Ejemplo n.º 1
0
def S_LSTM(dimx=30, dimy=30, embedding_matrix=None, LSTM_neurons=32):

    inpx = Input(shape=(dimx, ), dtype='int32', name='inpx')
    x = word2vec_embedding_layer(embedding_matrix, train='False')(inpx)
    inpy = Input(shape=(dimy, ), dtype='int32', name='inpy')
    y = word2vec_embedding_layer(embedding_matrix, train='False')(inpy)

    #hx = LSTM(LSTM_neurons)(x)
    #hy = LSTM(LSTM_neurons)(y)

    shared_lstm = Bidirectional(LSTM(LSTM_neurons, return_sequences=False),
                                merge_mode='sum')
    #shared_lstm = LSTM(LSTM_neurons,return_sequences=True)
    hx = shared_lstm(x)
    #hx = Dropout(0.2)(hx)
    hy = shared_lstm(y)
    #hy = Dropout(0.2)(hy)

    h1, h2 = hx, hy

    corr1 = Exp()([h1, h2])
    adadelta = optimizers.Adadelta()

    model = Model([inpx, inpy], corr1)
    model.compile(loss='binary_crossentropy', optimizer=adadelta)

    return model
Ejemplo n.º 2
0
def WA_LSTM(embedding_matrix,
            dimx=50,
            dimy=50,
            nb_filter=120,
            embedding_dim=50,
            filter_length=(50, 4),
            depth=1,
            shared=0,
            LSTM_neurons=64,
            word_level=1,
            opt_params=[0.0008, 'adam']):

    print 'Model Uses Attenion+LSTM......'

    inpx = Input(shape=(dimx, ), dtype='int32', name='inpx')
    inpy = Input(shape=(dimy, ), dtype='int32', name='inpy')

    x = word2vec_embedding_layer(embedding_matrix, train=False)(inpx)
    y = word2vec_embedding_layer(embedding_matrix, train=False)(inpy)

    #x = Permute((2,1))(x)
    #y = Permute((2,1))(y)

    channel_1, channel_2 = [], []

    for dep in range(depth):

        #filter_width = filter_widths[dep]

        #conv1 = ZeroPadding2D((filter_width - 1, 0))(conv1)
        #conv2 = ZeroPadding2D((filter_width - 1, 0))(conv2)

        if shared:
            shared_lstm = Bidirectional(LSTM(LSTM_neurons,
                                             return_sequences=True),
                                        merge_mode='concat')
            ques = shared_lstm(x)
            ans = shared_lstm(y)

        else:
            ques = Bidirectional(LSTM(LSTM_neurons, return_sequences=True),
                                 merge_mode='concat')(x)
            ans = Bidirectional(LSTM(LSTM_neurons, return_sequences=True),
                                merge_mode='concat')(y)

##############     word - level attention       #########################

        if word_level:
            q_vec = TimeDistributed(Dense(1))(ques)
        else:
            q_vec = Dense(1)(ques)
            q_vec = RepeatVector(dimx)(q_vec)

        a_vec = TimeDistributed(Dense(1))(ans)
        m = Merge(mode='sum')([q_vec, a_vec])
        m = Activation(activation='tanh')(m)
        s = TimeDistributed(Dense(1, activation='softmax'))(m)
        ans_f = Merge(mode='mul')([ans, s])

        ques = Dropout(0.5)(ques)
        ans = Dropout(0.5)(ans)
        channel_1.append(GlobalMaxPooling1D()(ques))
        channel_2.append(GlobalMaxPooling1D()(ans_f))

        x = MaxPooling1D()(ques)
        y = MaxPooling1D()(ans)

    #reg1 = reg2 = 0.00002

    h1 = channel_1.pop(-1)
    if channel_1:
        h1 = merge([h1] + channel_1, mode="concat")

    h2 = channel_2.pop(-1)
    if channel_2:
        h2 = merge([h2] + channel_2, mode="concat")

    #h1 = Dropout(0.5)(h1)
    #h2 = Dropout(0.5)(h2)

