class StripeClass(remote_traits.MaybeRemoteHasTraits): """base class of worker subclass, and also runs in GUI process""" experiment_file = traits.File() start_experiment = traits.Button(label='start experiment') traits_view = View( Group(( Item(name='start_experiment', show_label=False), Item(name='experiment_file'), )), )
def __init__(self, fname=""): self.data = eta.Dict() self.fname = eta.File() self.plotting = eta.String() self.open_VERT = eta.Button("Open VERT") self.only_I = False self.only_dIdV = False self.pointers = [] self.fname = os.getcwdu() self.plotting = "V"
class QuadMeshSmoothingOutputSpec(TraitedSpec): outputSurface = traits.File( argstr = "----outputSurface %s")
class PipelineConfiguration(traits.HasTraits): # project settings project_dir = traits.Directory( exists=False, desc="data path to where the project is stored") # project metadata (for connectome file) project_metadata = traits.Dict( desc="project metadata to be stored in the connectome file") # DEPRECATED: this field is deprecated after version >1.0.2 generator = traits.Str() # parcellation scheme parcellation_scheme = traits.Enum("NativeFreesurfer", ["Lausanne2008", "NativeFreesurfer"], desc="used parcellation scheme") # choose between 'L' (linear) and 'N' (non-linear) and 'B' (bbregister) registration_mode = traits.Enum( "Linear", ["Linear", "Nonlinear", "BBregister"], desc="registration mode: linear or non-linear or bbregister") # choose between 'L' (linear) and 'B' (bbregister) rsfmri_registration_mode = traits.Enum( "Linear", ["Linear", "BBregister"], desc="registration mode: linear or bbregister") diffusion_imaging_model = traits.Enum("DSI", ["DSI", "DTI", "QBALL"]) # DSI nr_of_gradient_directions = traits.Str('515') nr_of_sampling_directions = traits.Str('181') odf_recon_param = traits.Str('-b0 1 -dsi -p 4 -sn 0') hardi_recon_param = traits.Str('-b0 1 -p 3 -sn 0') # DTI gradient_table_file = traits.File(exists=False) gradient_table = traits.Enum('siemens_64', [ 'custom', 'mgh_dti_006', 'mgh_dti_018', 'mgh_dti_030', 'mgh_dti_042', 'mgh_dti_060', 'mgh_dti_072', 'mgh_dti_090', 'mgh_dti_120', 'mgh_dti_144', 'siemens_06', 'siemens_12', 'siemens_20', 'siemens_256', 'siemens_30', 'siemens_64' ]) nr_of_b0 = traits.Str('1') max_b0_val = traits.Str('1000') dti_recon_param = traits.Str('') dtb_dtk2dir_param = traits.Str('') # tractography streamline_param = traits.Str('--angle 60 --seeds 32') # registration lin_reg_param = traits.Str('-usesqform -nosearch -dof 6 -cost mutualinfo') nlin_reg_bet_T2_param = traits.Str('-f 0.35 -g 0.15') nlin_reg_bet_b0_param = traits.Str('-f 0.2 -g 0.2') nlin_reg_fnirt_param = traits.Str( '--subsamp=8,4,2,2 --miter==5,5,5,5 --lambda=240,120,90,30 --splineorder=3 --applyinmask=0,0,1,1 --applyrefmask=0,0,1,1' ) bb_reg_param = traits.Str('--init-header --dti') # dicom converter do_convert_diffusion = traits.Bool(True) do_convert_T1 = traits.Bool(True) do_convert_T2 = traits.Bool(False) do_convert_fMRI = traits.Bool(False) # rsfmri rsfmri_lin_reg_param = traits.Str( '-usesqform -nosearch -dof 6 -cost mutualinfo') rsfmri_bb_reg_param = traits.Str('--init-header --dti') do_save_mat = traits.Bool(True) # DEPRECATED: subject_raw_glob_diffusion = traits.Str("*.*") subject_raw_glob_T1 = traits.Str("*.*") subject_raw_glob_T2 = traits.Str("*.*") extract_diffusion_metadata = traits.Bool(False) # subject subject_name = traits.Str() subject_timepoint = traits.Str() subject_workingdir = traits.Directory() subject_logger = None subject_metadata = [ KeyValue(key='description', value=''), KeyValue(key='', value=''), KeyValue(key='', value=''), KeyValue(key='', value=''), KeyValue(key='', value=''), KeyValue(key='', value=''), ] active_createfolder = traits.Bool(True) active_dicomconverter = traits.Bool(False) active_registration = traits.Bool(False) active_segmentation = traits.Bool(False) active_parcellation = traits.Bool(False) active_applyregistration = traits.Bool(False) active_reconstruction = traits.Bool(False) active_tractography = traits.Bool(False) active_fiberfilter = traits.Bool(False) active_connectome = traits.Bool(False) active_statistics = traits.Bool(False) active_rsfmri = traits.Bool(False) active_cffconverter = traits.Bool(False) skip_completed_stages = traits.Bool(False) # metadata creator = traits.Str() email = traits.Str() publisher = traits.Str() created = traits.Date() modified = traits.Date() license = traits.Str() # rights = traits.Str() reference = traits.Str() # relation = traits.Str() species = traits.Str('H**o sapiens') description = traits.Str() # segmentation recon_all_param = traits.Str('-all -no-isrunning') # parcellation custompar_nrroi = traits.Int() custompar_nodeinfo = traits.File() custompar_volumeparcell = traits.File() # fiber filtering apply_splinefilter = traits.Bool( True, desc='apply the spline filtering from diffusion toolkit') apply_fiberlength = traits.Bool(True, desc='apply cutoff to fiber lengths') fiber_cutoff_lower = traits.Float( 20.0, desc='cut fibers that are shorter in length than given length in mm') fiber_cutoff_upper = traits.Float( 500.0, desc='cut fibers that are longer in length than given length in mm') # measures connection_P0 = traits.Bool(False) connection_gfa = traits.Bool(False) connection_kurtosis = traits.Bool(False) connection_skewness = traits.Bool(False) connection_adc = traits.Bool(False) connection_fa = traits.Bool(False) # cff converter cff_fullnetworkpickle = traits.Bool( True, desc='stores the full network pickle generated by connectome creation') cff_cmatpickle = traits.Bool(True) cff_originalfibers = traits.Bool(True, desc='stores original fibers') cff_filteredfibers = traits.Bool(True, desc='stores filtered fibers') cff_finalfiberlabels = traits.Bool( True, desc='stores final fibers and their labelarrays') cff_fiberarr = traits.Bool(True) cff_rawdiffusion = traits.Bool(True) cff_scalars = traits.Bool(True) cff_rawT1 = traits.Bool(True) cff_rawT2 = traits.Bool(True) cff_roisegmentation = traits.Bool( True, desc='stores multi-resolution parcellation volumes') cff_surfaces = traits.Bool(True, desc='stores individually genertated surfaces') cff_surfacelabels = traits.Bool( True, desc='stores individually genertated surfaces') # do you want to do manual white matter mask correction? wm_handling = traits.Enum( 1, [1, 2, 3], desc="in what state should the freesurfer step be processed") # custom parcellation parcellation = traits.Dict( desc="provide the dictionary with your parcellation.") # start up fslview inspect_registration = traits.Bool( False, desc='start fslview to inspect the the registration results') fsloutputtype = traits.Enum('NIFTI', ['NIFTI']) # connectome creation compute_curvature = traits.Bool(False) # email notification, needs a local smtp server # sudo apt-get install postfix emailnotify = traits.ListStr( [], desc='the email address to send stage completion status message') freesurfer_home = traits.Directory(exists=False, desc="path to Freesurfer") fsl_home = traits.Directory(exists=False, desc="path to FSL") dtk_home = traits.Directory(exists=False, desc="path to diffusion toolkit") # This file stores descriptions of the inputs/outputs to each stage of the # CMP pipeline. It can be queried using the PipelineStatus python object pipeline_status_file = traits.Str("cmp.status") # Pipeline status object pipeline_status = pipeline_status.PipelineStatus() def _get_lausanne_parcellation(self, parcel="NativeFreesurfer"): if parcel == "Lausanne2008": return { 'scale33': { 'number_of_regions': 83, # contains name, url, color, freesurfer_label, etc. used for connection matrix 'node_information_graphml': op.join( self.get_lausanne_parcellation_path('resolution83'), 'resolution83.graphml'), # scalar node values on fsaverage? or atlas? 