Ejemplo n.º 1
0
def errornorm(u, uh, norm_type="l2", degree_rise=3, mesh=None):
    """
    Compute and return the error :math:`e = u - u_h` in the given norm.

    *Arguments*
        u, uh
            :py:class:`Functions <dolfin.functions.function.Function>`
        norm_type
            Type of norm. The :math:`L^2` -norm is default.
            For other norms, see :py:func:`norm <dolfin.fem.norms.norm>`.
        degree_rise
            The number of degrees above that of u_h used in the
            interpolation; i.e. the degree of piecewise polynomials used
            to approximate :math:`u` and :math:`u_h` will be the degree
            of :math:`u_h` + degree_raise.
        mesh
            Optional :py:class:`Mesh <dolfin.cpp.Mesh>` on
            which to compute the error norm.

    In simple cases, one may just define

    .. code-block:: python

        e = u - uh

    and evalute for example the square of the error in the :math:`L^2` -norm by

    .. code-block:: python

        assemble(e**2*dx(mesh))

    However, this is not stable w.r.t. round-off errors considering that
    the form compiler may expand(#) the expression above to::

        e**2*dx = u**2*dx - 2*u*uh*dx + uh**2*dx

    and this might get further expanded into thousands of terms for
    higher order elements. Thus, the error will be evaluated by adding
    a large number of terms which should sum up to something close to
    zero (if the error is small).

    This module computes the error by first interpolating both
    :math:`u` and :math:`u_h` to a common space (of high accuracy),
    then subtracting the two fields (which is easy since they are
    expressed in the same basis) and then evaluating the integral.

    (#) If using the tensor representation optimizations.
    The quadrature represenation does not suffer from this problem.
    """

    # Check argument
    # if not isinstance(u, cpp.function.GenericFunction):
    #     cpp.dolfin_error("norms.py",
    #                      "compute error norm",
    #                      "Expecting a Function or Expression for u")
    # if not isinstance(uh, cpp.function.Function):
    #     cpp.dolfin_error("norms.py",
    #                      "compute error norm",
    #                      "Expecting a Function for uh")

    # Get mesh
    if isinstance(u, cpp.function.Function) and mesh is None:
        mesh = u.function_space().mesh()
    if isinstance(uh, cpp.function.Function) and mesh is None:
        mesh = uh.function_space().mesh()
    if hasattr(uh, "_cpp_object") and mesh is None:
        mesh = uh._cpp_object.function_space().mesh()
    if hasattr(u, "_cpp_object") and mesh is None:
        mesh = u._cpp_object.function_space().mesh()
    if mesh is None:
        cpp.dolfin_error("norms.py",
                         "compute error norm",
                         "Missing mesh")

    # Get rank
    if not u.ufl_shape == uh.ufl_shape:
        cpp.dolfin_error("norms.py",
                         "compute error norm",
                         "Value shapes don't match")
    shape = u.ufl_shape
    rank = len(shape)

    # Check that uh is associated with a finite element
    if uh.ufl_element().degree() is None:
        cpp.dolfin_error("norms.py",
                         "compute error norm",
                         "Function uh must have a finite element")

    # Degree for interpolation space. Raise degree with respect to uh.
    degree = uh.ufl_element().degree() + degree_rise

    # Check degree of 'exact' solution u
    degree_u = u.ufl_element().degree()
    if degree_u is not None and degree_u < degree:
        cpp.warning("Degree of exact solution may be inadequate for accurate result in errornorm.")

    # Create function space
    if rank == 0:
        V = FunctionSpace(mesh, "Discontinuous Lagrange", degree)
    elif rank == 1:
        V = VectorFunctionSpace(mesh, "Discontinuous Lagrange", degree,
                                dim=shape[0])
    elif rank > 1:
        V = TensorFunctionSpace(mesh, "Discontinuous Lagrange", degree,
                                shape=shape)

    # Interpolate functions into finite element space
    pi_u = interpolate(u, V)
    pi_uh = interpolate(uh, V)

    # Compute the difference
    e = Function(V)
    e.assign(pi_u)
    e.vector().axpy(-1.0, pi_uh.vector())

    # Compute norm
    return norm(e, norm_type=norm_type, mesh=mesh)
Ejemplo n.º 2
0
def r2_errornorm(u, uh, norm_type="l2", degree_rise=3, mesh=None ):
    """
    This function is a modification of FEniCS's built-in errornorm function that adopts the :math:`r^2dr`
    measure as opposed to the standard Cartesian :math:`dx` measure.

    For documentation and usage, see the 
    original module <https://bitbucket.org/fenics-project/dolfin/src/master/python/dolfin/fem/norms.py>_.

    """


    # Get mesh
    if isinstance(u, cpp.function.Function) and mesh is None:
        mesh = u.function_space().mesh()
    if isinstance(uh, cpp.function.Function) and mesh is None:
        mesh = uh.function_space().mesh()
    # if isinstance(uh, MultiMeshFunction) and mesh is None:
    #     mesh = uh.function_space().multimesh()
    if hasattr(uh, "_cpp_object") and mesh is None:
        mesh = uh._cpp_object.function_space().mesh()
    if hasattr(u, "_cpp_object") and mesh is None:
        mesh = u._cpp_object.function_space().mesh()
    if mesh is None:
        raise RuntimeError("Cannot compute error norm. Missing mesh.")

    # Get rank
    if not u.ufl_shape == uh.ufl_shape:
        raise RuntimeError("Cannot compute error norm. Value shapes do not match.")
    
    shape = u.ufl_shape
    rank = len(shape)

    # Check that uh is associated with a finite element
    if uh.ufl_element().degree() is None:
        raise RuntimeError("Cannot compute error norm. Function uh must have a finite element.")

    # Degree for interpolation space. Raise degree with respect to uh.
    degree = uh.ufl_element().degree() + degree_rise

    # Check degree of 'exact' solution u
    degree_u = u.ufl_element().degree()
    if degree_u is not None and degree_u < degree:
        cpp.warning("Degree of exact solution may be inadequate for accurate result in errornorm.")

    # Create function space
    if rank == 0:
        V = FunctionSpace(mesh, "Discontinuous Lagrange", degree)
    elif rank == 1:
        V = VectorFunctionSpace(mesh, "Discontinuous Lagrange", degree,
                                dim=shape[0])
    elif rank > 1:
        V = TensorFunctionSpace(mesh, "Discontinuous Lagrange", degree,
                                shape=shape)

    # Interpolate functions into finite element space
    pi_u = interpolate(u, V)
    pi_uh = interpolate(uh, V)

    # Compute the difference
    e = Function(V)
    e.assign(pi_u)
    e.vector().axpy(-1.0, pi_uh.vector())

    # Compute norm
    return r2_norm(e, func_degree=degree, norm_type=norm_type, mesh=mesh )