    #reg2 = 0.00005

    h = Merge(mode="concat", name='h')([h1, h2])
    #h = Dropout(0.2)(h)
    #h = Dense(50, kernel_regularizer=regularizers.l2(reg2),activation='relu')(h)
    #wrap = Dropout(0.5)(h)
    #wrap = Dense(64, activation='tanh')(h)

    opt = keras.optimizers.adam(lr=opt_params[0], clipnorm=1.)

    score = Dense(2, activation='softmax', name='score')(h)
    model = Model([inpx, inpy], [score])
    model.compile(loss='categorical_crossentropy', optimizer=opt)

    return model
def bcnn(embedding_matrix, dimx=50, dimy=50, nb_filter = 120, embedding_dim = 50, 
                      filter_length = (50,4), depth = 1, shared = 0,
                      opt_params = [0.0008,'adam']):

#if True:
    print ('Model Uses BCNN......')
    
    inpx = Input(shape=(dimx,),dtype='int32',name='inpx')   
    inpy = Input(shape=(dimy,),dtype='int32',name='inpy')
    
    x = word2vec_embedding_layer(embedding_matrix,train=False)(inpx)
    y = word2vec_embedding_layer(embedding_matrix,train=False)(inpy)
    
    x = Permute((2,1))(x)
    y = Permute((2,1))(y)

    conv1 = Reshape((embedding_dim,dimx,1))(x)
    conv2 = Reshape((embedding_dim,dimy,1))(y)   
       
    channel_1, channel_2 = [], []
    
    for dep in range(depth):
        
        #filter_width = filter_widths[dep]
        
        #conv1 = ZeroPadding2D((filter_width - 1, 0))(conv1)
        #conv2 = ZeroPadding2D((filter_width - 1, 0))(conv2)
        
        if shared:
            conv = Conv2D(nb_filter=nb_filter, kernel_size = filter_length, activation='relu',
                        data_format = 'channels_last',border_mode="valid")
            ques = conv(conv1)
            ans = conv(conv2)
                
        else:
            ques = Conv2D(nb_filter=nb_filter, kernel_size = filter_length, activation='relu',
                    data_format = 'channels_last',border_mode="valid")(conv1)
            ans = Conv2D(nb_filter, kernel_size = filter_length, activation='relu',
                    data_format="channels_last",border_mode="valid")(conv2)
                    
            
        ques = Dropout(0.5)(ques)
        ans = Dropout(0.5)(ans)
        channel_1.append(GlobalMaxPooling2D()(ques))
        channel_2.append(GlobalMaxPooling2D()(ans))
        
        #channel_1.append(Reshape((ques._keras_shape[2]*ans._keras_shape[3]))(AveragePooling2D(4))(ques))
        #channel_2.appendFlatten()((AveragePooling2D(4))(ans))

       
    #reg1 = reg2 = 0.00002
    
    h1 = channel_1.pop(-1)
    if channel_1:
        h1 = merge([h1] + channel_1, mode="concat")

    h2 = channel_2.pop(-1)
    if channel_2:
        h2 = merge([h2] + channel_2, mode="concat")
    
    #h1 = Dropout(0.5)(h1)
    #h2 = Dropout(0.5)(h2)
    
    #reg2 = 0.00005
    
    h =  Merge(mode="concat",name='h')([h1, h2])
    #h = Dropout(0.2)(h)
    #h = Dense(50, kernel_regularizer=regularizers.l2(reg2),activation='relu')(h)
    #wrap = Dropout(0.5)(h)
    #wrap = Dense(64, activation='tanh')(h)   
    
    opt = keras.optimizers.adam(lr=opt_params[0],clipnorm=1.)
    
    score = Dense(2,activation='sigmoid',name='score')(h)
    model = Model([inpx, inpy],[score])
    model.compile( loss='categorical_crossentropy',optimizer=opt)
        #label = to_categorical(label)
    