'surface_parcellation': None, # scalar node values in fsaverage volume? 'volume_parcellation': None, # the subdirectory name from where to copy parcellations, with hemispheric wildcard 'fs_label_subdir_name': 'regenerated_%s_36', # should we subtract the cortical rois for the white matter mask? 'subtract_from_wm_mask': 1, }, 'scale60': { 'number_of_regions': 129, 'node_information_graphml': op.join( self.get_lausanne_parcellation_path('resolution150'), 'resolution150.graphml'), 'surface_parcellation': None, 'volume_parcellation': None, 'fs_label_subdir_name': 'regenerated_%s_60', 'subtract_from_wm_mask': 1, }, 'scale125': { 'number_of_regions': 234, 'node_information_graphml': op.join( self.get_lausanne_parcellation_path('resolution258'), 'resolution258.graphml'), 'surface_parcellation': None, 'volume_parcellation': None, 'fs_label_subdir_name': 'regenerated_%s_125', 'subtract_from_wm_mask': 1, }, 'scale250': { 'number_of_regions': 463, 'node_information_graphml': op.join( self.get_lausanne_parcellation_path('resolution500'), 'resolution500.graphml'), 'surface_parcellation': None, 'volume_parcellation': None, 'fs_label_subdir_name': 'regenerated_%s_250', 'subtract_from_wm_mask': 1, }, 'scale500': { 'number_of_regions': 1015, 'node_information_graphml': op.join( self.get_lausanne_parcellation_path('resolution1015'), 'resolution1015.graphml'), 'surface_parcellation': None, 'volume_parcellation': None, 'fs_label_subdir_name': 'regenerated_%s_500', 'subtract_from_wm_mask': 1, }, } else: return { 'freesurferaparc': { 'number_of_regions': 83, # contains name, url, color, freesurfer_label, etc. used for connection matrix 'node_information_graphml': op.join( self.get_lausanne_parcellation_path('freesurferaparc'), 'resolution83.graphml'), # scalar node values on fsaverage? or atlas? 'surface_parcellation': None, # scalar node values in fsaverage volume? 'volume_parcellation': None, } } def __init__(self, **kwargs): # NOTE: In python 2.6, object.__init__ no longer accepts input # arguments. HasTraits does not define an __init__ and # therefore these args were being ignored. super(PipelineConfiguration, self).__init__(**kwargs) # the default parcellation provided self.parcellation = self._get_lausanne_parcellation( parcel="NativeFreesurfer") self.can_use_dipy = dipy_here # no email notify self.emailnotify = [] # default gradient table for DTI self.gradient_table_file = self.get_cmp_gradient_table('siemens_64') # try to discover paths from environment variables try: self.freesurfer_home = op.join(os.environ['FREESURFER_HOME']) self.fsl_home = op.join(os.environ['FSLDIR']) self.dtk_home = os.environ['DTDIR'] self.dtk_matrices = op.join(self.dtk_home, 'matrices') except KeyError: pass self.fsloutputtype = 'NIFTI' os.environ['FSLOUTPUTTYPE'] = self.fsloutputtype os.environ['FSLOUTPUTTYPE'] = 'NIFTI' def consistency_check(self): """ Provides a checking facility for configuration objects """ # project name not empty if not op.exists(self.project_dir): msg = 'Your project directory does not exist!' raise Exception(msg) # check metadata if self.creator == '': raise Exception('You need to enter creator metadata!') if self.publisher == '': raise Exception('You need to enter publisher metadata!') if self.email == '': raise Exception('You need to enter email of a contact person!') # check if software paths exists pas = { 'configuration.freesurfer_home': self.freesurfer_home, 'configuration.fsl_home': self.fsl_home, 'configuration.dtk_home': self.dtk_home, 'configuration.dtk_matrices': self.dtk_matrices } for k, p in pas.items(): if not op.exists(p): msg = 'Required software path for %s does not exists: %s' % (k, p) raise Exception(msg) if self.subject_workingdir == '': msg = 'No working directory defined for subject' raise Exception(msg) # else: # wdir = self.get_subj_dir() # if not op.exists(wdir): # msg = 'Working directory %s does not exists for subject' % (wdir) # raise Exception(msg) # else: # wdiff = op.join(self.get_raw_diffusion()) # print wdiff # if not op.exists(wdiff): # msg = 'Diffusion MRI subdirectory %s does not exists for the subject' % wdiff # raise Exception(msg) # wt1 = op.join(self.get_rawt1()) # if not op.exists(wt1): # msg = 'Structural MRI subdirectory %s T1 does not exist in RAWDATA' % wt1 # raise Exception(msg) def get_cmp_home(self): """ Return the cmp home path """ return op.dirname(__file__) def get_rawdata(self): """ Return raw data path for the subject """ return op.join(self.get_subj_dir(), 'RAWDATA') def get_log(self): """ Get subject log dir """ return op.join(self.get_subj_dir(), 'LOG') def get_logname(self, suffix='.log'): """ Get a generic name for the log and pickle files """ a = dt.datetime.now() return 'pipeline-%s-%02i%02i-%s-%s%s' % ( a.date().isoformat(), a.time().hour, a.time().minute, self.subject_name, self.subject_timepoint, suffix) def get_logger(self): """ Get the logger instance created """ if self.subject_logger is None: # setup logger for the subject self.subject_logger = \ getLog(os.path.join(self.get_log(), self.get_logname())) return self.subject_logger else: return self.subject_logger def get_rawglob(self, modality): """ DEPRECATED: Get the file name endings for modality """ if modality == 'diffusion': if not self.subject_raw_glob_diffusion == '': return self.subject_raw_glob_diffusion else: raise Exception('No raw_glob_diffusion defined for subject') elif modality == 'T1': if not self.subject_raw_glob_T1 == '': return self.subject_raw_glob_T1 else: raise Exception('No raw_glob_T1 defined for subject') elif modality == 'T2': if not self.subject_raw_glob_T2 == '': return self.subject_raw_glob_T2 else: raise Exception('No raw_glob_T2 defined for subject') def get_dicomfiles(self, modality): """ Get a list of dicom files for the requested modality. Tries to discover them automatically """ from glob import glob if modality == 'diffusion': pat = self.get_raw_diffusion() elif modality == 'T1': pat = self.get_rawt1() elif modality == 'T2': pat = self.get_rawt2() elif modality == 'fMRI': pat = self.get_rawrsfmri() # discover files with *.