Ejemplo n.º 1
0
class StripeClass(remote_traits.MaybeRemoteHasTraits):
    """base class of worker subclass, and also runs in GUI process"""
    experiment_file = traits.File()
    start_experiment = traits.Button(label='start experiment')

    traits_view = View(
        Group((
            Item(name='start_experiment', show_label=False),
            Item(name='experiment_file'),
        )), )
Ejemplo n.º 2
0
    def __init__(self, fname=""):

        self.data = eta.Dict()
        self.fname = eta.File()
        self.plotting = eta.String()
        self.open_VERT = eta.Button("Open VERT")
        self.only_I = False
        self.only_dIdV = False
        self.pointers = []
        self.fname = os.getcwdu()
        self.plotting = "V"
Ejemplo n.º 3
0
class QuadMeshSmoothingOutputSpec(TraitedSpec):
    outputSurface = traits.File( argstr = "----outputSurface %s")
Ejemplo n.º 4
0
class PipelineConfiguration(traits.HasTraits):

    # project settings
    project_dir = traits.Directory(
        exists=False, desc="data path to where the project is stored")

    # project metadata (for connectome file)
    project_metadata = traits.Dict(
        desc="project metadata to be stored in the connectome file")
    # DEPRECATED: this field is deprecated after version >1.0.2
    generator = traits.Str()

    # parcellation scheme
    parcellation_scheme = traits.Enum("NativeFreesurfer",
                                      ["Lausanne2008", "NativeFreesurfer"],
                                      desc="used parcellation scheme")

    # choose between 'L' (linear) and 'N' (non-linear) and 'B' (bbregister)
    registration_mode = traits.Enum(
        "Linear", ["Linear", "Nonlinear", "BBregister"],
        desc="registration mode: linear or non-linear or bbregister")

    # choose between 'L' (linear) and 'B' (bbregister)
    rsfmri_registration_mode = traits.Enum(
        "Linear", ["Linear", "BBregister"],
        desc="registration mode: linear or bbregister")

    diffusion_imaging_model = traits.Enum("DSI", ["DSI", "DTI", "QBALL"])

    # DSI
    nr_of_gradient_directions = traits.Str('515')
    nr_of_sampling_directions = traits.Str('181')
    odf_recon_param = traits.Str('-b0 1 -dsi -p 4 -sn 0')
    hardi_recon_param = traits.Str('-b0 1 -p 3 -sn 0')

    # DTI
    gradient_table_file = traits.File(exists=False)
    gradient_table = traits.Enum('siemens_64', [
        'custom', 'mgh_dti_006', 'mgh_dti_018', 'mgh_dti_030', 'mgh_dti_042',
        'mgh_dti_060', 'mgh_dti_072', 'mgh_dti_090', 'mgh_dti_120',
        'mgh_dti_144', 'siemens_06', 'siemens_12', 'siemens_20', 'siemens_256',
        'siemens_30', 'siemens_64'
    ])
    nr_of_b0 = traits.Str('1')
    max_b0_val = traits.Str('1000')
    dti_recon_param = traits.Str('')
    dtb_dtk2dir_param = traits.Str('')

    # tractography
    streamline_param = traits.Str('--angle 60  --seeds 32')

    # registration
    lin_reg_param = traits.Str('-usesqform -nosearch -dof 6 -cost mutualinfo')
    nlin_reg_bet_T2_param = traits.Str('-f 0.35 -g 0.15')
    nlin_reg_bet_b0_param = traits.Str('-f 0.2 -g 0.2')
    nlin_reg_fnirt_param = traits.Str(
        '--subsamp=8,4,2,2 --miter==5,5,5,5 --lambda=240,120,90,30 --splineorder=3 --applyinmask=0,0,1,1 --applyrefmask=0,0,1,1'
    )
    bb_reg_param = traits.Str('--init-header --dti')

    # dicom converter
    do_convert_diffusion = traits.Bool(True)
    do_convert_T1 = traits.Bool(True)
    do_convert_T2 = traits.Bool(False)
    do_convert_fMRI = traits.Bool(False)

    # rsfmri
    rsfmri_lin_reg_param = traits.Str(
        '-usesqform -nosearch -dof 6 -cost mutualinfo')
    rsfmri_bb_reg_param = traits.Str('--init-header --dti')
    do_save_mat = traits.Bool(True)

    # DEPRECATED:
    subject_raw_glob_diffusion = traits.Str("*.*")
    subject_raw_glob_T1 = traits.Str("*.*")
    subject_raw_glob_T2 = traits.Str("*.*")
    extract_diffusion_metadata = traits.Bool(False)

    # subject
    subject_name = traits.Str()
    subject_timepoint = traits.Str()
    subject_workingdir = traits.Directory()
    subject_logger = None
    subject_metadata = [
        KeyValue(key='description', value=''),
        KeyValue(key='', value=''),
        KeyValue(key='', value=''),
        KeyValue(key='', value=''),
        KeyValue(key='', value=''),
        KeyValue(key='', value=''),
    ]

    active_createfolder = traits.Bool(True)
    active_dicomconverter = traits.Bool(False)
    active_registration = traits.Bool(False)
    active_segmentation = traits.Bool(False)
    active_parcellation = traits.Bool(False)
    active_applyregistration = traits.Bool(False)
    active_reconstruction = traits.Bool(False)
    active_tractography = traits.Bool(False)
    active_fiberfilter = traits.Bool(False)
    active_connectome = traits.Bool(False)
    active_statistics = traits.Bool(False)
    active_rsfmri = traits.Bool(False)
    active_cffconverter = traits.Bool(False)
    skip_completed_stages = traits.Bool(False)

    # metadata
    creator = traits.Str()
    email = traits.Str()
    publisher = traits.Str()
    created = traits.Date()
    modified = traits.Date()
    license = traits.Str()
    #    rights = traits.Str()
    reference = traits.Str()
    #    relation =  traits.Str()
    species = traits.Str('H**o sapiens')
    description = traits.Str()

    # segmentation
    recon_all_param = traits.Str('-all -no-isrunning')

    # parcellation
    custompar_nrroi = traits.Int()
    custompar_nodeinfo = traits.File()
    custompar_volumeparcell = traits.File()

    # fiber filtering
    apply_splinefilter = traits.Bool(
        True, desc='apply the spline filtering from diffusion toolkit')
    apply_fiberlength = traits.Bool(True, desc='apply cutoff to fiber lengths')
    fiber_cutoff_lower = traits.Float(
        20.0,
        desc='cut fibers that are shorter in length than given length in mm')
    fiber_cutoff_upper = traits.Float(
        500.0,
        desc='cut fibers that are longer in length than given length in mm')

    # measures
    connection_P0 = traits.Bool(False)
    connection_gfa = traits.Bool(False)
    connection_kurtosis = traits.Bool(False)
    connection_skewness = traits.Bool(False)
    connection_adc = traits.Bool(False)
    connection_fa = traits.Bool(False)

    # cff converter
    cff_fullnetworkpickle = traits.Bool(
        True,
        desc='stores the full network pickle generated by connectome creation')
    cff_cmatpickle = traits.Bool(True)
    cff_originalfibers = traits.Bool(True, desc='stores original fibers')
    cff_filteredfibers = traits.Bool(True, desc='stores filtered fibers')
    cff_finalfiberlabels = traits.Bool(
        True, desc='stores final fibers and their labelarrays')
    cff_fiberarr = traits.Bool(True)
    cff_rawdiffusion = traits.Bool(True)
    cff_scalars = traits.Bool(True)
    cff_rawT1 = traits.Bool(True)
    cff_rawT2 = traits.Bool(True)
    cff_roisegmentation = traits.Bool(
        True, desc='stores multi-resolution parcellation volumes')
    cff_surfaces = traits.Bool(True,
                               desc='stores individually genertated surfaces')
    cff_surfacelabels = traits.Bool(
        True, desc='stores individually genertated surfaces')

