecationWarning)

            odf_with_norm = fit.odf(sphere)

        assert_array_almost_equal(odf, odf_with_norm)
Ejemplo n.º 23
0
def test_shore_odf():
    gtab = get_isbi2013_2shell_gtab()

    # load symmetric 724 sphere
    sphere = get_sphere('symmetric724')

    # load icosahedron sphere
    sphere2 = create_unit_sphere(5)
    data, golden_directions = SticksAndBall(gtab, d=0.0015,
                                            S0=100, angles=[(0, 0), (90, 0)],
                                            fractions=[50, 50], snr=None)
    asm = ShoreModel(gtab, radial_order=6,
                     zeta=700, lambdaN=1e-8, lambdaL=1e-8)
    # symmetric724
    asmfit = asm.fit(data)
    odf = asmfit.odf(sphere)
    odf_sh = asmfit.odf_sh()
    odf_from_sh = sh_to_sf(odf_sh, sphere, 6, basis_type=None)
    assert_almost_equal(odf, odf_from_sh, 10)


    directions, _ , _ = peak_directions(odf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, golden_directions), 2, 1)

    # 5 subdivisions
    odf = asmfit.odf(sphere2)
    directions, _ , _ = peak_directions(odf, sphere2, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, golden_directions), 2, 1)

    sb_dummies = sticks_and_ball_dummies(gtab)
    for sbd in sb_dummies:
        data, golden_directions = sb_dummies[sbd]
        asmfit = asm.fit(data)
        odf = asmfit.odf(sphere2)
        directions, _ , _ = peak_directions(odf, sphere2, .35, 25)
        if len(directions) <= 3:
            assert_equal(len(directions), len(golden_directions))
        if len(directions) > 3:
            assert_equal(gfa(odf) < 0.1, True)
Ejemplo n.º 24
0
def test_dsi():
    # load symmetric 724 sphere
    sphere = get_sphere('symmetric724')

    # load icosahedron sphere
    sphere2 = create_unit_sphere(5)
    btable = np.loadtxt(get_data('dsi515btable'))
    gtab = gradient_table(btable[:, 0], btable[:, 1:])
    data, golden_directions = SticksAndBall(gtab, d=0.0015,
                                            S0=100, angles=[(0, 0), (90, 0)],
                                            fractions=[50, 50], snr=None)

    ds = DiffusionSpectrumModel(gtab)

    # symmetric724
    dsfit = ds.fit(data)
    odf = dsfit.odf(sphere)

    directions, _, _ = peak_directions(odf, sphere)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, golden_directions),
                        2, 1)

    # 5 subdivisions
    dsfit = ds.fit(data)
    odf2 = dsfit.odf(sphere2)
    directions, _, _ = peak_directions(odf2, sphere2)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, golden_directions),
                        2, 1)

    assert_equal(dsfit.pdf().shape, 3 * (ds.qgrid_size, ))
    sb_dummies = sticks_and_ball_dummies(gtab)
    for sbd in sb_dummies:
        data, golden_directions = sb_dummies[sbd]
        odf = ds.fit(data).odf(sphere2)
        directions, _, _ = peak_directions(odf, sphere2)
        if len(directions) <= 3:
            assert_equal(len(directions), len(golden_directions))
        if len(directions) > 3:
            assert_equal(gfa(odf) < 0.1, True)

    assert_raises(ValueError, DiffusionSpectrumModel, gtab, qgrid_size=16)
Ejemplo n.º 25
0
def get_maximas(data,
                sphere,
                b_matrix,
                threshold,
                absolute_threshold,
                min_separation_angle=25):
    spherical_func = np.dot(data, b_matrix.T)
    spherical_func[np.nonzero(spherical_func < absolute_threshold)] = 0.
    return peak_directions(spherical_func, sphere, threshold,
                           min_separation_angle)
Ejemplo n.º 26
0
def test_r2_term_odf_sharp():
    SNR = None
    S0 = 1
    angle = 45  # 45 degrees is a very tight angle to disentangle

    _, fbvals, fbvecs = get_data('small_64D')  # get_data('small_64D')

    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)

    sphere = get_sphere('symmetric724')
    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))

    angles = [(0, 0), (angle, 0)]

    S, sticks = multi_tensor(gtab, mevals, S0, angles=angles,
                             fractions=[50, 50], snr=SNR)

    odf_gt = multi_tensor_odf(sphere.vertices, mevals, angles, [50, 50])
    odfs_sh = sf_to_sh(odf_gt, sphere, sh_order=8, basis_type=None)
    fodf_sh = odf_sh_to_sharp(odfs_sh, sphere, basis=None, ratio=3 / 15.,
                              sh_order=8, lambda_=1., tau=0.1, r2_term=True)
    fodf = sh_to_sf(fodf_sh, sphere, sh_order=8, basis_type=None)

    directions_gt, _, _ = peak_directions(odf_gt, sphere)
    directions, _, _ = peak_directions(fodf, sphere)

    ang_sim = angular_similarity(directions_gt, directions)
    assert_equal(ang_sim > 1.9, True)
    assert_equal(directions.shape[0], 2)

    # This should pass as well
    sdt_model = ConstrainedSDTModel(gtab, ratio=3/15., sh_order=8)
    sdt_fit = sdt_model.fit(S)
    fodf = sdt_fit.odf(sphere)

    directions_gt, _, _ = peak_directions(odf_gt, sphere)
    directions, _, _ = peak_directions(fodf, sphere)
    ang_sim = angular_similarity(directions_gt, directions)
    assert_equal(ang_sim > 1.9, True)
    assert_equal(directions.shape[0], 2)
Ejemplo n.º 27
0
def test_gqi():
    # load symmetric 724 sphere
    sphere = get_sphere('symmetric724')
    # load icosahedron sphere
    sphere2 = create_unit_sphere(5)
    btable = np.loadtxt(get_fnames('dsi515btable'))
    bvals = btable[:, 0]
    bvecs = btable[:, 1:]
    gtab = gradient_table(bvals, bvecs)
    data, golden_directions = SticksAndBall(gtab,
                                            d=0.0015,
                                            S0=100,
                                            angles=[(0, 0), (90, 0)],
                                            fractions=[50, 50],
                                            snr=None)
    gq = GeneralizedQSamplingModel(gtab, method='gqi2', sampling_length=1.4)

    # symmetric724
    gqfit = gq.fit(data)
    odf = gqfit.odf(sphere)
    directions, values, indices = peak_directions(odf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, golden_directions), 2,
                        1)