    #model.fit([data_l,data_r],label,nb_epoch=nb_epoch,batch_size=batch_size,verbose=2)
    return model
Ejemplo n.º 4
0
def cnn_sim_ft(embedding_matrix,
               dimx=50,
               dimy=50,
               dimft=44,
               nb_filter=120,
               embedding_dim=50,
               filter_length=(50, 4),
               vocab_size=8000,
               depth=1):

    print 'Model Uses CNN with Sim and Features......'

    inpx = Input(shape=(dimx, ), dtype='int32', name='inpx')
    inpy = Input(shape=(dimy, ), dtype='int32', name='inpy')
    inpft = Input(shape=(dimft, ), dtype='int32', name='inpft')

    x = word2vec_embedding_layer(embedding_matrix, train=True)(inpx)
    y = word2vec_embedding_layer(embedding_matrix, train=True)(inpy)

    x = Permute((2, 1))(x)
    y = Permute((2, 1))(y)

    conv1 = Reshape((embedding_dim, dimx, 1))(x)
    conv2 = Reshape((embedding_dim, dimy, 1))(y)

    channel_1, channel_2 = [], []

    for dep in range(depth):
        #filter_width = filter_length[1]
        #conv1 = ZeroPadding2D((filter_width - 1, 0))(conv1)
        #conv2 = ZeroPadding2D((filter_width - 1, 0))(conv2)

        ques = Conv2D(nb_filter=nb_filter,
                      kernel_size=filter_length,
                      activation='relu',
                      data_format='channels_last',
                      border_mode="valid")(conv1)
        ans = Conv2D(nb_filter,
                     kernel_size=filter_length,
                     activation='relu',
                     data_format="channels_last",
                     border_mode="valid")(conv2)

        ques = Dropout(0.5)(ques)
        ans = Dropout(0.5)(ans)

        ques = GlobalMaxPooling2D()(ques)
        ans = GlobalMaxPooling2D()(ans)

        ques = Dropout(0.5)(ques)
        ans = Dropout(0.5)(ans)

        channel_1.append(ques)
        channel_2.append(ans)

        #channel_1.append(GlobalAveragePooling2D()(ques))
        #channel_2.append(GlobalAveragePooling2D()(ans))

    h1 = channel_1.pop(-1)
    if channel_1:
        h1 = merge([h1] + channel_1, mode="concat")

    h2 = channel_2.pop(-1)
    if channel_2:
        h2 = merge([h2] + channel_2, mode="concat")

    sim = Similarity(nb_filter)([h1, h2])
    h = Merge(mode="concat", name='h')([h1, sim, h2, inpft])
    #h = Dropout(0.2)(h)
    #h = Dense(50, kernel_regularizer=regularizers.l2(reg2),activation='relu')(h)
    #wrap = Dropout(0.5)(h)
    #wrap = Dense(64, activation='tanh')(h)

    score = Dense(2, activation='softmax', name='score')(h)
    model = Model([inpx, inpy, inpft], [score])
    model.compile(loss='categorical_crossentropy', optimizer='adam')

    return model
Ejemplo n.º 5
0
def abcnn(embedding_matrix,
          attention=1,
          dimx=50,
          dimy=50,
          nb_filter=72,
          filter_length=(50, 4),
          dropout=None,
          shared=1,
          embedding_dim=50,
          depth=1,
          filter_widths=[4, 3, 2],
          opt_params=[0.0008, 'adam']):

    #if True:
    print '\n Model Uses ABCNN architecture ......'
    print 'attention : ', attention
    print 'nb_filters :', nb_filter
    print 'filter_size :', filter_length
    print 'opt params :', opt_params
    #print 'dense layer :',dense_neuron,' ',reg1
    if dropout:
        print 'using dropout'
    if shared:
        print 'using shared params'
    print '\n'

    inpx = Input(shape=(dimx, ), dtype='int32', name='inpx')
    inpy = Input(shape=(dimy, ), dtype='int32', name='inpy')

    x = word2vec_embedding_layer(embedding_matrix, train=False)(inpx)
    y = word2vec_embedding_layer(embedding_matrix, train=False)(inpy)