    # do you want to do manual white matter mask correction?
    wm_handling = traits.Enum(
        1, [1, 2, 3],
        desc="in what state should the freesurfer step be processed")

    # custom parcellation
    parcellation = traits.Dict(
        desc="provide the dictionary with your parcellation.")

    # start up fslview
    inspect_registration = traits.Bool(
        False, desc='start fslview to inspect the the registration results')
    fsloutputtype = traits.Enum('NIFTI', ['NIFTI'])

    # connectome creation
    compute_curvature = traits.Bool(False)

    # email notification, needs a local smtp server
    # sudo apt-get install postfix
    emailnotify = traits.ListStr(
        [], desc='the email address to send stage completion status message')

    freesurfer_home = traits.Directory(exists=False, desc="path to Freesurfer")
    fsl_home = traits.Directory(exists=False, desc="path to FSL")
    dtk_home = traits.Directory(exists=False, desc="path to diffusion toolkit")

    # This file stores descriptions of the inputs/outputs to each stage of the
    # CMP pipeline.  It can be queried using the PipelineStatus python object
    pipeline_status_file = traits.Str("cmp.status")

    # Pipeline status object
    pipeline_status = pipeline_status.PipelineStatus()

    def _get_lausanne_parcellation(self, parcel="NativeFreesurfer"):

        if parcel == "Lausanne2008":
            return {
                'scale33': {
                    'number_of_regions':
                    83,
                    # contains name, url, color, freesurfer_label, etc. used for connection matrix
                    'node_information_graphml':
                    op.join(
                        self.get_lausanne_parcellation_path('resolution83'),
                        'resolution83.graphml'),
                    # scalar node values on fsaverage? or atlas?
                    'surface_parcellation':
                    None,
                    # scalar node values in fsaverage volume?
                    'volume_parcellation':
                    None,
                    # the subdirectory name from where to copy parcellations, with hemispheric wildcard
                    'fs_label_subdir_name':
                    'regenerated_%s_36',
                    # should we subtract the cortical rois for the white matter mask?
                    'subtract_from_wm_mask':
                    1,
                },
                'scale60': {
                    'number_of_regions':
                    129,
                    'node_information_graphml':
                    op.join(
                        self.get_lausanne_parcellation_path('resolution150'),
                        'resolution150.graphml'),
                    'surface_parcellation':
                    None,
                    'volume_parcellation':
                    None,
                    'fs_label_subdir_name':
                    'regenerated_%s_60',
                    'subtract_from_wm_mask':
                    1,
                },
                'scale125': {
                    'number_of_regions':
                    234,
                    'node_information_graphml':
                    op.join(
                        self.get_lausanne_parcellation_path('resolution258'),
                        'resolution258.graphml'),
                    'surface_parcellation':
                    None,
                    'volume_parcellation':
                    None,
                    'fs_label_subdir_name':
                    'regenerated_%s_125',
                    'subtract_from_wm_mask':
                    1,
                },
                'scale250': {
                    'number_of_regions':
                    463,
                    'node_information_graphml':
                    op.join(
                        self.get_lausanne_parcellation_path('resolution500'),
                        'resolution500.graphml'),
                    'surface_parcellation':
                    None,
                    'volume_parcellation':
                    None,
                    'fs_label_subdir_name':
                    'regenerated_%s_250',
                    'subtract_from_wm_mask':
                    1,
                },
                'scale500': {
                    'number_of_regions':
                    1015,
                    'node_information_graphml':
                    op.join(
                        self.get_lausanne_parcellation_path('resolution1015'),
                        'resolution1015.graphml'),
                    'surface_parcellation':
                    None,
                    'volume_parcellation':
                    None,
                    'fs_label_subdir_name':
                    'regenerated_%s_500',
                    'subtract_from_wm_mask':
                    1,
                },
            }
        else:
            return {
                'freesurferaparc': {
                    'number_of_regions':
                    83,
                    # contains name, url, color, freesurfer_label, etc. used for connection matrix
                    'node_information_graphml':
                    op.join(
                        self.get_lausanne_parcellation_path('freesurferaparc'),
                        'resolution83.graphml'),
                    # scalar node values on fsaverage? or atlas?
                    'surface_parcellation':
                    None,
                    # scalar node values in fsaverage volume?
                    'volume_parcellation':
                    None,
                }
            }

    def __init__(self, **kwargs):
        # NOTE: In python 2.6, object.__init__ no longer accepts input
        # arguments.  HasTraits does not define an __init__ and
        # therefore these args were being ignored.
        super(PipelineConfiguration, self).__init__(**kwargs)

        # the default parcellation provided
        self.parcellation = self._get_lausanne_parcellation(
            parcel="NativeFreesurfer")

        self.can_use_dipy = dipy_here

        # no email notify
        self.emailnotify = []

        # default gradient table for DTI
        self.gradient_table_file = self.get_cmp_gradient_table('siemens_64')

        # try to discover paths from environment variables
        try:
            self.freesurfer_home = op.join(os.environ['FREESURFER_HOME'])
            self.fsl_home = op.join(os.environ['FSLDIR'])
            self.dtk_home = os.environ['DTDIR']
            self.dtk_matrices = op.join(self.dtk_home, 'matrices')
        except KeyError:
            pass

        self.fsloutputtype = 'NIFTI'
        os.environ['FSLOUTPUTTYPE'] = self.fsloutputtype
        os.environ['FSLOUTPUTTYPE'] = 'NIFTI'

    def consistency_check(self):
        """ Provides a checking facility for configuration objects """

        # project name not empty
        if not op.exists(self.project_dir):
            msg = 'Your project directory does not exist!'
            raise Exception(msg)

        # check metadata
        if self.creator == '':
            raise Exception('You need to enter creator metadata!')
        if self.publisher == '':
            raise Exception('You need to enter publisher metadata!')
        if self.email == '':
            raise Exception('You need to enter email of a contact person!')

        # check if software paths exists
        pas = {
            'configuration.freesurfer_home': self.freesurfer_home,
            'configuration.fsl_home': self.fsl_home,
            'configuration.dtk_home': self.dtk_home,
            'configuration.dtk_matrices': self.dtk_matrices
        }
        for k, p in pas.items():
            if not op.exists(p):
                msg = 'Required software path for %s does not exists: %s' % (k,
                                                                             p)
                raise Exception(msg)

        if self.subject_workingdir == '':
            msg = 'No working directory defined for subject'
            raise Exception(msg)
#        else:
#            wdir = self.get_subj_dir()
#            if not op.exists(wdir):
#                msg = 'Working directory %s does not exists for subject' % (wdir)
#                raise Exception(msg)
#            else:
#                wdiff = op.join(self.get_raw_diffusion())
#                print wdiff
#                if not op.exists(wdiff):
#                    msg = 'Diffusion MRI subdirectory %s does not exists for the subject' % wdiff
#                    raise Exception(msg)
#                wt1 = op.join(self.get_rawt1())
#                if not op.exists(wt1):
#                    msg = 'Structural MRI subdirectory %s T1 does not exist in RAWDATA' % wt1
#                    raise Exception(msg)

    def get_cmp_home(self):
        """ Return the cmp home path """
        return op.dirname(__file__)

    def get_rawdata(self):
        """ Return raw data path for the subject """
        return op.join(self.get_subj_dir(), 'RAWDATA')

    def get_log(self):
        """ Get subject log dir """
        return op.join(self.get_subj_dir(), 'LOG')

    def get_logname(self, suffix='.log'):
        """ Get a generic name for the log and pickle files """
        a = dt.datetime.now()
        return 'pipeline-%s-%02i%02i-%s-%s%s' % (
            a.date().isoformat(), a.time().hour, a.time().minute,
            self.subject_name, self.subject_timepoint, suffix)

    def get_logger(self):
        """ Get the logger instance created """
        if self.subject_logger is None:
            # setup logger for the subject
            self.subject_logger = \
                getLog(os.path.join(self.get_log(), self.get_logname()))
            return self.subject_logger
        else:
            return self.subject_logger

    def get_rawglob(self, modality):
        """ DEPRECATED: Get the file name endings for modality """

        if modality == 'diffusion':
            if not self.subject_raw_glob_diffusion == '':
                return self.subject_raw_glob_diffusion
            else:
                raise Exception('No raw_glob_diffusion defined for subject')

        elif modality == 'T1':
            if not self.subject_raw_glob_T1 == '':
                return self.subject_raw_glob_T1
            else:
                raise Exception('No raw_glob_T1 defined for subject')

        elif modality == 'T2':
            if not self.subject_raw_glob_T2 == '':
                return self.subject_raw_glob_T2
            else:
                raise Exception('No raw_glob_T2 defined for subject')

    def get_dicomfiles(self, modality):
        """ Get a list of dicom files for the requested modality. Tries to
        discover them automatically
        """
        from glob import glob

        if modality == 'diffusion':
            pat = self.get_raw_diffusion()
        elif modality == 'T1':
            pat = self.get_rawt1()
        elif modality == 'T2':
            pat = self.get_rawt2()
        elif modality == 'fMRI':
            pat = self.get_rawrsfmri()