    # 5 subdivisions
    gqfit = gq.fit(data)
    odf2 = gqfit.odf(sphere2)
    directions, values, indices = peak_directions(odf2, sphere2, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, golden_directions), 2,
                        1)

    sb_dummies = sticks_and_ball_dummies(gtab)
    for sbd in sb_dummies:
        data, golden_directions = sb_dummies[sbd]
        odf = gq.fit(data).odf(sphere2)
        directions, values, indices = peak_directions(odf, sphere2, .35, 25)
        if len(directions) <= 3:
            assert_equal(len(directions), len(golden_directions))
        if len(directions) > 3:
            assert_equal(gfa(odf) < 0.1, True)
Ejemplo n.º 28
0
def test_mapmri_odf():

    gtab = get_3shell_gtab()
    # load symmetric 724 sphere
    sphere = get_sphere('symmetric724')

    # load icosahedron sphere
    sphere2 = create_unit_sphere(5)
    evals = np.array(([0.0017, 0.0003, 0.0003], [0.0017, 0.0003, 0.0003]))
    data, golden_directions = MultiTensor(gtab,
                                          evals,
                                          S0=1.0,
                                          angles=[(0, 0), (90, 0)],
                                          fractions=[50, 50],
                                          snr=None)
    map_model = MapmriModel(gtab, radial_order=4)
    # symmetric724
    mapfit = map_model.fit(data)
    odf = mapfit.odf(sphere)
    directions, _, _ = peak_directions(odf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, golden_directions), 2,
                        1)

    # 5 subdivisions
    odf = mapfit.odf(sphere2)
    directions, _, _ = peak_directions(odf, sphere2, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, golden_directions), 2,
                        1)

    sb_dummies = sticks_and_ball_dummies(gtab)
    for sbd in sb_dummies:
        data, golden_directions = sb_dummies[sbd]
        mapfit = map_model.fit(data)
        odf = mapfit.odf(sphere2)
        directions, _, _ = peak_directions(odf, sphere2, .35, 25)
        if len(directions) <= 3:
            assert_equal(len(directions), len(golden_directions))
        if len(directions) > 3:
            assert_equal(gfa(odf) < 0.1, True)
Ejemplo n.º 29
0
def test_difference_with_minmax():

    # Show difference with and without minmax normalization
    # we create an odf here with 3 main peaks, 1 small sharp unwanted peak
    # (noise) and an isotropic compartment.
    mevals = np.array([[0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.00005, 0.00005],
                       [0.0015, 0.0015, 0.0015]])
    angles = [(0, 0), (45, 0), (90, 0), (90, 90), (0, 0)]
    fractions = [20, 20, 10, 1, 100 - 20 - 20 - 10 - 1]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles, fractions,
                                            100, None)

    # We will show that when the minmax normalization is used we can remove
    # the noisy peak using a lower threshold.

    odf_gt_minmax = (odf_gt - odf_gt.min()) / (odf_gt.max() - odf_gt.min())

    _, values_1, _ = peak_directions(odf_gt, sphere, .30, 25.)

    assert_equal(len(values_1), 3)

    _, values_2, _ = peak_directions(odf_gt_minmax, sphere, .30, 25.)

    assert_equal(len(values_2), 3)

    # Setting the smallest value of the odf to zero is like running
    # peak_directions without the odf_min correction.
    odf_gt[odf_gt.argmin()] = 0.
    _, values_3, _ = peak_directions(odf_gt, sphere, .30, 25.,)

    assert_equal(len(values_3), 4)

    # we show here that to actually get that noisy peak out we need to
    # increase the peak threshold considerably
    directions, values_4, indices = peak_directions(odf_gt, sphere, .60, 25.,)

    assert_equal(len(values_4), 3)
    assert_almost_equal(values_1, values_4)
Ejemplo n.º 30
0
def test_peak_directions():
    model = SimpleOdfModel(_gtab)
    fit = model.fit(None)
    odf = fit.odf()

    argmax = odf.argmax()
    mx = odf.max()
    sphere = fit.model.sphere

    # Only one peak
    dir, val, ind = peak_directions(odf, sphere, .5, 45)
    dir_e = sphere.vertices[[argmax]]
    assert_array_equal(ind, [argmax])
    assert_array_equal(val, odf[ind])
    assert_array_equal(dir, dir_e)

    odf[0] = mx * .9
    # Two peaks, relative_threshold
    dir, val, ind = peak_directions(odf, sphere, 1., 0)
    dir_e = sphere.vertices[[argmax]]
    assert_array_equal(dir, dir_e)
    assert_array_equal(ind, [argmax])
    assert_array_equal(val, odf[ind])
    dir, val, ind = peak_directions(odf, sphere, .8, 0)
    dir_e = sphere.vertices[[argmax, 0]]
    assert_array_equal(dir, dir_e)
    assert_array_equal(ind, [argmax, 0])
    assert_array_equal(val, odf[ind])

    # Two peaks, angle_sep
    dir, val, ind = peak_directions(odf, sphere, 0., 90)
    dir_e = sphere.vertices[[argmax]]
    assert_array_equal(dir, dir_e)
    assert_array_equal(ind, [argmax])
    assert_array_equal(val, odf[ind])
    dir, val, ind = peak_directions(odf, sphere, 0., 0)
    dir_e = sphere.vertices[[argmax, 0]]
    assert_array_equal(dir, dir_e)
    assert_array_equal(ind, [argmax, 0])
    assert_array_equal(val, odf[ind])
Ejemplo n.º 31
0
def test_peak_directions():
    model = SimpleOdfModel(_gtab)
    fit = model.fit(None)
    odf = fit.odf()

    argmax = odf.argmax()
    mx = odf.max()
    sphere = fit.model.sphere

    # Only one peak
    dir, val, ind = peak_directions(odf, sphere, .5, 45)
    dir_e = sphere.vertices[[argmax]]
    assert_array_equal(ind, [argmax])
    assert_array_equal(val, odf[ind])
    assert_array_equal(dir, dir_e)

    odf[0] = mx * .9
    # Two peaks, relative_threshold
    dir, val, ind = peak_directions(odf, sphere, 1., 0)
    dir_e = sphere.vertices[[argmax]]
    assert_array_equal(dir, dir_e)
    assert_array_equal(ind, [argmax])
    assert_array_equal(val, odf[ind])
    dir, val, ind = peak_directions(odf, sphere, .8, 0)
    dir_e = sphere.vertices[[argmax, 0]]
    assert_array_equal(dir, dir_e)
    assert_array_equal(ind, [argmax, 0])
    assert_array_equal(val, odf[ind])

    # Two peaks, angle_sep
    dir, val, ind = peak_directions(odf, sphere, 0., 90)
    dir_e = sphere.vertices[[argmax]]
    assert_array_equal(dir, dir_e)
    assert_array_equal(ind, [argmax])
    assert_array_equal(val, odf[ind])
    dir, val, ind = peak_directions(odf, sphere, 0., 0)
    dir_e = sphere.vertices[[argmax, 0]]
    assert_array_equal(dir, dir_e)
    assert_array_equal(ind, [argmax, 0])
    assert_array_equal(val, odf[ind])
Ejemplo n.º 32
0
def test_mapmri_odf():

    gtab = get_3shell_gtab()
    # load symmetric 724 sphere
    sphere = get_sphere('symmetric724')