    #x = Permute((2,1))(x)
    #y = Permute((2,1))(y)

    mul = MatchScore(x, y)
    mulT = Permute((2, 1))(mul)

    d1 = Dense(units=embedding_dim)(mul)
    d2 = Dense(units=embedding_dim)(mulT)

    x = Permute((2, 1))(x)
    y = Permute((2, 1))(y)

    if attention in [1, 3]:

        x = Reshape((embedding_dim, dimx, 1))(x)
        y = Reshape((embedding_dim, dimy, 1))(y)
        d1 = Reshape((embedding_dim, dimx, 1))(d1)
        d2 = Reshape((embedding_dim, dimy, 1))(d2)

        if attention in [1, 3]:
            conv1 = merge([x, d1], mode='concat', concat_axis=1)
            conv2 = merge([y, d2], mode='concat', concat_axis=1)
        else:
            conv1, conv2 = x, y

    channel_1, channel_2 = [], []

    for dep in range(depth):

        filter_width = filter_widths[dep]

        if attention in [1, 3]:
            conv1 = ZeroPadding2D((filter_width - 1, 0))(conv1)
            conv2 = ZeroPadding2D((filter_width - 1, 0))(conv2)

            if shared:
                conv = Conv2D(nb_filter=nb_filter,
                              kernel_size=filter_length,
                              activation='tanh',
                              data_format='channels_last',
                              border_mode="valid")
                ques = conv(conv1)
                ans = conv(conv2)

            else:
                ques = Conv2D(nb_filter=nb_filter,
                              kernel_size=filter_length,
                              activation='relu',
                              data_format='channels_last',
                              padding='same')(conv1)
                ans = Conv2D(nb_filter,
                             kernel_size=filter_length,
                             activation='relu',
                             data_format="channels_last",
                             padding='same')(conv2)

            if attention in [3]:
                ques = Reshape(
                    (ques._keras_shape[1],
                     ques._keras_shape[2] * ques._keras_shape[3]))(ques)
                ans = Reshape((ans._keras_shape[1],
                               ans._keras_shape[2] * ans._keras_shape[3]))(ans)

                rep_vec = ques._keras_shape[2]

                #if attention in [3]:

                ans_T = Permute((2, 1))(ans)
                ques_T = Permute((2, 1))(ques)

                attn2_mat = MatchScore(ques, ans)

                a1_row = Lambda(lambda a: K.sum(a, axis=1),
                                output_shape=(attn2_mat._keras_shape[2],
                                              1))(attn2_mat)
                a2_col = Lambda(lambda a: K.sum(a, axis=2),
                                output_shape=(attn2_mat._keras_shape[1],
                                              1))(attn2_mat)

                a1_row = RepeatVector(rep_vec)(a1_row)
                a2_col = RepeatVector(rep_vec)(a2_col)

                attn_pool_1 = Merge(mode='mul')([a1_row, ques_T])
                attn_pool_2 = Merge(mode='mul')([a2_col, ans_T])
                #attn_pool_2 = Permute((2,1))(attn_pool_2)

                #h1 = Lambda(lambda a: K.sum(a,axis=1))(attn_pool_1)
                #h2 = Lambda(lambda a: K.sum(a,axis=2))(attn_pool_2)

                conv1 = GlobalAveragePooling1D()(attn_pool_1)
                conv2 = GlobalAveragePooling1D()(attn_pool_2)

            else:
                conv1 = GlobalMaxPooling2D()(ques)
                conv2 = GlobalMaxPooling2D()(ans)
                #conv1 = Flatten()MaxPooling2D()(ques)
                #conv2 = Flatten()MaxPooling2D()(ans)
        channel_1.append(conv1)
        channel_2.append(conv2)

    h1 = channel_1.pop(-1)
    if channel_1:
        h1 = merge([h1] + channel_1, mode="concat")

    h2 = channel_2.pop(-1)
    if channel_2:
        h2 = merge([h2] + channel_2, mode="concat")

    h = Merge(mode="concat", name='h')([h1, h2])

    opt = keras.optimizers.adam(lr=opt_params[0], clipnorm=1.)

    score = Dense(2, activation='softmax', name='score')(h)
    model = Model([inpx, inpy], [score])
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    return model