Ejemplo n.º 1
0
def poisson(y_true, y_pred):
    return K.mean(y_pred - y_true * K.log(y_pred + K.epsilon()), axis=-1)
Ejemplo n.º 2
0
def mean_squared_logarithmic_error(y_true, y_pred):
    first_log = K.log(K.clip(y_pred, K.epsilon(), np.inf) + 1.)
    second_log = K.log(K.clip(y_true, K.epsilon(), np.inf) + 1.)
    return K.mean(K.square(first_log - second_log), axis=-1)
Ejemplo n.º 3
0
def kl_divergence(p, p_hat):
    return p_hat - p + p * K.log(p / p_hat)
Ejemplo n.º 4
0
def poisson(y_true, y_pred):
    return K.mean(y_pred - y_true * K.log(y_pred + K.epsilon()), axis=-1)
Ejemplo n.º 5
0
def mean_squared_logarithmic_error(y_true, y_pred):
    first_log = K.log(K.clip(y_pred, K.epsilon(), np.inf) + 1.)
    second_log = K.log(K.clip(y_true, K.epsilon(), np.inf) + 1.)
    return K.mean(K.square(first_log - second_log), axis=-1)
Ejemplo n.º 6
0
def kl_divergence(p, p_hat):
    return p_hat - p + p * K.log(p / p_hat)