        # discover files with *.* and *
        difiles = sorted(glob(op.join(pat, '*.*')) + glob(op.join(pat, '*')))

        # exclude potential .nii and .nii.gz files
        difiles = [
            e for e in difiles
            if not e.endswith('.nii') and not e.endswith('.nii.gz')
        ]

        # check if no files and throw exception
        if len(difiles) == 0:
            raise Exception('Could not find any DICOM files in folder %s' %
                            pat)

        return difiles

    def get_rawrsfmri(self):
        """ Get raw functional MRI path for subject """
        return op.join(self.get_rawdata(), 'fMRI')

    def get_rawt1(self):
        """ Get raw structural MRI T1 path for subject """
        return op.join(self.get_rawdata(), 'T1')

    def get_rawt2(self):
        """ Get raw structural MRI T2 path for subject """
        return op.join(self.get_rawdata(), 'T2')

    def get_subj_dir(self):
        return self.subject_workingdir

    def get_raw_diffusion(self):
        """ Get the raw diffusion path for subject """
        if self.diffusion_imaging_model == 'DSI':
            return op.join(self.get_subj_dir(), 'RAWDATA', 'DSI')
        elif self.diffusion_imaging_model == 'DTI':
            return op.join(self.get_subj_dir(), 'RAWDATA', 'DTI')
        elif self.diffusion_imaging_model == 'QBALL':
            return op.join(self.get_subj_dir(), 'RAWDATA', 'QBALL')

    def get_fs(self):
        """ Returns the subject root folder path for freesurfer files """
        return op.join(self.get_subj_dir(), 'FREESURFER')

    def get_stats(self):
        """ Return statistic output path """
        return op.join(self.get_subj_dir(), 'STATS')

    def get_cffdir(self):
        """ Returns path to store connectome file """
        return op.join(self.get_cmp(), 'cff')

    def get_nifti(self):
        """ Returns the subject root folder path for nifti files """
        return op.join(self.get_subj_dir(), 'NIFTI')

    def get_nifti_trafo(self):
        """ Returns the path to the subjects transformation / registration matrices """
        return op.join(self.get_nifti(), 'transformations')

    def get_nifti_bbregister(self):
        """ Returns the path to the subjects transformation / registration matrices, bbregister mode """
        return op.join(self.get_nifti(), 'bbregister')

    def get_diffusion_metadata(self):
        """ Diffusion metadata, i.e. where gradient_table.txt is stored """
        return op.join(self.get_nifti(), 'diffusion_metadata')

    def get_nifti_wm_correction(self):
        """ Returns the path to the subjects wm_correction path """
        return op.join(self.get_nifti(), 'wm_correction')

    def get_cmp(self):
        return op.join(self.get_subj_dir(), 'CMP')

    def get_cmp_rawdiff(self, ):
        return op.join(self.get_cmp(), 'raw_diffusion')

    def get_cmp_rawdiff_reconout(self):
        """ Returns the output path for diffusion reconstruction without prefix"""
        if self.diffusion_imaging_model == 'DSI':
            return op.join(self.get_cmp(), 'raw_diffusion', 'odf_0')
        elif self.diffusion_imaging_model == 'DTI':
            return op.join(self.get_cmp(), 'raw_diffusion', 'dti_0')
        elif self.diffusion_imaging_model == 'QBALL':
            return op.join(self.get_cmp(), 'raw_diffusion', 'qball_0')

    def get_cmp_rawdiff_resampled(self):
        return op.join(self.get_cmp_rawdiff(), '2x2x2')

    def get_cmp_fsout(self):
        return op.join(self.get_cmp(), 'fs_output')

    def get_cmp_fibers(self):
        return op.join(self.get_cmp(), 'fibers')

    def get_cmp_scalars(self):
        return op.join(self.get_cmp(), 'scalars')

    def get_cmp_matrices(self):
        return op.join(self.get_cmp_fibers(), 'matrices')

    def get_cmp_fmri(self):
        return op.join(self.get_cmp(), 'fMRI')

    def get_cmp_tracto_mask(self):
        return op.join(self.get_cmp_fsout(), 'HR')

    def get_cmp_tracto_mask_tob0(self):
        return op.join(self.get_cmp_fsout(), 'HR__registered-TO-b0')

    def get_custom_gradient_table(self):
        """ Returns the absolute path to the custom gradient table
        with optional b-values in the 4th row """
        return self.gradient_table_file

    def get_cmp_gradient_table(self, name):
        """ Return default gradient tables shipped with CMP. These are mainly derived from
        Diffusion Toolkit """
        cmp_path = op.dirname(__file__)
        return op.join(cmp_path, 'data', 'diffusion', 'gradient_tables',
                       name + '.txt')

    def get_dtb_streamline_vecs_file(self, as_text=False):
        """ Returns the odf directions file used for DTB_streamline """
        cmp_path = op.dirname(__file__)
        if as_text:
            return op.join(cmp_path, 'data', 'diffusion', 'odf_directions',
                           '181_vecs.txt')
        else:
            return op.join(cmp_path, 'data', 'diffusion', 'odf_directions',
                           '181_vecs.dat')

    # XXX
    def get_cmp_scalarfields(self):
        """ Returns a list with tuples with the scalar field name and the
        absolute path to its nifti file """

        ret = []

        if self.diffusion_imaging_model == 'DSI':
            # add gfa per default
            ret.append(('gfa', op.join(self.get_cmp_scalars(),
                                       'dsi_gfa.nii.gz')))
            # XXX: add adc per default

        elif self.diffusion_imaging_model == 'DTI':
            # nothing to add yet for DTI
            pass

        return ret

    def get_dtk_dsi_matrix(self):
        """ Returns the DSI matrix from Diffusion Toolkit
        
        The parameters have to be set in the configuration object with keys:
        1. number of gradient directions : 'nr_of_gradient_directions'
        2. number of sampling directions : 'nr_of_sampling_directions'
        
        Example
        -------
        
        confobj.nr_of_gradient_directions = 515
        confobj.nr_of_sampling_directions = 181
        