* and * difiles = sorted(glob(op.join(pat, '*.*')) + glob(op.join(pat, '*'))) # exclude potential .nii and .nii.gz files difiles = [ e for e in difiles if not e.endswith('.nii') and not e.endswith('.nii.gz') ] # check if no files and throw exception if len(difiles) == 0: raise Exception('Could not find any DICOM files in folder %s' % pat) return difiles def get_rawrsfmri(self): """ Get raw functional MRI path for subject """ return op.join(self.get_rawdata(), 'fMRI') def get_rawt1(self): """ Get raw structural MRI T1 path for subject """ return op.join(self.get_rawdata(), 'T1') def get_rawt2(self): """ Get raw structural MRI T2 path for subject """ return op.join(self.get_rawdata(), 'T2') def get_subj_dir(self): return self.subject_workingdir def get_raw_diffusion(self): """ Get the raw diffusion path for subject """ if self.diffusion_imaging_model == 'DSI': return op.join(self.get_subj_dir(), 'RAWDATA', 'DSI') elif self.diffusion_imaging_model == 'DTI': return op.join(self.get_subj_dir(), 'RAWDATA', 'DTI') elif self.diffusion_imaging_model == 'QBALL': return op.join(self.get_subj_dir(), 'RAWDATA', 'QBALL') def get_fs(self): """ Returns the subject root folder path for freesurfer files """ return op.join(self.get_subj_dir(), 'FREESURFER') def get_stats(self): """ Return statistic output path """ return op.join(self.get_subj_dir(), 'STATS') def get_cffdir(self): """ Returns path to store connectome file """ return op.join(self.get_cmp(), 'cff') def get_nifti(self): """ Returns the subject root folder path for nifti files """ return op.join(self.get_subj_dir(), 'NIFTI') def get_nifti_trafo(self): """ Returns the path to the subjects transformation / registration matrices """ return op.join(self.get_nifti(), 'transformations') def get_nifti_bbregister(self): """ Returns the path to the subjects transformation / registration matrices, bbregister mode """ return op.join(self.get_nifti(), 'bbregister') def get_diffusion_metadata(self): """ Diffusion metadata, i.e. where gradient_table.txt is stored """ return op.join(self.get_nifti(), 'diffusion_metadata') def get_nifti_wm_correction(self): """ Returns the path to the subjects wm_correction path """ return op.join(self.get_nifti(), 'wm_correction') def get_cmp(self): return op.join(self.get_subj_dir(), 'CMP') def get_cmp_rawdiff(self, ): return op.join(self.get_cmp(), 'raw_diffusion') def get_cmp_rawdiff_reconout(self): """ Returns the output path for diffusion reconstruction without prefix""" if self.diffusion_imaging_model == 'DSI': return op.join(self.get_cmp(), 'raw_diffusion', 'odf_0') elif self.diffusion_imaging_model == 'DTI': return op.join(self.get_cmp(), 'raw_diffusion', 'dti_0') elif self.diffusion_imaging_model == 'QBALL': return op.join(self.get_cmp(), 'raw_diffusion', 'qball_0') def get_cmp_rawdiff_resampled(self): return op.join(self.get_cmp_rawdiff(), '2x2x2') def get_cmp_fsout(self): return op.join(self.get_cmp(), 'fs_output') def get_cmp_fibers(self): return op.join(self.get_cmp(), 'fibers') def get_cmp_scalars(self): return op.join(self.get_cmp(), 'scalars') def get_cmp_matrices(self): return op.join(self.get_cmp_fibers(), 'matrices') def get_cmp_fmri(self): return op.join(self.get_cmp(), 'fMRI') def get_cmp_tracto_mask(self): return op.join(self.get_cmp_fsout(), 'HR') def get_cmp_tracto_mask_tob0(self): return op.join(self.get_cmp_fsout(), 'HR__registered-TO-b0') def get_custom_gradient_table(self): """ Returns the absolute path to the custom gradient table with optional b-values in the 4th row """ return self.gradient_table_file def get_cmp_gradient_table(self, name): """ Return default gradient tables shipped with CMP. These are mainly derived from Diffusion Toolkit """ cmp_path = op.dirname(__file__) return op.join(cmp_path, 'data', 'diffusion', 'gradient_tables', name + '.txt') def get_dtb_streamline_vecs_file(self, as_text=False): """ Returns the odf directions file used for DTB_streamline """ cmp_path = op.dirname(__file__) if as_text: return op.join(cmp_path, 'data', 'diffusion', 'odf_directions', '181_vecs.txt') else: return op.join(cmp_path, 'data', 'diffusion', 'odf_directions', '181_vecs.dat') # XXX def get_cmp_scalarfields(self): """ Returns a list with tuples with the scalar field name and the absolute path to its nifti file """ ret = [] if self.diffusion_imaging_model == 'DSI': # add gfa per default ret.append(('gfa', op.join(self.get_cmp_scalars(), 'dsi_gfa.nii.gz'))) # XXX: add adc per default elif self.diffusion_imaging_model == 'DTI': # nothing to add yet for DTI pass return ret def get_dtk_dsi_matrix(self): """ Returns the DSI matrix from Diffusion Toolkit The parameters have to be set in the configuration object with keys: 1. number of gradient directions : 'nr_of_gradient_directions' 2. number of sampling directions : 'nr_of_sampling_directions' Example ------- confobj.nr_of_gradient_directions = 515 confobj.nr_of_sampling_directions = 181 Returns matrix including absolute path to DSI_matrix_515x181.dat """ grad = self.nr_of_gradient_directions samp = self.nr_of_sampling_directions fpath = op.join(self.dtk_matrices, "DSI_matrix_%sx%s.dat" % (grad, samp)) if not op.exists(fpath): msg = "DSI matrix does not exists: %s" % fpath raise Exception(msg) return fpath def get_lausanne_atlas(self, name=None): """ Return the absolute path to the lausanne parcellation atlas for the resolution name """ cmp_path = op.dirname(__file__) provided_atlases = [ 'myatlas_36_rh.gcs', 'myatlasP1_16_rh.gcs', 'myatlasP17_28_rh.gcs', 'myatlasP29_36_rh.gcs', 'myatlas_60_rh.gcs', 'myatlas_125_rh.gcs', 'myatlas_250_rh.gcs', 'myatlas_36_lh.gcs', 'myatlasP1_16_lh.gcs', 'myatlasP17_28_lh.gcs', 'myatlasP29_36_lh.gcs', 'myatlas_60_lh.gcs', 'myatlas_125_lh.gcs', 'myatlas_250_lh.gcs' ] if name in provided_atlases: return op.join(cmp_path, 'data', 'colortable_and_gcs', 'my_atlas_gcs', name) else: msg = "Atlas %s does not exists" % name raise Exception(msg) def get_freeview_lut(self, name): """ Returns the Look-Up-Table as text file for a given parcellation scheme in a dictionary """ cmp_path = op.dirname(__file__) if name == "NativeFreesurfer": return { 'freesurferaparc': op.join(cmp_path, 'data', 'parcellation', 'nativefreesurfer', 'freesurferaparc', 'FreeSurferColorLUT_adapted.txt') } else: return "" def get_lausanne_parcellation_path(self, parcellationname): cmp_path = op.dirname(__file__) if self.parcellation_scheme == "Lausanne2008": allowed_default_parcel = [ 'resolution83', 'resolution150', 'resolution258', 'resolution500', 'resolution1015' ] if parcellationname in allowed_default_parcel: return op.join(cmp_path, 'data', 'parcellation', 