    # load icosahedron sphere
    sphere2 = create_unit_sphere(5)
    evals = np.array(([0.0017, 0.0003, 0.0003],
                      [0.0017, 0.0003, 0.0003]))
    data, golden_directions = MultiTensor(
        gtab, evals, S0=1.0, angles=[(0, 0), (90, 0)], fractions=[50, 50],
        snr=None)
    map_model = MapmriModel(gtab, radial_order=4)
    # symmetric724
    mapfit = map_model.fit(data)
    odf = mapfit.odf(sphere)
    directions, _, _ = peak_directions(odf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, golden_directions), 2, 1)

    # 5 subdivisions
    odf = mapfit.odf(sphere2)
    directions, _, _ = peak_directions(odf, sphere2, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, golden_directions), 2, 1)

    sb_dummies = sticks_and_ball_dummies(gtab)
    for sbd in sb_dummies:
        data, golden_directions = sb_dummies[sbd]
        mapfit = map_model.fit(data)
        odf = mapfit.odf(sphere2)
        directions, _, _ = peak_directions(odf, sphere2, .35, 25)
        if len(directions) <= 3:
            assert_equal(len(directions), len(golden_directions))
        if len(directions) > 3:
            assert_equal(gfa(odf) < 0.1, True)
Ejemplo n.º 33
0
def test_gqi():
    # load symmetric 724 sphere
    sphere = get_sphere('symmetric724')
    # load icosahedron sphere
    sphere2 = create_unit_sphere(5)
    btable = np.loadtxt(get_fnames('dsi515btable'))
    bvals = btable[:, 0]
    bvecs = btable[:, 1:]
    gtab = gradient_table(bvals, bvecs)
    data, golden_directions = SticksAndBall(gtab, d=0.0015,
                                            S0=100, angles=[(0, 0), (90, 0)],
                                            fractions=[50, 50], snr=None)
    gq = GeneralizedQSamplingModel(gtab, method='gqi2', sampling_length=1.4)

    # symmetric724
    gqfit = gq.fit(data)
    odf = gqfit.odf(sphere)
    directions, values, indices = peak_directions(odf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, golden_directions), 2,
                        1)

    # 5 subdivisions
    gqfit = gq.fit(data)
    odf2 = gqfit.odf(sphere2)
    directions, values, indices = peak_directions(odf2, sphere2, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, golden_directions), 2,
                        1)

    sb_dummies = sticks_and_ball_dummies(gtab)
    for sbd in sb_dummies:
        data, golden_directions = sb_dummies[sbd]
        odf = gq.fit(data).odf(sphere2)
        directions, values, indices = peak_directions(odf, sphere2, .35, 25)
        if len(directions) <= 3:
            assert_equal(len(directions), len(golden_directions))
        if len(directions) > 3:
            assert_equal(gfa(odf) < 0.1, True)
Ejemplo n.º 34
0
def test_odf_sh_to_sharp():
    SNR = None
    S0 = 1
    _, fbvals, fbvecs = get_data('small_64D')
    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)
    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]))

    S, sticks = multi_tensor(gtab,
                             mevals,
                             S0,
                             angles=[(10, 0), (100, 0)],
                             fractions=[50, 50],
                             snr=SNR)

    sphere = get_sphere('symmetric724')

    qb = QballModel(gtab, sh_order=8, assume_normed=True)

    qbfit = qb.fit(S)
    odf_gt = qbfit.odf(sphere)

    Z = np.linalg.norm(odf_gt)

    odfs_gt = np.zeros((3, 1, 1, odf_gt.shape[0]))
    odfs_gt[:, :, :] = odf_gt[:]

    odfs_sh = sf_to_sh(odfs_gt, sphere, sh_order=8, basis_type=None)

    odfs_sh /= Z

    fodf_sh = odf_sh_to_sharp(odfs_sh,
                              sphere,
                              basis=None,
                              ratio=3 / 15.,
                              sh_order=8,
                              lambda_=1.,
                              tau=0.1)

    fodf = sh_to_sf(fodf_sh, sphere, sh_order=8, basis_type=None)

    directions2, _, _ = peak_directions(fodf[0, 0, 0], sphere)

    assert_equal(directions2.shape[0], 2)
Ejemplo n.º 35
0
def test_degenerative_cases():

    sphere = get_sphere('symmetric724')

    # completely isotropic and degencase
    odf = np.zeros(sphere.vertices.shape[0])
    directions, values, indices = peak_directions(odf, sphere, .5, 25)
    print(directions, values, indices)

    assert_equal(len(values), 0)
    assert_equal(len(directions), 0)
    assert_equal(len(indices), 0)

    odf = np.zeros(sphere.vertices.shape[0])
    odf[0] = 0.020
    odf[1] = 0.018

    directions, values, indices = peak_directions(odf, sphere, .5, 25)
    print(directions, values, indices)

    assert_equal(values[0], 0.02)

    odf = -np.ones(sphere.vertices.shape[0])
    directions, values, indices = peak_directions(odf, sphere, .5, 25)
    print(directions, values, indices)

    assert_equal(len(values), 0)

    odf = np.zeros(sphere.vertices.shape[0])
    odf[0] = 0.020
    odf[1] = 0.018
    odf[2] = -0.018

    directions, values, indices = peak_directions(odf, sphere, .5, 25)
    assert_equal(values[0], 0.02)

    odf = np.ones(sphere.vertices.shape[0])
    odf += 0.1 * np.random.rand(odf.shape[0])
    directions, values, indices = peak_directions(odf, sphere, .5, 25)
    assert_(all(values > values[0] * .5))
    assert_array_equal(values, odf[indices])

    odf = np.ones(sphere.vertices.shape[0])
    odf[1:] = np.finfo(np.float).eps * np.random.rand(odf.shape[0] - 1)
    directions, values, indices = peak_directions(odf, sphere, .5, 25)

    assert_equal(values[0], 1)
    assert_equal(len(values), 1)
Ejemplo n.º 36
0
def test_degenerative_cases():

    sphere = get_sphere('symmetric724')