        Returns matrix including absolute path to DSI_matrix_515x181.dat
        
        """

        grad = self.nr_of_gradient_directions
        samp = self.nr_of_sampling_directions
        fpath = op.join(self.dtk_matrices,
                        "DSI_matrix_%sx%s.dat" % (grad, samp))
        if not op.exists(fpath):
            msg = "DSI matrix does not exists: %s" % fpath
            raise Exception(msg)
        return fpath

    def get_lausanne_atlas(self, name=None):
        """ Return the absolute path to the lausanne parcellation atlas
        for the resolution name """

        cmp_path = op.dirname(__file__)

        provided_atlases = [
            'myatlas_36_rh.gcs', 'myatlasP1_16_rh.gcs', 'myatlasP17_28_rh.gcs',
            'myatlasP29_36_rh.gcs', 'myatlas_60_rh.gcs', 'myatlas_125_rh.gcs',
            'myatlas_250_rh.gcs', 'myatlas_36_lh.gcs', 'myatlasP1_16_lh.gcs',
            'myatlasP17_28_lh.gcs', 'myatlasP29_36_lh.gcs',
            'myatlas_60_lh.gcs', 'myatlas_125_lh.gcs', 'myatlas_250_lh.gcs'
        ]

        if name in provided_atlases:
            return op.join(cmp_path, 'data', 'colortable_and_gcs',
                           'my_atlas_gcs', name)
        else:
            msg = "Atlas %s does not exists" % name
            raise Exception(msg)

    def get_freeview_lut(self, name):
        """ Returns the Look-Up-Table as text file for a given parcellation scheme
        in  a dictionary """

        cmp_path = op.dirname(__file__)
        if name == "NativeFreesurfer":
            return {
                'freesurferaparc':
                op.join(cmp_path, 'data', 'parcellation', 'nativefreesurfer',
                        'freesurferaparc', 'FreeSurferColorLUT_adapted.txt')
            }
        else:
            return ""

    def get_lausanne_parcellation_path(self, parcellationname):

        cmp_path = op.dirname(__file__)

        if self.parcellation_scheme == "Lausanne2008":
            allowed_default_parcel = [
                'resolution83', 'resolution150', 'resolution258',
                'resolution500', 'resolution1015'
            ]
            if parcellationname in allowed_default_parcel:
                return op.join(cmp_path, 'data', 'parcellation',
                               'lausanne2008', parcellationname)
            else:
                msg = "Not a valid default parcellation name for the lausanne2008 parcellation scheme"
                raise Exception(msg)

        else:
            allowed_default_parcel = ['freesurferaparc']
            if parcellationname in allowed_default_parcel:
                return op.join(cmp_path, 'data', 'parcellation',
                               'nativefreesurfer', parcellationname)
            else:
                msg = "Not a valid default parcellation name for the NativeFreesurfer parcellation scheme"
                raise Exception(msg)

    def get_cmp_binary_path(self):
        """ Returns the path to the binary files for the current platform
        and architecture """

        if sys.platform == 'linux2':

            import platform as pf
            if '32' in pf.architecture()[0]:
                return op.join(op.dirname(__file__), "binary", "linux2",
                               "bit32")
            elif '64' in pf.architecture()[0]:
                return op.join(op.dirname(__file__), "binary", "linux2",
                               "bit64")
        else:
            raise ('No binary files compiled for your platform!')

    def get_pipeline_status_file(self):
        """Returns the absolute path of the pipeline status file"""
        return op.join(self.get_subj_dir(), self.pipeline_status_file)

    def init_pipeline_status(self):
        """Create the 'cmp.status'.  The 'cmp.status' file contains information
        about the inputs/outputs of each pipeline stage"""
        status_file = op.join(self.get_subj_dir(), self.pipeline_status_file)
        self.pipeline_status.Pipeline.name = "cmp"
        self.pipeline_status.SaveToFile(status_file)

    def update_pipeline_status(self):
        """Update the pipeline status on disk with the current status in memory"""
        status_file = op.join(self.get_subj_dir(), self.pipeline_status_file)
        self.pipeline_status.SaveToFile(status_file)
Ejemplo n.º 5
0
class Fit(traits.HasTraits):

    name = traits.Str(desc="name of fit")
    function = traits.Str(desc="function we are fitting with all parameters")
    variablesList = traits.List(FitVariable)
    calculatedParametersList = traits.List(CalculatedParameter)
    xs = None  # will be a scipy array
    ys = None  # will be a scipy array
    zs = None  # will be a scipy array
    performFitButton = traits.Button("Perform Fit")
    getInitialParametersButton = traits.Button("Guess Initial Values")
    drawRequestButton = traits.Button("Draw Fit")
    autoFitBool = traits.Bool(
        False,
        desc=
        "Automatically perform this Fit with current settings whenever a new image is loaded"
    )
    autoGuessBool = traits.Bool(
        False,
        desc=
        "Whenever a fit is completed replace the guess values with the calculated values (useful for increasing speed of the next fit)"
    )
    autoDrawBool = traits.Bool(
        False,
        desc=
        "Once a fit is complete update the drawing of the fit or draw the fit for the first time"
    )
    logBool = traits.Bool(
        False, desc="Log the calculated and fitted values with a timestamp")
    logFile = traits.File(desc="file path of logFile")

    imageInspectorReference = None  #will be a reference to the image inspector
    fitting = traits.Bool(False)  #true when performing fit
    fitted = traits.Bool(
        False)  #true when current data displayed has been fitted
    fitSubSpace = traits.Bool(
        False)  #true when current data displayed has been fitted
    startX = traits.Int
    startY = traits.Int
    endX = traits.Int
    endY = traits.Int
    fittingStatus = traits.Str()
    fitThread = None
    physics = traits.Instance(physicsProperties.PhysicsProperties)
    #status strings
    notFittedForCurrentStatus = "Not Fitted for Current Image"
    fittedForCurrentImageStatus = "Fit Complete for Current Image"
    currentlyFittingStatus = "Currently Fitting..."
    failedFitStatus = "Failed to finish fit. See logger"

    fitSubSpaceGroup = traitsui.VGroup(
        traitsui.Item("fitSubSpace", label="Fit Sub Space"),
        traitsui.VGroup(traitsui.HGroup(traitsui.Item("startX"),
                                        traitsui.Item("startY")),
                        traitsui.HGroup(traitsui.Item("endX"),
                                        traitsui.Item("endY")),
                        visible_when="fitSubSpace"),
        label="Fit Sub Space",
        show_border=True)

    generalGroup = traitsui.VGroup(traitsui.Item("name",
                                                 label="Fit Name",
                                                 style="readonly",
                                                 resizable=True),
                                   traitsui.Item("function",
                                                 label="Fit Function",
                                                 style="readonly",
                                                 resizable=True),
                                   fitSubSpaceGroup,
                                   label="Fit",
                                   show_border=True)

    variablesGroup = traitsui.VGroup(traitsui.Item(
        "variablesList",
        editor=traitsui.ListEditor(style="custom"),
        show_label=False,
        resizable=True),
                                     show_border=True,
                                     label="parameters")

    derivedGroup = traitsui.VGroup(traitsui.Item(
        "calculatedParametersList",
        editor=traitsui.ListEditor(style="custom"),
        show_label=False,
        resizable=True),
                                   show_border=True,
                                   label="derived values")

    buttons = traitsui.VGroup(
        traitsui.HGroup(traitsui.Item("autoFitBool"),
                        traitsui.Item("performFitButton")),
        traitsui.HGroup(traitsui.Item("autoGuessBool"),
                        traitsui.Item("getInitialParametersButton")),
        traitsui.HGroup(traitsui.Item("autoDrawBool"),
                        traitsui.Item("drawRequestButton")))

    logGroup = traitsui.HGroup(traitsui.Item("logBool"),
                               traitsui.Item("logFile",
                                             visible_when="logBool"),
                               label="Logging",
                               show_border=True)

    actionsGroup = traitsui.VGroup(traitsui.Item("fittingStatus",
                                                 style="readonly"),
                                   logGroup,
                                   buttons,
                                   label="Fit Actions",
                                   show_border=True)
    traits_view = traitsui.View(
        traitsui.VGroup(generalGroup, variablesGroup, derivedGroup,
                        actionsGroup))

    def __init__(self, **traitsDict):
        super(Fit, self).__init__(**traitsDict)
        self.startX = 0
        self.startY = 0

    def _set_xs(self, xs):
        self.xs = xs

    def _set_ys(self, ys):
        self.ys = ys

    def _set_zs(self, zs):
        self.zs = zs

    def _fittingStatus_default(self):
        return self.notFittedForCurrentStatus

    def _getInitialValues(self):
        """returns ordered list of initial values from variables List """
        return [_.initialValue for _ in self.variablesList]

    def _getCalculatedValues(self):
        """returns ordered list of initial values from variables List """
        return [_.calculatedValue for _ in self.variablesList]