'lausanne2008', parcellationname) else: msg = "Not a valid default parcellation name for the lausanne2008 parcellation scheme" raise Exception(msg) else: allowed_default_parcel = ['freesurferaparc'] if parcellationname in allowed_default_parcel: return op.join(cmp_path, 'data', 'parcellation', 'nativefreesurfer', parcellationname) else: msg = "Not a valid default parcellation name for the NativeFreesurfer parcellation scheme" raise Exception(msg) def get_cmp_binary_path(self): """ Returns the path to the binary files for the current platform and architecture """ if sys.platform == 'linux2': import platform as pf if '32' in pf.architecture()[0]: return op.join(op.dirname(__file__), "binary", "linux2", "bit32") elif '64' in pf.architecture()[0]: return op.join(op.dirname(__file__), "binary", "linux2", "bit64") else: raise ('No binary files compiled for your platform!') def get_pipeline_status_file(self): """Returns the absolute path of the pipeline status file""" return op.join(self.get_subj_dir(), self.pipeline_status_file) def init_pipeline_status(self): """Create the 'cmp.status'. The 'cmp.status' file contains information about the inputs/outputs of each pipeline stage""" status_file = op.join(self.get_subj_dir(), self.pipeline_status_file) self.pipeline_status.Pipeline.name = "cmp" self.pipeline_status.SaveToFile(status_file) def update_pipeline_status(self): """Update the pipeline status on disk with the current status in memory""" status_file = op.join(self.get_subj_dir(), self.pipeline_status_file) self.pipeline_status.SaveToFile(status_file)
class Fit(traits.HasTraits): name = traits.Str(desc="name of fit") function = traits.Str(desc="function we are fitting with all parameters") variablesList = traits.List(FitVariable) calculatedParametersList = traits.List(CalculatedParameter) xs = None # will be a scipy array ys = None # will be a scipy array zs = None # will be a scipy array performFitButton = traits.Button("Perform Fit") getInitialParametersButton = traits.Button("Guess Initial Values") drawRequestButton = traits.Button("Draw Fit") autoFitBool = traits.Bool( False, desc= "Automatically perform this Fit with current settings whenever a new image is loaded" ) autoGuessBool = traits.Bool( False, desc= "Whenever a fit is completed replace the guess values with the calculated values (useful for increasing speed of the next fit)" ) autoDrawBool = traits.Bool( False, desc= "Once a fit is complete update the drawing of the fit or draw the fit for the first time" ) logBool = traits.Bool( False, desc="Log the calculated and fitted values with a timestamp") logFile = traits.File(desc="file path of logFile") imageInspectorReference = None #will be a reference to the image inspector fitting = traits.Bool(False) #true when performing fit fitted = traits.Bool( False) #true when current data displayed has been fitted fitSubSpace = traits.Bool( False) #true when current data displayed has been fitted startX = traits.Int startY = traits.Int endX = traits.Int endY = traits.Int fittingStatus = traits.Str() fitThread = None physics = traits.Instance(physicsProperties.PhysicsProperties) #status strings notFittedForCurrentStatus = "Not Fitted for Current Image" fittedForCurrentImageStatus = "Fit Complete for Current Image" currentlyFittingStatus = "Currently Fitting..." failedFitStatus = "Failed to finish fit. See logger" fitSubSpaceGroup = traitsui.VGroup( traitsui.Item("fitSubSpace", label="Fit Sub Space"), traitsui.VGroup(traitsui.HGroup(traitsui.Item("startX"), traitsui.Item("startY")), traitsui.HGroup(traitsui.Item("endX"), traitsui.Item("endY")), visible_when="fitSubSpace"), label="Fit Sub Space", show_border=True) generalGroup = traitsui.VGroup(traitsui.Item("name", label="Fit Name", style="readonly", resizable=True), traitsui.Item("function", label="Fit Function", style="readonly", resizable=True), fitSubSpaceGroup, label="Fit", show_border=True) variablesGroup = traitsui.VGroup(traitsui.Item( "variablesList", editor=traitsui.ListEditor(style="custom"), show_label=False, resizable=True), show_border=True, label="parameters") derivedGroup = traitsui.VGroup(traitsui.Item( "calculatedParametersList", editor=traitsui.ListEditor(style="custom"), show_label=False, resizable=True), show_border=True, label="derived values") buttons = traitsui.VGroup( traitsui.HGroup(traitsui.Item("autoFitBool"), traitsui.Item("performFitButton")), traitsui.HGroup(traitsui.Item("autoGuessBool"), traitsui.Item("getInitialParametersButton")), traitsui.HGroup(traitsui.Item("autoDrawBool"), traitsui.Item("drawRequestButton"))) logGroup = traitsui.HGroup(traitsui.Item("logBool"), traitsui.Item("logFile", visible_when="logBool"), label="Logging", show_border=True) actionsGroup = traitsui.VGroup(traitsui.Item("fittingStatus", style="readonly"), logGroup, buttons, label="Fit Actions", show_border=True) traits_view = traitsui.View( traitsui.VGroup(generalGroup, variablesGroup, derivedGroup, actionsGroup)) def __init__(self, **traitsDict): super(Fit, self).__init__(**traitsDict) self.startX = 0 self.startY = 0 def _set_xs(self, xs): self.xs = xs def _set_ys(self, ys): self.ys = ys def _set_zs(self, zs): self.zs = zs def _fittingStatus_default(self): return self.notFittedForCurrentStatus def _getInitialValues(self): """returns ordered list of initial values from variables List """ return [_.initialValue for _ in self.variablesList] def _getCalculatedValues(self): """returns ordered list of initial values from variables List """ return [_.calculatedValue for _ in self.variablesList] def _log_fit(self): if self.logFile == "": logger.warning("no log file defined. Will not log") return if not os.path.exists(self.logFile): variables = [_.name for _ in self.variablesList] calculated = [_.name for _ in self.calculatedParametersList] times = ["datetime", "epoch seconds"] info = ["img file name"] columnNames = times + info + variables + calculated with open(self.logFile, 'a+') as logFile: writer = csv.writer(logFile) writer.writerow(columnNames) #column names already exist so... variables = [_.calculatedValue for _ in self.variablesList] calculated = [_.value for _ in self.calculatedParametersList] now = time.time() #epoch seconds timeTuple = time.localtime(now) date = time.strftime("%Y-%m-%dT%H:%M:%S", timeTuple) times = [date, now] info = [self.imageInspectorReference.selectedFile] data = times + info + variables + calculated with open(self.logFile, 'a+') as logFile: writer = csv.writer(logFile) writer.writerow(data) def _intelligentInitialValues(self): """If possible we can auto set the initial parameters to intelligent guesses user can always overwrite them """ self._setInitialValues(self._getIntelligentInitialValues()) def _get_subSpaceArrays(self): """returns the arrays of the selected sub space. If subspace is not activated then returns