    # completely isotropic and degencase
    odf = np.zeros(sphere.vertices.shape[0])
    directions, values, indices = peak_directions(odf, sphere, .5, 25)
    print(directions, values, indices)

    assert_equal(len(values), 0)
    assert_equal(len(directions), 0)
    assert_equal(len(indices), 0)

    odf = np.zeros(sphere.vertices.shape[0])
    odf[0] = 0.020
    odf[1] = 0.018

    directions, values, indices = peak_directions(odf, sphere, .5, 25)
    print(directions, values, indices)

    assert_equal(values[0], 0.02)

    odf = - np.ones(sphere.vertices.shape[0])
    directions, values, indices = peak_directions(odf, sphere, .5, 25)
    print(directions, values, indices)

    assert_equal(len(values), 0)

    odf = np.zeros(sphere.vertices.shape[0])
    odf[0] = 0.020
    odf[1] = 0.018
    odf[2] = - 0.018

    directions, values, indices = peak_directions(odf, sphere, .5, 25)
    assert_equal(values[0], 0.02)

    odf = np.ones(sphere.vertices.shape[0])
    odf += 0.1 * np.random.rand(odf.shape[0])
    directions, values, indices = peak_directions(odf, sphere, .5, 25)
    assert_(all(values > values[0] * .5))
    assert_array_equal(values, odf[indices])

    odf = np.ones(sphere.vertices.shape[0])
    odf[1:] = np.finfo(np.float).eps * np.random.rand(odf.shape[0] - 1)
    directions, values, indices = peak_directions(odf, sphere, .5, 25)

    assert_equal(values[0], 1)
    assert_equal(len(values), 1)
Ejemplo n.º 37
0
def compute_peaks(odfs,
                  sphere,
                  relative_peak_threshold=.5,
                  peak_normalize=1,
                  min_separation_angle=45,
                  max_peak_number=5):
    if odfs.shape[0] == sphere.vertices.shape[0]:
        odfs = np.array(odfs.reshape(odfs.shape[0], -1).T, order='C')
    num_peak_coeffs = max_peak_number * 3
    peaks = np.zeros(odfs.shape[:-1] + (num_peak_coeffs, ))
    for index in ndindex(odfs.shape[:-1]):
        vox_peaks, values, _ = peak_directions(odfs[index], sphere,
                                               float(relative_peak_threshold),
                                               float(min_separation_angle))
        if peak_normalize == 1:
            values /= values[0]
            vox_peaks = vox_peaks * values[:, None]
        vox_peaks = vox_peaks.ravel()
        m = vox_peaks.shape[0]
        if m > num_peak_coeffs:
            m = num_peak_coeffs
        peaks[index][:m] = vox_peaks[:m]
    return peaks
Ejemplo n.º 38
0
def peaks_from_sh_parallel(args):
    shm_coeff = args[0]
    B = args[1]
    sphere = args[2]
    relative_peak_threshold = args[3]
    absolute_threshold = args[4]
    min_separation_angle = args[5]
    npeaks = args[6]
    normalize_peaks = args[7]
    chunk_id = args[8]

    data_shape = shm_coeff.shape[0]
    peak_dirs = np.zeros((data_shape, npeaks, 3))
    peak_values = np.zeros((data_shape, npeaks))
    peak_indices = np.zeros((data_shape, npeaks), dtype='int')
    peak_indices.fill(-1)

    for idx in range(len(shm_coeff)):
        if shm_coeff[idx].any():
            odf = np.dot(shm_coeff[idx], B)
            odf[odf < absolute_threshold] = 0.
            dirs, peaks, ind = peak_directions(odf, sphere,
                                               relative_peak_threshold,
                                               min_separation_angle)

            if peaks.shape[0] != 0:
                n = min(npeaks, peaks.shape[0])

                peak_dirs[idx][:n] = dirs[:n]
                peak_indices[idx][:n] = ind[:n]
                peak_values[idx][:n] = peaks[:n]

                if normalize_peaks:
                    peak_values[idx][:n] /= peaks[0]
                    peak_dirs[idx] *= peak_values[idx][:, None]

    return chunk_id, peak_dirs, peak_values, peak_indices
Ejemplo n.º 39
0
def test_odf_sh_to_sharp():
    SNR = None
    S0 = 1
    _, fbvals, fbvecs = get_data('small_64D')
    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)
    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))

    S, sticks = multi_tensor(gtab, mevals, S0, angles=[(10, 0), (100, 0)],
                             fractions=[50, 50], snr=SNR)

    sphere = get_sphere('symmetric724')

    qb = QballModel(gtab, sh_order=8, assume_normed=True)

    qbfit = qb.fit(S)
    odf_gt = qbfit.odf(sphere)

    Z = np.linalg.norm(odf_gt)

    odfs_gt = np.zeros((3, 1, 1, odf_gt.shape[0]))
    odfs_gt[:, :, :] = odf_gt[:]

    odfs_sh = sf_to_sh(odfs_gt, sphere, sh_order=8, basis_type=None)

    odfs_sh /= Z

    fodf_sh = odf_sh_to_sharp(odfs_sh, sphere, basis=None, ratio=3 / 15.,
                              sh_order=8, lambda_=1., tau=0.1)

    fodf = sh_to_sf(fodf_sh, sphere, sh_order=8, basis_type=None)

    directions2, _, _ = peak_directions(fodf[0, 0, 0], sphere)

    assert_equal(directions2.shape[0], 2)
Ejemplo n.º 40
0
def test_csdeconv():
    SNR = 100
    S0 = 1

    _, fbvals, fbvecs = get_data('small_64D')

    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)
    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]))

    angles = [(0, 0), (60, 0)]

    S, sticks = multi_tensor(gtab,
                             mevals,
                             S0,
                             angles=angles,
                             fractions=[50, 50],
                             snr=SNR)

    sphere = get_sphere('symmetric362')
    odf_gt = multi_tensor_odf(sphere.vertices, mevals, angles, [50, 50])
    response = (np.array([0.0015, 0.0003, 0.0003]), S0)
    csd = ConstrainedSphericalDeconvModel(gtab, response)
    csd_fit = csd.fit(S)
    assert_equal(csd_fit.shm_coeff[0] > 0, True)
    fodf = csd_fit.odf(sphere)

    directions, _, _ = peak_directions(odf_gt, sphere)
    directions2, _, _ = peak_directions(fodf, sphere)

    ang_sim = angular_similarity(directions, directions2)

    assert_equal(ang_sim > 1.9, True)
    assert_equal(directions.shape[0], 2)
    assert_equal(directions2.shape[0], 2)

    with warnings.catch_warnings(record=True) as w:
        ConstrainedSphericalDeconvModel(gtab, response, sh_order=10)
        assert_equal(len(w) > 0, True)

    with warnings.catch_warnings(record=True) as w:
        ConstrainedSphericalDeconvModel(gtab, response, sh_order=8)
        assert_equal(len(w) > 0, False)

    mevecs = []
    for s in sticks:
        mevecs += [all_tensor_evecs(s).T]

    S2 = single_tensor(gtab, 100, mevals[0], mevecs[0], snr=None)
    big_S = np.zeros((10, 10, 10, len(S2)))
    big_S[:] = S2

    aresponse, aratio = auto_response(gtab,
                                      big_S,
                                      roi_center=(5, 5, 4),
                                      roi_radius=3,
                                      fa_thr=0.5)
    assert_array_almost_equal(aresponse[0], response[0])
    assert_almost_equal(aresponse[1], 100)
    assert_almost_equal(aratio, response[0][1] / response[0][0])

    aresponse2, aratio2 = auto_response(gtab, big_S, roi_radius=3, fa_thr=0.5)
    assert_array_almost_equal(aresponse[0], response[0])