    def _log_fit(self):
        if self.logFile == "":
            logger.warning("no log file defined. Will not log")
            return
        if not os.path.exists(self.logFile):
            variables = [_.name for _ in self.variablesList]
            calculated = [_.name for _ in self.calculatedParametersList]
            times = ["datetime", "epoch seconds"]
            info = ["img file name"]
            columnNames = times + info + variables + calculated
            with open(self.logFile, 'a+') as logFile:
                writer = csv.writer(logFile)
                writer.writerow(columnNames)
        #column names already exist so...
        variables = [_.calculatedValue for _ in self.variablesList]
        calculated = [_.value for _ in self.calculatedParametersList]
        now = time.time()  #epoch seconds
        timeTuple = time.localtime(now)
        date = time.strftime("%Y-%m-%dT%H:%M:%S", timeTuple)
        times = [date, now]
        info = [self.imageInspectorReference.selectedFile]
        data = times + info + variables + calculated
        with open(self.logFile, 'a+') as logFile:
            writer = csv.writer(logFile)
            writer.writerow(data)

    def _intelligentInitialValues(self):
        """If possible we can auto set the initial parameters to intelligent guesses user can always overwrite them """
        self._setInitialValues(self._getIntelligentInitialValues())

    def _get_subSpaceArrays(self):
        """returns the arrays of the selected sub space. If subspace is not
        activated then returns the full arrays"""
        if self.fitSubSpace:
            xs = self.xs[self.startX:self.endX]
            ys = self.ys[self.startY:self.endY]
            logger.debug("xs array sliced length %s " % (xs.shape))
            logger.debug("ys array sliced length %s  " % (ys.shape))
            zs = self.zs[self.startY:self.endY, self.startX:self.endX]
            print zs
            print zs.shape
            logger.debug("zs sub space array %s,%s " % (zs.shape))

            return xs, ys, zs
        else:
            return self.xs, self.ys, self.zs

    def _getIntelligentInitialValues(self):
        """If possible we can auto set the initial parameters to intelligent guesses user can always overwrite them """
        logger.debug("Dummy function should not be called directly")
        return

    def fitFunc(self, data, *p):
        """Function that we are trying to fit to. """
        logger.error("Dummy function should not be called directly")
        return

    def _setCalculatedValues(self, calculated):
        """updates calculated values with calculated argument """
        c = 0
        for variable in self.variablesList:
            variable.calculatedValue = calculated[c]
            c += 1

    def _setCalculatedValuesErrors(self, covarianceMatrix):
        """given the covariance matrix returned by scipy optimize fit
        convert this into stdeviation errors for parameters list and updated
        the stdevError attribute of variables"""
        logger.debug("covariance matrix -> %s " % covarianceMatrix)
        parameterErrors = scipy.sqrt(scipy.diag(covarianceMatrix))
        logger.debug("parameterErrors  -> %s " % parameterErrors)
        c = 0
        for variable in self.variablesList:
            variable.stdevError = parameterErrors[c]
            c += 1

    def _setInitialValues(self, guesses):
        """updates calculated values with calculated argument """
        c = 0
        for variable in self.variablesList:
            variable.initialValue = guesses[c]
            c += 1

    def deriveCalculatedParameters(self):
        """Wrapper for subclass definition of deriving calculated parameters
        can put more general calls in here"""
        if self.fitted:
            self._deriveCalculatedParameters()

    def _deriveCalculatedParameters(self):
        """Should be implemented by subclass. should update all variables in calculate parameters list"""
        logger.error("Should only be called by subclass")
        return

    def _fit_routine(self):
        """This function performs the fit in an appropriate thread and 
        updates necessary values when the fit has been performed"""
        self.fitting = True
        if self.fitThread and self.fitThread.isAlive():
            logger.warning(
                "Fitting is already running cannot kick off a new fit until it has finished!"
            )
            return
        else:
            self.fitThread = FitThread()
            self.fitThread.fitReference = self
            self.fitThread.start()
            self.fittingStatus = self.currentlyFittingStatus

    def _perform_fit(self):
        """Perform the fit using scipy optimise curve fit.
        We must supply x and y as one argument and zs as anothger. in the form
        xs: 0 1 2 0 1 2 0 
        ys: 0 0 0 1 1 1 2
        zs: 1 5 6 1 9 8 2

        Hence the use of repeat and tile in  positions and unravel for zs
        
        initially xs,ys is a linspace array and zs is a 2d image array
        """
        if self.xs is None or self.ys is None or self.zs is None:
            logger.warning(
                "attempted to fit data but had no data inside the Fit object. set xs,ys,zs first"
            )
            return ([], [])
        p0 = self._getInitialValues()
        if self.fitSubSpace:  #fit only the sub space
            #create xs, ys and zs which are appropriate slices of the arrays
            xs, ys, zs = self._get_subSpaceArrays()
            positions = [scipy.tile(xs, len(ys)),
                         scipy.repeat(ys, len(xs))
                         ]  #for creating data necessary for gauss2D function
            params2D, cov2D = scipy.optimize.curve_fit(self.fitFunc,
                                                       positions,
                                                       scipy.ravel(zs),
                                                       p0=p0)
            chi2 = scipy.sum(
                (scipy.ravel(zs) - self.fitFunc(positions, *params2D))**2 /
                self.fitFunc(positions, *params2D))
            logger.debug("TEMPORARY ::: CHI^2 = %s " % chi2)
        else:  #fit the whole array of data (slower)
            positions = [
                scipy.tile(self.xs, len(self.ys)),
                scipy.repeat(self.ys, len(self.xs))
            ]  #for creating data necessary for gauss2D function
            #note that it is necessary to ravel zs as curve_fit expects a flattened array
            params2D, cov2D = scipy.optimize.curve_fit(self.fitFunc,
                                                       positions,
                                                       scipy.ravel(self.zs),
                                                       p0=p0)

        return params2D, cov2D

    def _performFitButton_fired(self):
        self._fit_routine()

    def _getInitialParametersButton_fired(self):
        self._intelligentInitialValues()

    def _drawRequestButton_fired(self):
        """tells the imageInspector to try and draw this fit as an overlay contour plot"""
        self.imageInspectorReference.addFitPlot(self)

    def _getFitFuncData(self):
        """if data has been fitted, this returns the zs data for the ideal
        fitted function using the calculated paramters"""
        positions = [
            scipy.tile(self.xs, len(self.ys)),
            scipy.repeat(self.ys, len(self.xs))
        ]  #for creating data necessary for gauss2D function
        zsravelled = self.fitFunc(positions, *self._getCalculatedValues())
        return zsravelled.reshape(self.zs.shape)
Ejemplo n.º 6
0
class QuadMeshDecimationOutputSpec(TraitedSpec):
    outputSurface = traits.File(argstr="--outputSurface %s")
Ejemplo n.º 7
0
class Fit(traits.HasTraits):

    name = traits.Str(desc="name of fit")
    function = traits.Str(desc="function we are fitting with all parameters")
    variablesList = traits.List(Parameter)
    calculatedParametersList = traits.List(CalculatedParameter)
    xs = None  # will be a scipy array
    ys = None  # will be a scipy array
    zs = None  # will be a scipy array
    performFitButton = traits.Button("Perform Fit")
    getInitialParametersButton = traits.Button("Guess Initial Values")
    usePreviousFitValuesButton = traits.Button("Use Previous Fit")
    drawRequestButton = traits.Button("Draw Fit")
    setSizeButton = traits.Button("Set Initial Size")
    chooseVariablesButtons = traits.Button("choose logged variables")
    logLibrarianButton = traits.Button("librarian")
    logLastFitButton = traits.Button("log current fit")
    removeLastFitButton = traits.Button("remove last fit")
    autoFitBool = traits.Bool(
        False,
        desc=
        "Automatically perform this Fit with current settings whenever a new image is loaded"
    )
    autoGuessBool = traits.Bool(
        False,
        desc=
        "Whenever a fit is completed replace the guess values with the calculated values (useful for increasing speed of the next fit)"
    )
    autoDrawBool = traits.Bool(
        False,
        desc=
        "Once a fit is complete update the drawing of the fit or draw the fit for the first time"
    )
    autoSizeBool = traits.Bool(
        False,
        desc=
        "If TOF variable is read from latest XML and is equal to 0.11ms (or time set in Physics) then it will automatically update the physics sizex and sizey with the Sigma x and sigma y from the gaussian fit"
    )
    logBool = traits.Bool(
        False, desc="Log the calculated and fitted values with a timestamp")
    logName = traits.String(
        desc="name of the scan - will be used in the folder name")
    logDirectory = os.path.join("\\\\ursa", "AQOGroupFolder",
                                "Experiment Humphry", "Data", "eagleLogs")
    latestSequence = os.path.join("\\\\ursa", "AQOGroupFolder",
                                  "Experiment Humphry",
                                  "Experiment Control And Software",
                                  "currentSequence", "latestSequence.xml")