the full arrays""" if self.fitSubSpace: xs = self.xs[self.startX:self.endX] ys = self.ys[self.startY:self.endY] logger.debug("xs array sliced length %s " % (xs.shape)) logger.debug("ys array sliced length %s " % (ys.shape)) zs = self.zs[self.startY:self.endY, self.startX:self.endX] print zs print zs.shape logger.debug("zs sub space array %s,%s " % (zs.shape)) return xs, ys, zs else: return self.xs, self.ys, self.zs def _getIntelligentInitialValues(self): """If possible we can auto set the initial parameters to intelligent guesses user can always overwrite them """ logger.debug("Dummy function should not be called directly") return def fitFunc(self, data, *p): """Function that we are trying to fit to. """ logger.error("Dummy function should not be called directly") return def _setCalculatedValues(self, calculated): """updates calculated values with calculated argument """ c = 0 for variable in self.variablesList: variable.calculatedValue = calculated[c] c += 1 def _setCalculatedValuesErrors(self, covarianceMatrix): """given the covariance matrix returned by scipy optimize fit convert this into stdeviation errors for parameters list and updated the stdevError attribute of variables""" logger.debug("covariance matrix -> %s " % covarianceMatrix) parameterErrors = scipy.sqrt(scipy.diag(covarianceMatrix)) logger.debug("parameterErrors -> %s " % parameterErrors) c = 0 for variable in self.variablesList: variable.stdevError = parameterErrors[c] c += 1 def _setInitialValues(self, guesses): """updates calculated values with calculated argument """ c = 0 for variable in self.variablesList: variable.initialValue = guesses[c] c += 1 def deriveCalculatedParameters(self): """Wrapper for subclass definition of deriving calculated parameters can put more general calls in here""" if self.fitted: self._deriveCalculatedParameters() def _deriveCalculatedParameters(self): """Should be implemented by subclass. should update all variables in calculate parameters list""" logger.error("Should only be called by subclass") return def _fit_routine(self): """This function performs the fit in an appropriate thread and updates necessary values when the fit has been performed""" self.fitting = True if self.fitThread and self.fitThread.isAlive(): logger.warning( "Fitting is already running cannot kick off a new fit until it has finished!" ) return else: self.fitThread = FitThread() self.fitThread.fitReference = self self.fitThread.start() self.fittingStatus = self.currentlyFittingStatus def _perform_fit(self): """Perform the fit using scipy optimise curve fit. We must supply x and y as one argument and zs as anothger. in the form xs: 0 1 2 0 1 2 0 ys: 0 0 0 1 1 1 2 zs: 1 5 6 1 9 8 2 Hence the use of repeat and tile in positions and unravel for zs initially xs,ys is a linspace array and zs is a 2d image array """ if self.xs is None or self.ys is None or self.zs is None: logger.warning( "attempted to fit data but had no data inside the Fit object. set xs,ys,zs first" ) return ([], []) p0 = self._getInitialValues() if self.fitSubSpace: #fit only the sub space #create xs, ys and zs which are appropriate slices of the arrays xs, ys, zs = self._get_subSpaceArrays() positions = [scipy.tile(xs, len(ys)), scipy.repeat(ys, len(xs)) ] #for creating data necessary for gauss2D function params2D, cov2D = scipy.optimize.curve_fit(self.fitFunc, positions, scipy.ravel(zs), p0=p0) chi2 = scipy.sum( (scipy.ravel(zs) - self.fitFunc(positions, *params2D))**2 / self.fitFunc(positions, *params2D)) logger.debug("TEMPORARY ::: CHI^2 = %s " % chi2) else: #fit the whole array of data (slower) positions = [ scipy.tile(self.xs, len(self.ys)), scipy.repeat(self.ys, len(self.xs)) ] #for creating data necessary for gauss2D function #note that it is necessary to ravel zs as curve_fit expects a flattened array params2D, cov2D = scipy.optimize.curve_fit(self.fitFunc, positions, scipy.ravel(self.zs), p0=p0) return params2D, cov2D def _performFitButton_fired(self): self._fit_routine() def _getInitialParametersButton_fired(self): self._intelligentInitialValues() def _drawRequestButton_fired(self): """tells the imageInspector to try and draw this fit as an overlay contour plot""" self.imageInspectorReference.addFitPlot(self) def _getFitFuncData(self): """if data has been fitted, this returns the zs data for the ideal fitted function using the calculated paramters""" positions = [ scipy.tile(self.xs, len(self.ys)), scipy.repeat(self.ys, len(self.xs)) ] #for creating data necessary for gauss2D function zsravelled = self.fitFunc(positions, *self._getCalculatedValues()) return zsravelled.reshape(self.zs.shape)
class QuadMeshDecimationOutputSpec(TraitedSpec): outputSurface = traits.File(argstr="--outputSurface %s")
class Fit(traits.HasTraits): name = traits.Str(desc="name of fit") function = traits.Str(desc="function we are fitting with all parameters") variablesList = traits.List(Parameter) calculatedParametersList = traits.List(CalculatedParameter) xs = None # will be a scipy array ys = None # will be a scipy array zs = None # will be a scipy array performFitButton = traits.Button("Perform Fit") getInitialParametersButton = traits.Button("Guess Initial Values") usePreviousFitValuesButton = traits.Button("Use Previous Fit") drawRequestButton = traits.Button("Draw Fit") setSizeButton = traits.Button("Set Initial Size") chooseVariablesButtons = traits.Button("choose logged variables") logLibrarianButton = traits.Button("librarian") logLastFitButton = traits.Button("log current fit") removeLastFitButton = traits.Button("remove last fit") autoFitBool = traits.Bool( False, desc= "Automatically perform this Fit with current settings whenever a new image is loaded" ) autoGuessBool = traits.Bool( False, desc= "Whenever a fit is completed replace the guess values with the calculated values (useful for increasing speed of the next fit)" ) autoDrawBool = traits.Bool( False, desc= "Once a fit is complete update the drawing of the fit or draw the fit for the first time" ) autoSizeBool = traits.Bool( False, desc= "If TOF variable is read from latest XML and is equal to 0.11ms (or time set in Physics) then it will automatically update the physics sizex and sizey with the Sigma x and sigma y from the gaussian fit" ) logBool = traits.Bool( False, desc="Log the calculated and fitted values with a timestamp") logName = traits.String( desc="name of the scan - will be used in the folder name") logDirectory = os.path.join("\\\\ursa", "AQOGroupFolder", "Experiment Humphry", "Data", "eagleLogs") latestSequence = os.path.join("\\\\ursa", "AQOGroupFolder", "Experiment Humphry", "Experiment Control And Software", "currentSequence", "latestSequence.xml") logFile = traits.File(desc="file path of logFile") logAnalyserBool = traits.Bool( False, desc="only use log analyser script when