    _, _, nvoxels = auto_response(gtab,
                                  big_S,
                                  roi_center=(5, 5, 4),
                                  roi_radius=30,
                                  fa_thr=0.5,
                                  return_number_of_voxels=True)
    assert_equal(nvoxels, 1000)
    _, _, nvoxels = auto_response(gtab,
                                  big_S,
                                  roi_center=(5, 5, 4),
                                  roi_radius=30,
                                  fa_thr=1,
                                  return_number_of_voxels=True)
    assert_equal(nvoxels, 0)
Ejemplo n.º 41
0
def test_peak_directions_thorough():

    # two equal fibers (creating a very sharp odf)
    mevals = np.array([[0.0025, 0.0003, 0.0003],
                       [0.0025, 0.0003, 0.0003]])
    angles = [(0, 0), (45, 0)]
    fractions = [50, 50]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles, fractions,
                                            100, None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 25.)
    assert_almost_equal(angular_similarity(directions, sticks), 2, 2)

    # two unequal fibers
    fractions = [75, 25]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles, fractions,
                                            100, None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 25.)
    assert_almost_equal(angular_similarity(directions, sticks), 1, 2)

    directions, values, indices = peak_directions(odf_gt, sphere, .20, 25.)
    assert_almost_equal(angular_similarity(directions, sticks), 2, 2)

    # two equal fibers short angle (simulating very sharp ODF)
    mevals = np.array(([0.0045, 0.0003, 0.0003],
                       [0.0045, 0.0003, 0.0003]))
    fractions = [50, 50]
    angles = [(0, 0), (20, 0)]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles,
                                            fractions, 100, None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 25.)
    assert_almost_equal(angular_similarity(directions, sticks), 1, 2)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 15.)

    assert_almost_equal(angular_similarity(directions, sticks), 2, 2)

    # 1 fiber
    mevals = np.array([[0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]])
    fractions = [50, 50]
    angles = [(15, 0), (15, 0)]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles,
                                            fractions, 100, None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 15.)
    assert_almost_equal(angular_similarity(directions, sticks), 1, 2)

    AE = np.rad2deg(np.arccos(np.dot(directions[0], sticks[0])))
    assert_(abs(AE) < 2. or abs(AE - 180) < 2.)

    # two equal fibers and one small noisy one
    mevals = np.array([[0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]])
    angles = [(0, 0), (45, 0), (90, 0)]
    fractions = [45, 45, 10]
    odf_gt, sticks, sphere = _create_mt_sim(mevals,
                                            angles,
                                            fractions,
                                            100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 25.)
    assert_almost_equal(angular_similarity(directions, sticks), 2, 2)

    # two equal fibers and one faulty
    mevals = np.array([[0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]])
    angles = [(0, 0), (45, 0), (60, 0)]
    fractions = [45, 45, 10]
    odf_gt, sticks, sphere = _create_mt_sim(mevals,
                                            angles,
                                            fractions,
                                            100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 25.)
    assert_almost_equal(angular_similarity(directions, sticks), 2, 2)

    # two equal fibers and one very very annoying one
    mevals = np.array([[0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]])
    angles = [(0, 0), (45, 0), (60, 0)]
    fractions = [40, 40, 20]
    odf_gt, sticks, sphere = _create_mt_sim(mevals,
                                            angles,
                                            fractions,
                                            100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 25.)
    assert_almost_equal(angular_similarity(directions, sticks), 2, 2)

    # three peaks and one faulty
    mevals = np.array([[0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]])
    angles = [(0, 0), (45, 0), (90, 0), (90, 45)]
    fractions = [35, 35, 20, 10]
    odf_gt, sticks, sphere = _create_mt_sim(mevals,
                                            angles,
                                            fractions,
                                            100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 25.)
    assert_almost_equal(angular_similarity(directions, sticks), 3, 2)

    # four peaks
    mevals = np.array([[0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]])
    angles = [(0, 0), (45, 0), (90, 0), (90, 45)]
    fractions = [25, 25, 25, 25]
    odf_gt, sticks, sphere = _create_mt_sim(mevals,
                                            angles,
                                            fractions,
                                            100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, .15, 5.)
    assert_almost_equal(angular_similarity(directions, sticks), 4, 2)

    # four difficult peaks
    mevals = np.array([[0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]])
    angles = [(0, 0), (45, 0), (90, 0), (90, 45)]
    fractions = [30, 30, 20, 20]
    odf_gt, sticks, sphere = _create_mt_sim(mevals,
                                            angles,
                                            fractions,
                                            100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, 0, 0)
    assert_almost_equal(angular_similarity(directions, sticks), 4, 1)

    odf_gt, sticks, hsphere = _create_mt_sim(mevals, angles, fractions,
                                             100, None, half_sphere=True)

    directions, values, indices = peak_directions(odf_gt, hsphere, 0, 0)
    assert_equal(angular_similarity(directions, sticks) < 4, True)

    # four peaks and one them quite small
    fractions = [35, 35, 20, 10]

    odf_gt, sticks, sphere = _create_mt_sim(mevals,
                                            angles,
                                            fractions,
                                            100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, 0, 0)
    assert_equal(angular_similarity(directions, sticks) < 4, True)

    odf_gt, sticks, hsphere = _create_mt_sim(mevals, angles, fractions,
                                             100, None, half_sphere=True)

    directions, values, indices = peak_directions(odf_gt, hsphere, 0, 0)
    assert_equal(angular_similarity(directions, sticks) < 4, True)

    # isotropic case
    mevals = np.array([[0.0015, 0.0015, 0.0015]])
    angles = [(0, 0)]
    fractions = [100.]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles, fractions,
                                            100, None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 25.)
    assert_equal(len(values) > 10, True)
Ejemplo n.º 42
0
def test_peak_directions_thorough():

    # two equal fibers (creating a very sharp odf)
    mevals = np.array([[0.0025, 0.0003, 0.0003], [0.0025, 0.0003, 0.0003]])
    angles = [(0, 0), (45, 0)]
    fractions = [50, 50]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles, fractions, 100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 25.)
    assert_almost_equal(angular_similarity(directions, sticks), 2, 2)

    # two unequal fibers
    fractions = [75, 25]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles, fractions, 100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 25.)
    assert_almost_equal(angular_similarity(directions, sticks), 1, 2)

    directions, values, indices = peak_directions(odf_gt, sphere, .20, 25.)
    assert_almost_equal(angular_similarity(directions, sticks), 2, 2)

    # two equal fibers short angle (simulating very sharp ODF)
    mevals = np.array(([0.0045, 0.0003, 0.0003], [0.0045, 0.0003, 0.0003]))
    fractions = [50, 50]
    angles = [(0, 0), (20, 0)]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles, fractions, 100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 25.)
    assert_almost_equal(angular_similarity(directions, sticks), 1, 2)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 15.)

    assert_almost_equal(angular_similarity(directions, sticks), 2, 2)

    # 1 fiber
    mevals = np.array([[0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]])
    fractions = [50, 50]
    angles = [(15, 0), (15, 0)]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles, fractions, 100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 15.)
    assert_almost_equal(angular_similarity(directions, sticks), 1, 2)

    AE = np.rad2deg(np.arccos(np.dot(directions[0], sticks[0])))
    assert_(abs(AE) < 2. or abs(AE - 180) < 2.)