    logFile = traits.File(desc="file path of logFile")

    logAnalyserBool = traits.Bool(
        False, desc="only use log analyser script when True")
    logAnalysers = [
    ]  #list containing full paths to each logAnalyser file to run
    logAnalyserDisplayString = traits.String(
        desc=
        "comma separated read only string that is a list of all logAnalyser python scripts to run. Use button to choose files"
    )
    logAnalyserSelectButton = traits.Button("sel. analyser",
                                            image='@icons:function_node',
                                            style="toolbar")
    xmlLogVariables = []
    imageInspectorReference = None  #will be a reference to the image inspector
    fitting = traits.Bool(False)  #true when performing fit
    fitted = traits.Bool(
        False)  #true when current data displayed has been fitted
    fitSubSpace = traits.Bool(
        False)  #true when current data displayed has been fitted
    startX = traits.Int
    startY = traits.Int
    endX = traits.Int
    endY = traits.Int
    fittingStatus = traits.Str()
    fitThread = None
    fitTimeLimit = traits.Float(
        10.0,
        desc=
        "Time limit in seconds for fitting function. Only has an effect when fitTimeLimitBool is True"
    )
    fitTimeLimitBool = traits.Bool(
        True,
        desc=
        "If True then fitting functions will be limited to time limit defined by fitTimeLimit "
    )
    physics = traits.Instance(
        physicsProperties.physicsProperties.PhysicsProperties)
    #status strings
    notFittedForCurrentStatus = "Not Fitted for Current Image"
    fittedForCurrentImageStatus = "Fit Complete for Current Image"
    currentlyFittingStatus = "Currently Fitting..."
    failedFitStatus = "Failed to finish fit. See logger"
    timeExceededStatus = "Fit exceeded user time limit"

    lmfitModel = traits.Instance(
        lmfit.Model
    )  #reference to the lmfit model  must be initialised in subclass
    mostRecentModelResult = None  # updated to the most recent ModelResult object from lmfit when a fit thread is performed

    fitSubSpaceGroup = traitsui.VGroup(
        traitsui.Item("fitSubSpace", label="Fit Sub Space", resizable=True),
        traitsui.VGroup(traitsui.HGroup(
            traitsui.Item("startX", resizable=True),
            traitsui.Item("startY", resizable=True)),
                        traitsui.HGroup(traitsui.Item("endX", resizable=True),
                                        traitsui.Item("endY", resizable=True)),
                        visible_when="fitSubSpace"),
        label="Fit Sub Space",
        show_border=True)

    generalGroup = traitsui.VGroup(traitsui.Item("name",
                                                 label="Fit Name",
                                                 style="readonly",
                                                 resizable=True),
                                   traitsui.Item("function",
                                                 label="Fit Function",
                                                 style="readonly",
                                                 resizable=True),
                                   fitSubSpaceGroup,
                                   label="Fit",
                                   show_border=True)

    variablesGroup = traitsui.VGroup(traitsui.Item(
        "variablesList",
        editor=traitsui.ListEditor(style="custom"),
        show_label=False,
        resizable=True),
                                     show_border=True,
                                     label="parameters")

    derivedGroup = traitsui.VGroup(traitsui.Item(
        "calculatedParametersList",
        editor=traitsui.ListEditor(style="custom"),
        show_label=False,
        resizable=True),
                                   show_border=True,
                                   label="derived values")

    buttons = traitsui.VGroup(
        traitsui.HGroup(
            traitsui.Item("autoFitBool", label="Auto fit?", resizable=True),
            traitsui.Item("performFitButton", show_label=False,
                          resizable=True)),
        traitsui.HGroup(
            traitsui.Item("autoGuessBool", label="Auto guess?",
                          resizable=True),
            traitsui.Item("getInitialParametersButton",
                          show_label=False,
                          resizable=True)),
        traitsui.HGroup(
            traitsui.Item("autoDrawBool", label="Auto draw?", resizable=True),
            traitsui.Item("drawRequestButton",
                          show_label=False,
                          resizable=True)),
        traitsui.HGroup(
            traitsui.Item("autoSizeBool", label="Auto size?", resizable=True),
            traitsui.Item("setSizeButton", show_label=False, resizable=True)),
        traitsui.HGroup(
            traitsui.Item("usePreviousFitValuesButton",
                          show_label=False,
                          resizable=True)))

    logGroup = traitsui.VGroup(traitsui.HGroup(
        traitsui.Item("logBool", resizable=True),
        traitsui.Item("chooseVariablesButtons",
                      show_label=False,
                      resizable=True)),
                               traitsui.HGroup(
                                   traitsui.Item("logName", resizable=True)),
                               traitsui.HGroup(
                                   traitsui.Item("removeLastFitButton",
                                                 show_label=False,
                                                 resizable=True),
                                   traitsui.Item("logLastFitButton",
                                                 show_label=False,
                                                 resizable=True)),
                               traitsui.HGroup(
                                   traitsui.Item("logAnalyserBool",
                                                 label="analyser?",
                                                 resizable=True),
                                   traitsui.Item("logAnalyserDisplayString",
                                                 show_label=False,
                                                 style="readonly",
                                                 resizable=True),
                                   traitsui.Item("logAnalyserSelectButton",
                                                 show_label=False,
                                                 resizable=True)),
                               label="Logging",
                               show_border=True)

    actionsGroup = traitsui.VGroup(traitsui.Item("fittingStatus",
                                                 style="readonly",
                                                 resizable=True),
                                   logGroup,
                                   buttons,
                                   label="Fit Actions",
                                   show_border=True)
    traits_view = traitsui.View(traitsui.VGroup(generalGroup, variablesGroup,
                                                derivedGroup, actionsGroup),
                                kind="subpanel")

    def __init__(self, **traitsDict):
        super(Fit, self).__init__(**traitsDict)
        self.startX = 0
        self.startY = 0
        self.lmfitModel = lmfit.Model(self.fitFunc)

    def _set_xs(self, xs):
        self.xs = xs

    def _set_ys(self, ys):
        self.ys = ys

    def _set_zs(self, zs):
        self.zs = zs

    def _fittingStatus_default(self):
        return self.notFittedForCurrentStatus

    def _getInitialValues(self):
        """returns ordered list of initial values from variables List """
        return [_.initialValue for _ in self.variablesList]

    def _getParameters(self):
        """creates an lmfit parameters object based on the user input in variablesList """
        return lmfit.Parameters(
            {_.name: _.parameter
             for _ in self.variablesList})

    def _getCalculatedValues(self):
        """returns ordered list of fitted values from variables List """
        return [_.calculatedValue for _ in self.variablesList]

    def _intelligentInitialValues(self):
        """If possible we can auto set the initial parameters to intelligent guesses user can always overwrite them """
        self._setInitialValues(self._getIntelligentInitialValues())