True") logAnalysers = [ ] #list containing full paths to each logAnalyser file to run logAnalyserDisplayString = traits.String( desc= "comma separated read only string that is a list of all logAnalyser python scripts to run. Use button to choose files" ) logAnalyserSelectButton = traits.Button("sel. analyser", image='@icons:function_node', style="toolbar") xmlLogVariables = [] imageInspectorReference = None #will be a reference to the image inspector fitting = traits.Bool(False) #true when performing fit fitted = traits.Bool( False) #true when current data displayed has been fitted fitSubSpace = traits.Bool( False) #true when current data displayed has been fitted startX = traits.Int startY = traits.Int endX = traits.Int endY = traits.Int fittingStatus = traits.Str() fitThread = None fitTimeLimit = traits.Float( 10.0, desc= "Time limit in seconds for fitting function. Only has an effect when fitTimeLimitBool is True" ) fitTimeLimitBool = traits.Bool( True, desc= "If True then fitting functions will be limited to time limit defined by fitTimeLimit " ) physics = traits.Instance( physicsProperties.physicsProperties.PhysicsProperties) #status strings notFittedForCurrentStatus = "Not Fitted for Current Image" fittedForCurrentImageStatus = "Fit Complete for Current Image" currentlyFittingStatus = "Currently Fitting..." failedFitStatus = "Failed to finish fit. See logger" timeExceededStatus = "Fit exceeded user time limit" lmfitModel = traits.Instance( lmfit.Model ) #reference to the lmfit model must be initialised in subclass mostRecentModelResult = None # updated to the most recent ModelResult object from lmfit when a fit thread is performed fitSubSpaceGroup = traitsui.VGroup( traitsui.Item("fitSubSpace", label="Fit Sub Space", resizable=True), traitsui.VGroup(traitsui.HGroup( traitsui.Item("startX", resizable=True), traitsui.Item("startY", resizable=True)), traitsui.HGroup(traitsui.Item("endX", resizable=True), traitsui.Item("endY", resizable=True)), visible_when="fitSubSpace"), label="Fit Sub Space", show_border=True) generalGroup = traitsui.VGroup(traitsui.Item("name", label="Fit Name", style="readonly", resizable=True), traitsui.Item("function", label="Fit Function", style="readonly", resizable=True), fitSubSpaceGroup, label="Fit", show_border=True) variablesGroup = traitsui.VGroup(traitsui.Item( "variablesList", editor=traitsui.ListEditor(style="custom"), show_label=False, resizable=True), show_border=True, label="parameters") derivedGroup = traitsui.VGroup(traitsui.Item( "calculatedParametersList", editor=traitsui.ListEditor(style="custom"), show_label=False, resizable=True), show_border=True, label="derived values") buttons = traitsui.VGroup( traitsui.HGroup( traitsui.Item("autoFitBool", label="Auto fit?", resizable=True), traitsui.Item("performFitButton", show_label=False, resizable=True)), traitsui.HGroup( traitsui.Item("autoGuessBool", label="Auto guess?", resizable=True), traitsui.Item("getInitialParametersButton", show_label=False, resizable=True)), traitsui.HGroup( traitsui.Item("autoDrawBool", label="Auto draw?", resizable=True), traitsui.Item("drawRequestButton", show_label=False, resizable=True)), traitsui.HGroup( traitsui.Item("autoSizeBool", label="Auto size?", resizable=True), traitsui.Item("setSizeButton", show_label=False, resizable=True)), traitsui.HGroup( traitsui.Item("usePreviousFitValuesButton", show_label=False, resizable=True))) logGroup = traitsui.VGroup(traitsui.HGroup( traitsui.Item("logBool", resizable=True), traitsui.Item("chooseVariablesButtons", show_label=False, resizable=True)), traitsui.HGroup( traitsui.Item("logName", resizable=True)), traitsui.HGroup( traitsui.Item("removeLastFitButton", show_label=False, resizable=True), traitsui.Item("logLastFitButton", show_label=False, resizable=True)), traitsui.HGroup( traitsui.Item("logAnalyserBool", label="analyser?", resizable=True), traitsui.Item("logAnalyserDisplayString", show_label=False, style="readonly", resizable=True), traitsui.Item("logAnalyserSelectButton", show_label=False, resizable=True)), label="Logging", show_border=True) actionsGroup = traitsui.VGroup(traitsui.Item("fittingStatus", style="readonly", resizable=True), logGroup, buttons, label="Fit Actions", show_border=True) traits_view = traitsui.View(traitsui.VGroup(generalGroup, variablesGroup, derivedGroup, actionsGroup), kind="subpanel") def __init__(self, **traitsDict): super(Fit, self).__init__(**traitsDict) self.startX = 0 self.startY = 0 self.lmfitModel = lmfit.Model(self.fitFunc) def _set_xs(self, xs): self.xs = xs def _set_ys(self, ys): self.ys = ys def _set_zs(self, zs): self.zs = zs def _fittingStatus_default(self): return self.notFittedForCurrentStatus def _getInitialValues(self): """returns ordered list of initial values from variables List """ return [_.initialValue for _ in self.variablesList] def _getParameters(self): """creates an lmfit parameters object based on the user input in variablesList """ return lmfit.Parameters( {_.name: _.parameter for _ in self.variablesList}) def _getCalculatedValues(self): """returns ordered list of fitted values from variables List """ return [_.calculatedValue for _ in self.variablesList] def _intelligentInitialValues(self): """If possible we can auto set the initial parameters to intelligent guesses user can always overwrite them """ self._setInitialValues(self._getIntelligentInitialValues()) def _get_subSpaceArrays(self): """returns the arrays of the selected sub space. If subspace is not activated then returns the full arrays""" if self.fitSubSpace: xs = self.xs[self.startX:self.endX] ys = self.ys[self.startY:self.endY] logger.info("xs array sliced length %s " % (xs.shape)) logger.info("ys array sliced length %s " % (ys.shape)) zs = self.zs[self.startY:self.endY, self.startX:self.endX] logger.info("zs sub space array %s,%s " % (zs.shape)) return xs, ys, zs else: return self.xs, self.ys, self.zs def _getIntelligentInitialValues(self): """If possible we can auto set the initial parameters to intelligent guesses user can always overwrite them """ logger.debug("Dummy function should not be called directly") return #in python this should be a pass statement. I.e. user has to overwrite this def fitFunc(self, data, *p): """Function that we are trying to fit to. """ logger.error("Dummy function should not be called directly") return #in python this should be a pass statement. I.e. user has to overwrite this def _setCalculatedValues(self, modelFitResult): """updates calculated values with calculated argument """ parametersResult = modelFitResult.params for variable in self.variablesList: variable.calculatedValue = parametersResult[variable.name].value def _setCalculatedValuesErrors(self, modelFitResult): """given the covariance matrix returned by scipy optimize fit convert this into stdeviation errors for