    # two equal fibers and one small noisy one
    mevals = np.array([[0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]])
    angles = [(0, 0), (45, 0), (90, 0)]
    fractions = [45, 45, 10]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles, fractions, 100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 25.)
    assert_almost_equal(angular_similarity(directions, sticks), 2, 2)

    # two equal fibers and one faulty
    mevals = np.array([[0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]])
    angles = [(0, 0), (45, 0), (60, 0)]
    fractions = [45, 45, 10]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles, fractions, 100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 25.)
    assert_almost_equal(angular_similarity(directions, sticks), 2, 2)

    # two equal fibers and one very very annoying one
    mevals = np.array([[0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]])
    angles = [(0, 0), (45, 0), (60, 0)]
    fractions = [40, 40, 20]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles, fractions, 100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 25.)
    assert_almost_equal(angular_similarity(directions, sticks), 2, 2)

    # three peaks and one faulty
    mevals = np.array([[0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]])
    angles = [(0, 0), (45, 0), (90, 0), (90, 45)]
    fractions = [35, 35, 20, 10]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles, fractions, 100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 25.)
    assert_almost_equal(angular_similarity(directions, sticks), 3, 2)

    # four peaks
    mevals = np.array([[0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]])
    angles = [(0, 0), (45, 0), (90, 0), (90, 45)]
    fractions = [25, 25, 25, 25]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles, fractions, 100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, .15, 5.)
    assert_almost_equal(angular_similarity(directions, sticks), 4, 2)

    # four difficult peaks
    mevals = np.array([[0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]])
    angles = [(0, 0), (45, 0), (90, 0), (90, 45)]
    fractions = [30, 30, 20, 20]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles, fractions, 100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, 0, 0)
    assert_almost_equal(angular_similarity(directions, sticks), 4, 1)

    odf_gt, sticks, hsphere = _create_mt_sim(mevals,
                                             angles,
                                             fractions,
                                             100,
                                             None,
                                             half_sphere=True)

    directions, values, indices = peak_directions(odf_gt, hsphere, 0, 0)
    assert_equal(angular_similarity(directions, sticks) < 4, True)

    # four peaks and one them quite small
    fractions = [35, 35, 20, 10]

    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles, fractions, 100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, 0, 0)
    assert_equal(angular_similarity(directions, sticks) < 4, True)

    odf_gt, sticks, hsphere = _create_mt_sim(mevals,
                                             angles,
                                             fractions,
                                             100,
                                             None,
                                             half_sphere=True)

    directions, values, indices = peak_directions(odf_gt, hsphere, 0, 0)
    assert_equal(angular_similarity(directions, sticks) < 4, True)

    # isotropic case
    mevals = np.array([[0.0015, 0.0015, 0.0015]])
    angles = [(0, 0)]
    fractions = [100.]
    odf_gt, sticks, sphere = _create_mt_sim(mevals, angles, fractions, 100,
                                            None)

    directions, values, indices = peak_directions(odf_gt, sphere, .5, 25.)
    assert_equal(len(values) > 10, True)
Ejemplo n.º 43
0
def test_csdeconv():
    SNR = 100
    S0 = 1

    _, fbvals, fbvecs = get_fnames('small_64D')

    bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
    gtab = gradient_table(bvals, bvecs, b0_threshold=0)
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))

    angles = [(0, 0), (60, 0)]

    S, sticks = multi_tensor(gtab, mevals, S0, angles=angles,
                             fractions=[50, 50], snr=SNR)

    sphere = get_sphere('symmetric362')
    odf_gt = multi_tensor_odf(sphere.vertices, mevals, angles, [50, 50])
    response = (np.array([0.0015, 0.0003, 0.0003]), S0)
    csd = ConstrainedSphericalDeconvModel(gtab, response)
    csd_fit = csd.fit(S)
    assert_equal(csd_fit.shm_coeff[0] > 0, True)
    fodf = csd_fit.odf(sphere)

    directions, _, _ = peak_directions(odf_gt, sphere)
    directions2, _, _ = peak_directions(fodf, sphere)

    ang_sim = angular_similarity(directions, directions2)

    assert_equal(ang_sim > 1.9, True)
    assert_equal(directions.shape[0], 2)
    assert_equal(directions2.shape[0], 2)

    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always", category=UserWarning)
        _ = ConstrainedSphericalDeconvModel(gtab, response, sh_order=10)
        assert_greater(len([lw for lw in w if issubclass(lw.category,
                                                         UserWarning)]), 0)

    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always", category=UserWarning)
        ConstrainedSphericalDeconvModel(gtab, response, sh_order=8)
        assert_equal(len([lw for lw in w if issubclass(lw.category,
                                                       UserWarning)]), 0)

    mevecs = []
    for s in sticks:
        mevecs += [all_tensor_evecs(s).T]

    S2 = single_tensor(gtab, 100, mevals[0], mevecs[0], snr=None)
    big_S = np.zeros((10, 10, 10, len(S2)))
    big_S[:] = S2

    aresponse, aratio = auto_response_ssst(gtab, big_S, roi_center=(5, 5, 4),
                                           roi_radii=3, fa_thr=0.5)
    assert_array_almost_equal(aresponse[0], response[0])
    assert_almost_equal(aresponse[1], 100)
    assert_almost_equal(aratio, response[0][1] / response[0][0])

    auto_response_ssst(gtab, big_S, roi_radii=3, fa_thr=0.5)
    assert_array_almost_equal(aresponse[0], response[0])
Ejemplo n.º 44
0
def test_recursive_response_calibration():
    """
    Test the recursive response calibration method.
    """
    SNR = 100
    S0 = 1

    _, fbvals, fbvecs = get_fnames('small_64D')

    bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
    sphere = default_sphere

    gtab = gradient_table(bvals, bvecs)
    evals = np.array([0.0015, 0.0003, 0.0003])
    evecs = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).T
    mevals = np.array(([0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]))
    angles = [(0, 0), (90, 0)]

    where_dwi = lazy_index(~gtab.b0s_mask)

    S_cross, _ = multi_tensor(gtab,
                              mevals,
                              S0,
                              angles=angles,
                              fractions=[50, 50],
                              snr=SNR)