    def _get_subSpaceArrays(self):
        """returns the arrays of the selected sub space. If subspace is not
        activated then returns the full arrays"""
        if self.fitSubSpace:
            xs = self.xs[self.startX:self.endX]
            ys = self.ys[self.startY:self.endY]
            logger.info("xs array sliced length %s " % (xs.shape))
            logger.info("ys array sliced length %s  " % (ys.shape))
            zs = self.zs[self.startY:self.endY, self.startX:self.endX]
            logger.info("zs sub space array %s,%s " % (zs.shape))

            return xs, ys, zs
        else:
            return self.xs, self.ys, self.zs

    def _getIntelligentInitialValues(self):
        """If possible we can auto set the initial parameters to intelligent guesses user can always overwrite them """
        logger.debug("Dummy function should not be called directly")
        return
        #in python this should be a pass statement. I.e. user has to overwrite this

    def fitFunc(self, data, *p):
        """Function that we are trying to fit to. """
        logger.error("Dummy function should not be called directly")
        return
        #in python this should be a pass statement. I.e. user has to overwrite this

    def _setCalculatedValues(self, modelFitResult):
        """updates calculated values with calculated argument """
        parametersResult = modelFitResult.params
        for variable in self.variablesList:
            variable.calculatedValue = parametersResult[variable.name].value

    def _setCalculatedValuesErrors(self, modelFitResult):
        """given the covariance matrix returned by scipy optimize fit
        convert this into stdeviation errors for parameters list and updated
        the stdevError attribute of variables"""
        parametersResult = modelFitResult.params
        for variable in self.variablesList:
            variable.stdevError = parametersResult[variable.name].stderr

    def _setInitialValues(self, guesses):
        """updates calculated values with calculated argument """
        c = 0
        for variable in self.variablesList:
            variable.initialValue = guesses[c]
            c += 1

    def deriveCalculatedParameters(self):
        """Wrapper for subclass definition of deriving calculated parameters
        can put more general calls in here"""
        if self.fitted:
            self._deriveCalculatedParameters()

    def _deriveCalculatedParameters(self):
        """Should be implemented by subclass. should update all variables in calculate parameters list"""
        logger.error("Should only be called by subclass")
        return

    def _fit_routine(self):
        """This function performs the fit in an appropriate thread and 
        updates necessary values when the fit has been performed"""
        self.fitting = True
        if self.fitThread and self.fitThread.isAlive():
            logger.warning(
                "Fitting is already running. You should wait till this fit has timed out before a new thread is started...."
            )
            #logger.warning("I will start a new fitting thread but your previous thread may finish at some undetermined time. you probably had bad starting conditions :( !")
            return
        self.fitThread = FitThread()  #new fitting thread
        self.fitThread.fitReference = self
        self.fitThread.isCurrentFitThread = True  # user can create multiple fit threads on a particular fit but only the latest one will have an effect in the GUI
        self.fitThread.start()
        self.fittingStatus = self.currentlyFittingStatus

    def _perform_fit(self):
        """Perform the fit using scipy optimise curve fit.
        We must supply x and y as one argument and zs as anothger. in the form
        xs: 0 1 2 0 1 2 0 
        ys: 0 0 0 1 1 1 2
        zs: 1 5 6 1 9 8 2
        Hence the use of repeat and tile in  positions and unravel for zs
        initially xs,ys is a linspace array and zs is a 2d image array
        """
        if self.xs is None or self.ys is None or self.zs is None:
            logger.warning(
                "attempted to fit data but had no data inside the Fit object. set xs,ys,zs first"
            )
            return ([], [])
        params = self._getParameters()
        if self.fitSubSpace:  #fit only the sub space
            #create xs, ys and zs which are appropriate slices of the arrays
            xs, ys, zs = self._get_subSpaceArrays()
        else:  #fit the whole array of data (slower)
            xs, ys, zs = self.xs, self.ys, self.zs
        positions = scipy.array([
            scipy.tile(xs, len(ys)),
            scipy.repeat(ys, len(xs))
        ])  #for creating data necessary for gauss2D function
        if self.fitTimeLimitBool:
            modelFitResult = self.lmfitModel.fit(scipy.ravel(zs),
                                                 positions=positions,
                                                 params=params,
                                                 iter_cb=self.getFitCallback(
                                                     time.time()))
        else:  #no iter callback
            modelFitResult = self.lmfitModel.fit(scipy.ravel(zs),
                                                 positions=positions,
                                                 params=params)
        return modelFitResult

    def getFitCallback(self, startTime):
        """returns the callback function that is called at every iteration of fit to check if it 
        has been running too long"""
        def fitCallback(params, iter, resid, *args, **kws):
            """check the time and compare to start time """
            if time.time() - startTime > self.fitTimeLimit:
                raise FitException("Fit time exceeded user limit")

        return fitCallback

    def _performFitButton_fired(self):
        self._fit_routine()

    def _getInitialParametersButton_fired(self):
        self._intelligentInitialValues()

    def _drawRequestButton_fired(self):
        """tells the imageInspector to try and draw this fit as an overlay contour plot"""
        self.imageInspectorReference.addFitPlot(self)

    def _setSizeButton_fired(self):
        """use the sigmaX and sigmaY from the current fit to overwrite the 
        inTrapSizeX and inTrapSizeY parameters in the Physics Instance"""
        self.physics.inTrapSizeX = abs(self.sigmax.calculatedValue)
        self.physics.inTrapSizeY = abs(self.sigmay.calculatedValue)

    def _getFitFuncData(self):
        """if data has been fitted, this returns the zs data for the ideal
        fitted function using the calculated paramters"""
        positions = [
            scipy.tile(self.xs, len(self.ys)),
            scipy.repeat(self.ys, len(self.xs))
        ]  #for creating data necessary for gauss2D function
        zsravelled = self.fitFunc(positions, *self._getCalculatedValues())
        return zsravelled.reshape(self.zs.shape)

    def _logAnalyserSelectButton_fired(self):
        """open a fast file editor for selecting many files """
        fileDialog = FileDialog(action="open files")
        fileDialog.open()
        if fileDialog.return_code == pyface.constant.OK:
            self.logAnalysers = fileDialog.paths
            logger.info("selected log analysers: %s " % self.logAnalysers)
        self.logAnalyserDisplayString = str(
            [os.path.split(path)[1] for path in self.logAnalysers])

    def runSingleAnalyser(self, module):
        """runs the logAnalyser module calling the run function and returns the 
        columnNames and values as a list"""
        exec("import logAnalysers.%s as currentAnalyser" % module)
        reload(
            currentAnalyser
        )  #in case it has changed..#could make this only when user requests
        #now the array also contains the raw image as this may be different to zs if you are using a processor
        if hasattr(self.imageInspectorReference, "rawImage"):
            rawImage = self.imageInspectorReference.rawImage
        else:
            rawImage = None
        return currentAnalyser.run([self.xs, self.ys, self.zs, rawImage],
                                   self.physics.variables, self.variablesList,
                                   self.calculatedParametersList)

    def runAnalyser(self):
        """ if logAnalyserBool is true we perform runAnalyser at the end of _log_fit
        runAnalyser checks that logAnalyser exists and is a python script with a valid run()function
        it then performs the run method and passes to the run function:
        -the image data as a numpy array
        -the xml variables dictionary
        -the fitted paramaters
        -the derived values"""
        for logAnalyser in self.logAnalysers:
            if not os.path.isfile(logAnalyser):
                logger.error(
                    "attempted to runAnalyser but could not find the logAnalyser File: %s"
                    % logAnalyser)
                return
        #these will contain the final column names and values
        finalColumns = []
        finalValues = []
        #iterate over each selected logAnalyser get the column names and values and add them to the master lists
        for logAnalyser in self.logAnalysers:
            directory, module = os.path.split(logAnalyser)
            module, ext = os.path.splitext(module)
            if ext != ".py":
                logger.error("file was not a python module. %s" % logAnalyser)
            else:
                columns, values = self.runSingleAnalyser(module)
                finalColumns.extend(columns)
                finalValues.extend(values)
        return finalColumns, finalValues

    def mostRecentModelFitReport(self):
        """returns the lmfit fit report of the most recent 
        lmfit model results object"""
        if self.mostRecentModelResult is not None:
            return lmfit.fit_report(self.mostRecentModelResult) + "\n\n"
        else:
            return "No fit performed"

    def getCalculatedParameters(self):
        """useful for print returns tuple list of calculated parameter name and value """
        return [(_.name, _.value) for _ in self.calculatedParametersList]

    def _log_fit(self):

        if self.logName == "":
            logger.warning("no log file defined. Will not log")
            return
        #generate folders if they don't exist
        logFolder = os.path.join(self.logDirectory, self.logName)
        if not os.path.isdir(logFolder):
            logger.info("creating a new log folder %s" % logFolder)
            os.mkdir(logFolder)

        imagesFolder = os.path.join(logFolder, "images")
        if not os.path.isdir(imagesFolder):
            logger.info("creating a new images Folder %s" % imagesFolder)
            os.mkdir(imagesFolder)

        commentsFile = os.path.join(logFolder, "comments.txt")
        if not os.path.exists(commentsFile):
            logger.info("creating a comments file %s" % commentsFile)
            open(commentsFile,
                 "a+").close()  #create a comments file in every folder!