parameters list and updated the stdevError attribute of variables""" parametersResult = modelFitResult.params for variable in self.variablesList: variable.stdevError = parametersResult[variable.name].stderr def _setInitialValues(self, guesses): """updates calculated values with calculated argument """ c = 0 for variable in self.variablesList: variable.initialValue = guesses[c] c += 1 def deriveCalculatedParameters(self): """Wrapper for subclass definition of deriving calculated parameters can put more general calls in here""" if self.fitted: self._deriveCalculatedParameters() def _deriveCalculatedParameters(self): """Should be implemented by subclass. should update all variables in calculate parameters list""" logger.error("Should only be called by subclass") return def _fit_routine(self): """This function performs the fit in an appropriate thread and updates necessary values when the fit has been performed""" self.fitting = True if self.fitThread and self.fitThread.isAlive(): logger.warning( "Fitting is already running. You should wait till this fit has timed out before a new thread is started...." ) #logger.warning("I will start a new fitting thread but your previous thread may finish at some undetermined time. you probably had bad starting conditions :( !") return self.fitThread = FitThread() #new fitting thread self.fitThread.fitReference = self self.fitThread.isCurrentFitThread = True # user can create multiple fit threads on a particular fit but only the latest one will have an effect in the GUI self.fitThread.start() self.fittingStatus = self.currentlyFittingStatus def _perform_fit(self): """Perform the fit using scipy optimise curve fit. We must supply x and y as one argument and zs as anothger. in the form xs: 0 1 2 0 1 2 0 ys: 0 0 0 1 1 1 2 zs: 1 5 6 1 9 8 2 Hence the use of repeat and tile in positions and unravel for zs initially xs,ys is a linspace array and zs is a 2d image array """ if self.xs is None or self.ys is None or self.zs is None: logger.warning( "attempted to fit data but had no data inside the Fit object. set xs,ys,zs first" ) return ([], []) params = self._getParameters() if self.fitSubSpace: #fit only the sub space #create xs, ys and zs which are appropriate slices of the arrays xs, ys, zs = self._get_subSpaceArrays() else: #fit the whole array of data (slower) xs, ys, zs = self.xs, self.ys, self.zs positions = scipy.array([ scipy.tile(xs, len(ys)), scipy.repeat(ys, len(xs)) ]) #for creating data necessary for gauss2D function if self.fitTimeLimitBool: modelFitResult = self.lmfitModel.fit(scipy.ravel(zs), positions=positions, params=params, iter_cb=self.getFitCallback( time.time())) else: #no iter callback modelFitResult = self.lmfitModel.fit(scipy.ravel(zs), positions=positions, params=params) return modelFitResult def getFitCallback(self, startTime): """returns the callback function that is called at every iteration of fit to check if it has been running too long""" def fitCallback(params, iter, resid, *args, **kws): """check the time and compare to start time """ if time.time() - startTime > self.fitTimeLimit: raise FitException("Fit time exceeded user limit") return fitCallback def _performFitButton_fired(self): self._fit_routine() def _getInitialParametersButton_fired(self): self._intelligentInitialValues() def _drawRequestButton_fired(self): """tells the imageInspector to try and draw this fit as an overlay contour plot""" self.imageInspectorReference.addFitPlot(self) def _setSizeButton_fired(self): """use the sigmaX and sigmaY from the current fit to overwrite the inTrapSizeX and inTrapSizeY parameters in the Physics Instance""" self.physics.inTrapSizeX = abs(self.sigmax.calculatedValue) self.physics.inTrapSizeY = abs(self.sigmay.calculatedValue) def _getFitFuncData(self): """if data has been fitted, this returns the zs data for the ideal fitted function using the calculated paramters""" positions = [ scipy.tile(self.xs, len(self.ys)), scipy.repeat(self.ys, len(self.xs)) ] #for creating data necessary for gauss2D function zsravelled = self.fitFunc(positions, *self._getCalculatedValues()) return zsravelled.reshape(self.zs.shape) def _logAnalyserSelectButton_fired(self): """open a fast file editor for selecting many files """ fileDialog = FileDialog(action="open files") fileDialog.open() if fileDialog.return_code == pyface.constant.OK: self.logAnalysers = fileDialog.paths logger.info("selected log analysers: %s " % self.logAnalysers) self.logAnalyserDisplayString = str( [os.path.split(path)[1] for path in self.logAnalysers]) def runSingleAnalyser(self, module): """runs the logAnalyser module calling the run function and returns the columnNames and values as a list""" exec("import logAnalysers.%s as currentAnalyser" % module) reload( currentAnalyser ) #in case it has changed..#could make this only when user requests #now the array also contains the raw image as this may be different to zs if you are using a processor if hasattr(self.imageInspectorReference, "rawImage"): rawImage = self.imageInspectorReference.rawImage else: rawImage = None return currentAnalyser.run([self.xs, self.ys, self.zs, rawImage], self.physics.variables, self.variablesList, self.calculatedParametersList) def runAnalyser(self): """ if logAnalyserBool is true we perform runAnalyser at the end of _log_fit runAnalyser checks that logAnalyser exists and is a python script with a valid run()function it then performs the run method and passes to the run function: -the image data as a numpy array -the xml variables dictionary -the fitted paramaters -the derived values""" for logAnalyser in self.logAnalysers: if not os.path.isfile(logAnalyser): logger.error( "attempted to runAnalyser but could not find the logAnalyser File: %s" % logAnalyser) return #these will contain the final column names and values finalColumns = [] finalValues = [] #iterate over each selected logAnalyser get the column names and values and add them to the master lists for logAnalyser in self.logAnalysers: directory, module = os.path.split(logAnalyser) module, ext = os.path.splitext(module) if ext != ".py": logger.error("file was not a python module. %s" % logAnalyser) else: columns, values = self.runSingleAnalyser(module) finalColumns.extend(columns) finalValues.extend(values) return finalColumns, finalValues def mostRecentModelFitReport(self): """returns the lmfit fit report of the most recent lmfit model results object""" if self.mostRecentModelResult is not None: return lmfit.fit_report(self.mostRecentModelResult) + "\n\n" else: return "No fit performed" def getCalculatedParameters(self): """useful for print returns tuple list of calculated parameter name and value """ return [(_.name, _.value) for _ in self.calculatedParametersList] def _log_fit(self): if self.logName == "": logger.warning("no log file defined. Will not