def errornorm(u, uh, norm_type="l2", degree_rise=3, mesh=None): """ Compute and return the error :math:`e = u - u_h` in the given norm. *Arguments* u, uh :py:class:`Functions <dolfin.functions.function.Function>` norm_type Type of norm. The :math:`L^2` -norm is default. For other norms, see :py:func:`norm <dolfin.fem.norms.norm>`. degree_rise The number of degrees above that of u_h used in the interpolation; i.e. the degree of piecewise polynomials used to approximate :math:`u` and :math:`u_h` will be the degree of :math:`u_h` + degree_raise. mesh Optional :py:class:`Mesh <dolfin.cpp.Mesh>` on which to compute the error norm. In simple cases, one may just define .. code-block:: python e = u - uh and evalute for example the square of the error in the :math:`L^2` -norm by .. code-block:: python assemble(e**2*dx(mesh)) However, this is not stable w.r.t. round-off errors considering that the form compiler may expand(#) the expression above to:: e**2*dx = u**2*dx - 2*u*uh*dx + uh**2*dx and this might get further expanded into thousands of terms for higher order elements. Thus, the error will be evaluated by adding a large number of terms which should sum up to something close to zero (if the error is small). This module computes the error by first interpolating both :math:`u` and :math:`u_h` to a common space (of high accuracy), then subtracting the two fields (which is easy since they are expressed in the same basis) and then evaluating the integral. (#) If using the tensor representation optimizations. The quadrature represenation does not suffer from this problem. """ # Check argument # if not isinstance(u, cpp.function.GenericFunction): # cpp.dolfin_error("norms.py", # "compute error norm", # "Expecting a Function or Expression for u") # if not isinstance(uh, cpp.function.Function): # cpp.dolfin_error("norms.py", # "compute error norm", # "Expecting a Function for uh") # Get mesh if isinstance(u, cpp.function.Function) and mesh is None: mesh = u.function_space().mesh() if isinstance(uh, cpp.function.Function) and mesh is None: mesh = uh.function_space().mesh() if hasattr(uh, "_cpp_object") and mesh is None: mesh = uh._cpp_object.function_space().mesh() if hasattr(u, "_cpp_object") and mesh is None: mesh = u._cpp_object.function_space().mesh() if mesh is None: cpp.dolfin_error("norms.py", "compute error norm", "Missing mesh") # Get rank if not u.ufl_shape == uh.ufl_shape: cpp.dolfin_error("norms.py", "compute error norm", "Value shapes don't match") shape = u.ufl_shape rank = len(shape) # Check that uh is associated with a finite element if uh.ufl_element().degree() is None: cpp.dolfin_error("norms.py", "compute error norm", "Function uh must have a finite element") # Degree for interpolation space. Raise degree with respect to uh. degree = uh.ufl_element().degree() + degree_rise # Check degree of 'exact' solution u degree_u = u.ufl_element().degree() if degree_u is not None and degree_u < degree: cpp.warning("Degree of exact solution may be inadequate for accurate result in errornorm.") # Create function space if rank == 0: V = FunctionSpace(mesh, "Discontinuous Lagrange", degree) elif rank == 1: V = VectorFunctionSpace(mesh, "Discontinuous Lagrange", degree, dim=shape[0]) elif rank > 1: V = TensorFunctionSpace(mesh, "Discontinuous Lagrange", degree, shape=shape) # Interpolate functions into finite element space pi_u = interpolate(u, V) pi_uh = interpolate(uh, V) # Compute the difference e = Function(V) e.assign(pi_u) e.vector().axpy(-1.0, pi_uh.vector()) # Compute norm return norm(e, norm_type=norm_type, mesh=mesh)
def r2_errornorm(u, uh, norm_type="l2", degree_rise=3, mesh=None ): """ This function is a modification of FEniCS's built-in errornorm function that adopts the :math:`r^2dr` measure as opposed to the standard Cartesian :math:`dx` measure. For documentation and usage, see the original module <https://bitbucket.org/fenics-project/dolfin/src/master/python/dolfin/fem/norms.py>_. """ # Get mesh if isinstance(u, cpp.function.Function) and mesh is None: mesh = u.function_space().mesh() if isinstance(uh, cpp.function.Function) and mesh is None: mesh = uh.function_space().mesh() # if isinstance(uh, MultiMeshFunction) and mesh is None: # mesh = uh.function_space().multimesh() if hasattr(uh, "_cpp_object") and mesh is None: mesh = uh._cpp_object.function_space().mesh() if hasattr(u, "_cpp_object") and mesh is None: mesh = u._cpp_object.function_space().mesh() if mesh is None: raise RuntimeError("Cannot compute error norm. Missing mesh.") # Get rank if not u.ufl_shape == uh.ufl_shape: raise RuntimeError("Cannot compute error norm. Value shapes do not match.") shape = u.ufl_shape rank = len(shape) # Check that uh is associated with a finite element if uh.ufl_element().degree() is None: raise RuntimeError("Cannot compute error norm. Function uh must have a finite element.") # Degree for interpolation space. Raise degree with respect to uh. degree = uh.ufl_element().degree() + degree_rise # Check degree of 'exact' solution u degree_u = u.ufl_element().degree() if degree_u is not None and degree_u < degree: cpp.warning("Degree of exact solution may be inadequate for accurate result in errornorm.") # Create function space if rank == 0: V = FunctionSpace(mesh, "Discontinuous Lagrange", degree) elif rank == 1: V = VectorFunctionSpace(mesh, "Discontinuous Lagrange", degree, dim=shape[0]) elif rank > 1: V = TensorFunctionSpace(mesh, "Discontinuous Lagrange", degree, shape=shape) # Interpolate functions into finite element space pi_u = interpolate(u, V) pi_uh = interpolate(uh, V) # Compute the difference e = Function(V) e.assign(pi_u) e.vector().axpy(-1.0, pi_uh.vector()) # Compute norm return r2_norm(e, func_degree=degree, norm_type=norm_type, mesh=mesh )