        firstSequenceCopy = os.path.join(logFolder,
                                         "copyOfInitialSequence.ctr")
        if not os.path.exists(firstSequenceCopy):
            logger.info("creating a copy of the first sequence %s -> %s" %
                        (self.latestSequence, firstSequenceCopy))
            shutil.copy(self.latestSequence, firstSequenceCopy)

        if self.imageInspectorReference.model.imageMode == "process raw image":  #if we are using a processor, save the details of the processor used to the log folder
            processorParamtersFile = os.path.join(logFolder,
                                                  "processorOptions.txt")
            processorPythonScript = os.path.join(logFolder,
                                                 "usedProcessor.py")  #TODO!
            if not os.path.exists(processorParamtersFile):
                with open(processorParamtersFile, "a+") as processorParamsFile:
                    string = str(self.imageInspectorReference.model.
                                 chosenProcessor) + "\n"
                    string += str(self.imageInspectorReference.model.processor.
                                  optionsDict)
                    processorParamsFile.write(string)

        logger.debug("finished all checks on log folder")
        #copy current image
        try:
            shutil.copy(self.imageInspectorReference.selectedFile,
                        imagesFolder)
        except IOError as e:
            logger.error("Could not copy image. Got IOError: %s " % e.message)
        except Exception as e:
            logger.error("Could not copy image. Got %s: %s " %
                         (type(e), e.message))
            raise e
        logger.info("copying current image")
        self.logFile = os.path.join(logFolder, self.logName + ".csv")

        #analyser logic
        if self.logAnalyserBool:  #run the analyser script as requested
            logger.info(
                "log analyser bool enabled... will attempt to run analyser script"
            )
            analyserResult = self.runAnalyser()
            logger.info("analyser result = %s " % list(analyserResult))
            if analyserResult is None:
                analyserColumnNames = []
                analyserValues = []
                #analyser failed. continue as if nothing happened
            else:
                analyserColumnNames, analyserValues = analyserResult
        else:  #no analyser enabled
            analyserColumnNames = []
            analyserValues = []

        if not os.path.exists(self.logFile):
            variables = [_.name for _ in self.variablesList]
            calculated = [_.name for _ in self.calculatedParametersList]
            times = ["datetime", "epoch seconds"]
            info = ["img file name"]
            xmlVariables = self.xmlLogVariables
            columnNames = times + info + variables + calculated + xmlVariables + analyserColumnNames
            with open(
                    self.logFile, 'ab+'
            ) as logFile:  # note use of binary file so that windows doesn't write too many /r
                writer = csv.writer(logFile)
                writer.writerow(columnNames)
        #column names already exist so...
        logger.debug("copying current image")
        variables = [_.calculatedValue for _ in self.variablesList]
        calculated = [_.value for _ in self.calculatedParametersList]
        now = time.time()  #epoch seconds
        timeTuple = time.localtime(now)
        date = time.strftime("%Y-%m-%dT%H:%M:%S", timeTuple)
        times = [date, now]
        info = [self.imageInspectorReference.selectedFile]
        xmlVariables = [
            self.physics.variables[varName] for varName in self.xmlLogVariables
        ]
        data = times + info + variables + calculated + xmlVariables + analyserValues

        with open(self.logFile, 'ab+') as logFile:
            writer = csv.writer(logFile)
            writer.writerow(data)

    def _logLastFitButton_fired(self):
        """logs the fit. User can use this for non automated logging. i.e. log
        particular fits"""
        self._log_fit()

    def _removeLastFitButton_fired(self):
        """removes the last line in the log file """
        logFolder = os.path.join(self.logDirectory, self.logName)
        self.logFile = os.path.join(logFolder, self.logName + ".csv")
        if self.logFile == "":
            logger.warning("no log file defined. Will not log")
            return
        if not os.path.exists(self.logFile):
            logger.error(
                "cant remove a line from a log file that doesn't exist")
        with open(self.logFile, 'r') as logFile:
            lines = logFile.readlines()
        with open(self.logFile, 'wb') as logFile:
            logFile.writelines(lines[:-1])

    def saveLastFit(self):
        """saves result of last fit to a txt/csv file. This can be useful for live analysis
        or for generating sequences based on result of last fit"""
        try:
            with open(
                    self.imageInspectorReference.cameraModel + "-" +
                    self.physics.species + "-" + "lastFit.csv",
                    "wb") as lastFitFile:
                writer = csv.writer(lastFitFile)
                writer.writerow(["time", time.time()])
                for variable in self.variablesList:
                    writer.writerow([variable.name, variable.calculatedValue])
                for variable in self.calculatedParametersList:
                    writer.writerow([variable.name, variable.value])
        except Exception as e:
            logger.error("failed to save last fit to text file. message %s " %
                         e.message)

    def _chooseVariablesButtons_fired(self):
        self.xmlLogVariables = self.chooseVariables()

    def _usePreviousFitValuesButton_fired(self):
        """update the guess initial values with the value from the last fit """
        logger.info(
            "use previous fit values button fired. loading previous initial values"
        )
        self._setInitialValues(self._getCalculatedValues())

    def chooseVariables(self):
        """Opens a dialog asking user to select columns from a data File that has
        been selected. THese are then returned as a string suitable for Y cols input"""
        columns = self.physics.variables.keys()
        columns.sort()
        values = zip(range(0, len(columns)), columns)

        checklist_group = traitsui.Group(
            '10',  # insert vertical space
            traitsui.Label('Select the additional variables you wish to log'),
            traitsui.UItem('columns',
                           style='custom',
                           editor=traitsui.CheckListEditor(values=values,
                                                           cols=6)),
            traitsui.UItem('selectAllButton'))

        traits_view = traitsui.View(checklist_group,
                                    title='CheckListEditor',
                                    buttons=['OK'],
                                    resizable=True,
                                    kind='livemodal')

        col = ColumnEditor(numberOfColumns=len(columns))
        try:
            col.columns = [
                columns.index(varName) for varName in self.xmlLogVariables
            ]
        except Exception as e:
            logger.error(
                "couldn't selected correct variable names. Returning empty selection"
            )
            logger.error("%s " % e.message)
            col.columns = []
        col.edit_traits(view=traits_view)
        logger.debug("value of columns selected = %s ", col.columns)
        logger.debug("value of columns selected = %s ",
                     [columns[i] for i in col.columns])
        return [columns[i] for i in col.columns]

    def _logLibrarianButton_fired(self):
        """opens log librarian for current folder in logName box. """
        logFolder = os.path.join(self.logDirectory, self.logName)
        if not os.path.isdir(logFolder):
            logger.error(
                "cant open librarian on a log that doesn't exist.... Could not find %s"
                % logFolder)
            return
        librarian = plotObjects.logLibrarian.Librarian(logFolder=logFolder)
        librarian.edit_traits()