log") return #generate folders if they don't exist logFolder = os.path.join(self.logDirectory, self.logName) if not os.path.isdir(logFolder): logger.info("creating a new log folder %s" % logFolder) os.mkdir(logFolder) imagesFolder = os.path.join(logFolder, "images") if not os.path.isdir(imagesFolder): logger.info("creating a new images Folder %s" % imagesFolder) os.mkdir(imagesFolder) commentsFile = os.path.join(logFolder, "comments.txt") if not os.path.exists(commentsFile): logger.info("creating a comments file %s" % commentsFile) open(commentsFile, "a+").close() #create a comments file in every folder! firstSequenceCopy = os.path.join(logFolder, "copyOfInitialSequence.ctr") if not os.path.exists(firstSequenceCopy): logger.info("creating a copy of the first sequence %s -> %s" % (self.latestSequence, firstSequenceCopy)) shutil.copy(self.latestSequence, firstSequenceCopy) if self.imageInspectorReference.model.imageMode == "process raw image": #if we are using a processor, save the details of the processor used to the log folder processorParamtersFile = os.path.join(logFolder, "processorOptions.txt") processorPythonScript = os.path.join(logFolder, "usedProcessor.py") #TODO! if not os.path.exists(processorParamtersFile): with open(processorParamtersFile, "a+") as processorParamsFile: string = str(self.imageInspectorReference.model. chosenProcessor) + "\n" string += str(self.imageInspectorReference.model.processor. optionsDict) processorParamsFile.write(string) logger.debug("finished all checks on log folder") #copy current image try: shutil.copy(self.imageInspectorReference.selectedFile, imagesFolder) except IOError as e: logger.error("Could not copy image. Got IOError: %s " % e.message) except Exception as e: logger.error("Could not copy image. Got %s: %s " % (type(e), e.message)) raise e logger.info("copying current image") self.logFile = os.path.join(logFolder, self.logName + ".csv") #analyser logic if self.logAnalyserBool: #run the analyser script as requested logger.info( "log analyser bool enabled... will attempt to run analyser script" ) analyserResult = self.runAnalyser() logger.info("analyser result = %s " % list(analyserResult)) if analyserResult is None: analyserColumnNames = [] analyserValues = [] #analyser failed. continue as if nothing happened else: analyserColumnNames, analyserValues = analyserResult else: #no analyser enabled analyserColumnNames = [] analyserValues = [] if not os.path.exists(self.logFile): variables = [_.name for _ in self.variablesList] calculated = [_.name for _ in self.calculatedParametersList] times = ["datetime", "epoch seconds"] info = ["img file name"] xmlVariables = self.xmlLogVariables columnNames = times + info + variables + calculated + xmlVariables + analyserColumnNames with open( self.logFile, 'ab+' ) as logFile: # note use of binary file so that windows doesn't write too many /r writer = csv.writer(logFile) writer.writerow(columnNames) #column names already exist so... logger.debug("copying current image") variables = [_.calculatedValue for _ in self.variablesList] calculated = [_.value for _ in self.calculatedParametersList] now = time.time() #epoch seconds timeTuple = time.localtime(now) date = time.strftime("%Y-%m-%dT%H:%M:%S", timeTuple) times = [date, now] info = [self.imageInspectorReference.selectedFile] xmlVariables = [ self.physics.variables[varName] for varName in self.xmlLogVariables ] data = times + info + variables + calculated + xmlVariables + analyserValues with open(self.logFile, 'ab+') as logFile: writer = csv.writer(logFile) writer.writerow(data) def _logLastFitButton_fired(self): """logs the fit. User can use this for non automated logging. i.e. log particular fits""" self._log_fit() def _removeLastFitButton_fired(self): """removes the last line in the log file """ logFolder = os.path.join(self.logDirectory, self.logName) self.logFile = os.path.join(logFolder, self.logName + ".csv") if self.logFile == "": logger.warning("no log file defined. Will not log") return if not os.path.exists(self.logFile): logger.error( "cant remove a line from a log file that doesn't exist") with open(self.logFile, 'r') as logFile: lines = logFile.readlines() with open(self.logFile, 'wb') as logFile: logFile.writelines(lines[:-1]) def saveLastFit(self): """saves result of last fit to a txt/csv file. This can be useful for live analysis or for generating sequences based on result of last fit""" try: with open( self.imageInspectorReference.cameraModel + "-" + self.physics.species + "-" + "lastFit.csv", "wb") as lastFitFile: writer = csv.writer(lastFitFile) writer.writerow(["time", time.time()]) for variable in self.variablesList: writer.writerow([variable.name, variable.calculatedValue]) for variable in self.calculatedParametersList: writer.writerow([variable.name, variable.value]) except Exception as e: logger.error("failed to save last fit to text file. message %s " % e.message) def _chooseVariablesButtons_fired(self): self.xmlLogVariables = self.chooseVariables() def _usePreviousFitValuesButton_fired(self): """update the guess initial values with the value from the last fit """ logger.info( "use previous fit values button fired. loading previous initial values" ) self._setInitialValues(self._getCalculatedValues()) def chooseVariables(self): """Opens a dialog asking user to select columns from a data File that has been selected. THese are then returned as a string suitable for Y cols input""" columns = self.physics.variables.keys() columns.sort() values = zip(range(0, len(columns)), columns) checklist_group = traitsui.Group( '10', # insert vertical space traitsui.Label('Select the additional variables you wish to log'), traitsui.UItem('columns', style='custom', editor=traitsui.CheckListEditor(values=values, cols=6)), traitsui.UItem('selectAllButton')) traits_view = traitsui.View(checklist_group, title='CheckListEditor', buttons=['OK'], resizable=True, kind='livemodal') col = ColumnEditor(numberOfColumns=len(columns)) try: col.columns = [ columns.index(varName) for varName in self.xmlLogVariables ] except Exception as e: logger.error( "couldn't selected correct variable names. Returning empty selection" ) logger.error("%s " % e.message) col.columns = [] col.edit_traits(view=traits_view) logger.debug("value of columns selected = %s ", col.columns) logger.debug("value of columns selected = %s ", [columns[i] for i in col.columns]) return [columns[i] for i in col.columns] def _logLibrarianButton_fired(self): """opens log librarian for current folder in logName box. """ logFolder = os.path.join(self.logDirectory, self.logName) if not os.path.isdir(logFolder): logger.error( "cant open librarian on a log that doesn't exist.... Could not find %s" % logFolder) return librarian = plotObjects.logLibrarian.Librarian(logFolder=logFolder) librarian.edit_traits()