    S_single = single_tensor(gtab, S0, evals, evecs, snr=SNR)

    data = np.concatenate((np.tile(S_cross, (8, 1)), np.tile(S_single,
                                                             (2, 1))),
                          axis=0)

    odf_gt_cross = multi_tensor_odf(sphere.vertices, mevals, angles, [50, 50])

    odf_gt_single = single_tensor_odf(sphere.vertices, evals, evecs)

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        response = recursive_response(gtab,
                                      data,
                                      mask=None,
                                      sh_order=8,
                                      peak_thr=0.01,
                                      init_fa=0.05,
                                      init_trace=0.0021,
                                      iter=8,
                                      convergence=0.001,
                                      parallel=False)

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        csd = ConstrainedSphericalDeconvModel(gtab, response)

    csd_fit = csd.fit(data)

    assert_equal(np.all(csd_fit.shm_coeff[:, 0] >= 0), True)

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fodf = csd_fit.odf(sphere)

    directions_gt_single, _, _ = peak_directions(odf_gt_single, sphere)
    directions_gt_cross, _, _ = peak_directions(odf_gt_cross, sphere)
    directions_single, _, _ = peak_directions(fodf[8, :], sphere)
    directions_cross, _, _ = peak_directions(fodf[0, :], sphere)

    ang_sim = angular_similarity(directions_cross, directions_gt_cross)
    assert_equal(ang_sim > 1.9, True)
    assert_equal(directions_cross.shape[0], 2)
    assert_equal(directions_gt_cross.shape[0], 2)

    ang_sim = angular_similarity(directions_single, directions_gt_single)
    assert_equal(ang_sim > 0.9, True)
    assert_equal(directions_single.shape[0], 1)
    assert_equal(directions_gt_single.shape[0], 1)

    with warnings.catch_warnings(record=True) as w:
        sphere = Sphere(xyz=gtab.gradients[where_dwi])
        npt.assert_equal(len(w), 1)
        npt.assert_(issubclass(w[0].category, UserWarning))
        npt.assert_("Vertices are not on the unit sphere" in str(w[0].message))
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        sf = response.on_sphere(sphere)
    S = np.concatenate(([response.S0], sf))

    tenmodel = TensorModel(gtab, min_signal=0.001)

    tenfit = tenmodel.fit(S)
    FA = fractional_anisotropy(tenfit.evals)
    FA_gt = fractional_anisotropy(evals)
    assert_almost_equal(FA, FA_gt, 1)
Ejemplo n.º 45
0
def test_csdeconv():
    SNR = 100
    S0 = 1

    _, fbvals, fbvecs = get_data('small_64D')

    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)
    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))

    angles = [(0, 0), (60, 0)]

    S, sticks = multi_tensor(gtab, mevals, S0, angles=angles,
                             fractions=[50, 50], snr=SNR)

    sphere = get_sphere('symmetric362')
    odf_gt = multi_tensor_odf(sphere.vertices, mevals, angles, [50, 50])
    response = (np.array([0.0015, 0.0003, 0.0003]), S0)
    csd = ConstrainedSphericalDeconvModel(gtab, response)
    csd_fit = csd.fit(S)
    assert_equal(csd_fit.shm_coeff[0] > 0, True)
    fodf = csd_fit.odf(sphere)

    directions, _, _ = peak_directions(odf_gt, sphere)
    directions2, _, _ = peak_directions(fodf, sphere)

    ang_sim = angular_similarity(directions, directions2)

    assert_equal(ang_sim > 1.9, True)
    assert_equal(directions.shape[0], 2)
    assert_equal(directions2.shape[0], 2)

    with warnings.catch_warnings(record=True) as w:
        ConstrainedSphericalDeconvModel(gtab, response, sh_order=10)
        assert_equal(len(w) > 0, True)

    with warnings.catch_warnings(record=True) as w:
        ConstrainedSphericalDeconvModel(gtab, response, sh_order=8)
        assert_equal(len(w) > 0, False)

    mevecs = []
    for s in sticks:
        mevecs += [all_tensor_evecs(s).T]

    S2 = single_tensor(gtab, 100, mevals[0], mevecs[0], snr=None)
    big_S = np.zeros((10, 10, 10, len(S2)))
    big_S[:] = S2

    aresponse, aratio = auto_response(gtab, big_S, roi_center=(5, 5, 4),
                                      roi_radius=3, fa_thr=0.5)
    assert_array_almost_equal(aresponse[0], response[0])
    assert_almost_equal(aresponse[1], 100)
    assert_almost_equal(aratio, response[0][1] / response[0][0])

    aresponse2, aratio2 = auto_response(gtab, big_S, roi_radius=3, fa_thr=0.5)
    assert_array_almost_equal(aresponse[0], response[0])

    _, _, nvoxels = auto_response(gtab, big_S, roi_center=(5, 5, 4),
                                  roi_radius=30, fa_thr=0.5,
                                  return_number_of_voxels=True)
    assert_equal(nvoxels, 1000)
    _, _, nvoxels = auto_response(gtab, big_S, roi_center=(5, 5, 4),
                                  roi_radius=30, fa_thr=1,
                                  return_number_of_voxels=True)
    assert_equal(nvoxels, 0)
Ejemplo n.º 46
0
def test_odfdeconv():
    SNR = 100
    S0 = 1

    _, fbvals, fbvecs = get_fnames('small_64D')
    bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]))

    angles = [(0, 0), (90, 0)]
    S, _ = multi_tensor(gtab,
                        mevals,
                        S0,
                        angles=angles,
                        fractions=[50, 50],
                        snr=SNR)

    sphere = get_sphere('symmetric362')

    odf_gt = multi_tensor_odf(sphere.vertices, mevals, angles, [50, 50])

    e1 = 15.0
    e2 = 3.0
    ratio = e2 / e1

    csd = ConstrainedSDTModel(gtab, ratio, None)

    csd_fit = csd.fit(S)
    fodf = csd_fit.odf(sphere)

    directions, _, _ = peak_directions(odf_gt, sphere)
    directions2, _, _ = peak_directions(fodf, sphere)

    ang_sim = angular_similarity(directions, directions2)

    assert_equal(ang_sim > 1.9, True)

    assert_equal(directions.shape[0], 2)
    assert_equal(directions2.shape[0], 2)

    with warnings.catch_warnings(record=True) as w:

        ConstrainedSDTModel(gtab, ratio, sh_order=10)
        w_count = len(w)
        # A warning is expected from the ConstrainedSDTModel constructor
        # and additionnal warnings should be raised where legacy SH bases
        # are used
        assert_equal(w_count > 1, True)

    with warnings.catch_warnings(record=True) as w:

        ConstrainedSDTModel(gtab, ratio, sh_order=8)
        # Test that the warning from ConstrainedSDTModel
        # constructor is no more raised
        assert_equal(len(w) == w_count - 1, True)

    csd_fit = csd.fit(np.zeros_like(S))
    fodf = csd_fit.odf(sphere)
    assert_array_equal(fodf, np.zeros_like(fodf))

    odf_sh = np.zeros_like(fodf)
    odf_sh[1] = np.nan

    fodf, _ = odf_deconv(odf_sh, csd.R, csd.B_reg)
    assert_array_equal(fodf, np.zeros_like(fodf))
Ejemplo n.º 47
0
 def __call__(self, fit):
     discrete_odf = fit.odf(self.sphere)
     directions, _, _ = peak_directions(discrete_odf, self.sphere,
                                        self.relative_peak_threshold,
                                        self.min_seperation_angle)
     return directions
Ejemplo n.º 48
0
 def __call__(self, fit):
     discrete_odf = fit.odf(self.sphere)
     directions, _, _ = peak_directions(discrete_odf, self.sphere,
                                        self.relative_peak_threshold,
                                        self.min_seperation_angle)
     return directions
Ejemplo n.º 49
0
def test_recursive_response_calibration():
    """
    Test the recursive response calibration method.
    """
    SNR = 100
    S0 = 1
    sh_order = 8

    _, fbvals, fbvecs = get_data('small_64D')

    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)
    sphere = get_sphere('symmetric724')

    gtab = gradient_table(bvals, bvecs)
    evals = np.array([0.0015, 0.0003, 0.0003])
    evecs = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).T
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))
    angles = [(0, 0), (90, 0)]

    where_dwi = lazy_index(~gtab.b0s_mask)

    S_cross, sticks_cross = multi_tensor(gtab, mevals, S0, angles=angles,
                                         fractions=[50, 50], snr=SNR)

    S_single = single_tensor(gtab, S0, evals, evecs, snr=SNR)

    data = np.concatenate((np.tile(S_cross, (8, 1)),
                           np.tile(S_single, (2, 1))),
                          axis=0)

    odf_gt_cross = multi_tensor_odf(sphere.vertices, mevals, angles, [50, 50])

    odf_gt_single = single_tensor_odf(sphere.vertices, evals, evecs)

    response = recursive_response(gtab, data, mask=None, sh_order=8,
                                  peak_thr=0.01, init_fa=0.05,
                                  init_trace=0.0021, iter=8, convergence=0.001,
                                  parallel=False)

    csd = ConstrainedSphericalDeconvModel(gtab, response)

    csd_fit = csd.fit(data)

    assert_equal(np.all(csd_fit.shm_coeff[:, 0] >= 0), True)

    fodf = csd_fit.odf(sphere)

    directions_gt_single, _, _ = peak_directions(odf_gt_single, sphere)
    directions_gt_cross, _, _ = peak_directions(odf_gt_cross, sphere)
    directions_single, _, _ = peak_directions(fodf[8, :], sphere)
    directions_cross, _, _ = peak_directions(fodf[0, :], sphere)

    ang_sim = angular_similarity(directions_cross, directions_gt_cross)
    assert_equal(ang_sim > 1.9, True)
    assert_equal(directions_cross.shape[0], 2)
    assert_equal(directions_gt_cross.shape[0], 2)

    ang_sim = angular_similarity(directions_single, directions_gt_single)
    assert_equal(ang_sim > 0.9, True)
    assert_equal(directions_single.shape[0], 1)
    assert_equal(directions_gt_single.shape[0], 1)

    sphere = Sphere(xyz=gtab.gradients[where_dwi])
    sf = response.on_sphere(sphere)
    S = np.concatenate(([response.S0], sf))

    tenmodel = dti.TensorModel(gtab, min_signal=0.001)

    tenfit = tenmodel.fit(S)
    FA = fractional_anisotropy(tenfit.evals)
    FA_gt = fractional_anisotropy(evals)
    assert_almost_equal(FA, FA_gt, 1)
Ejemplo n.º 50
0
def test_recursive_response_calibration():
    """
    Test the recursive response calibration method.
    """
    SNR = 100
    S0 = 1
    sh_order = 8

    _, fbvals, fbvecs = get_data('small_64D')

    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)
    sphere = get_sphere('symmetric724')

    gtab = gradient_table(bvals, bvecs)
    evals = np.array([0.0015, 0.0003, 0.0003])
    evecs = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).T
    mevals = np.array(([0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]))
    angles = [(0, 0), (90, 0)]

    where_dwi = lazy_index(~gtab.b0s_mask)

    S_cross, sticks_cross = multi_tensor(gtab,
                                         mevals,
                                         S0,
                                         angles=angles,
                                         fractions=[50, 50],
                                         snr=SNR)

    S_single = single_tensor(gtab, S0, evals, evecs, snr=SNR)

    data = np.concatenate((np.tile(S_cross, (8, 1)), np.tile(S_single,
                                                             (2, 1))),
                          axis=0)

    odf_gt_cross = multi_tensor_odf(sphere.vertices, mevals, angles, [50, 50])

    odf_gt_single = single_tensor_odf(sphere.vertices, evals, evecs)

    response = recursive_response(gtab,
                                  data,
                                  mask=None,
                                  sh_order=8,
                                  peak_thr=0.01,
                                  init_fa=0.05,
                                  init_trace=0.0021,
                                  iter=8,
                                  convergence=0.001,
                                  parallel=False)

    csd = ConstrainedSphericalDeconvModel(gtab, response)

    csd_fit = csd.fit(data)

    assert_equal(np.all(csd_fit.shm_coeff[:, 0] >= 0), True)

    fodf = csd_fit.odf(sphere)

    directions_gt_single, _, _ = peak_directions(odf_gt_single, sphere)
    directions_gt_cross, _, _ = peak_directions(odf_gt_cross, sphere)
    directions_single, _, _ = peak_directions(fodf[8, :], sphere)
    directions_cross, _, _ = peak_directions(fodf[0, :], sphere)

    ang_sim = angular_similarity(directions_cross, directions_gt_cross)
    assert_equal(ang_sim > 1.9, True)
    assert_equal(directions_cross.shape[0], 2)
    assert_equal(directions_gt_cross.shape[0], 2)

    ang_sim = angular_similarity(directions_single, directions_gt_single)
    assert_equal(ang_sim > 0.9, True)
    assert_equal(directions_single.shape[0], 1)
    assert_equal(directions_gt_single.shape[0], 1)

    sphere = Sphere(xyz=gtab.gradients[where_dwi])
    sf = response.on_sphere(sphere)
    S = np.concatenate(([response.S0], sf))

    tenmodel = dti.TensorModel(gtab, min_signal=0.001)

    tenfit = tenmodel.fit(S)
    FA = fractional_anisotropy(tenfit.evals)
    FA_gt = fractional_anisotropy(evals)
    assert_almost_equal(FA, FA_gt, 1)