Ejemplo n.º 1
0
class itkBinaryImageMorphologyInputSpec(CommandLineInputSpec):
    inFilename = File(argstr='%s',
                      desc="inFilename",
                      exists=True,
                      mandatory=True,
                      position=0)
    fileMode = traits.Str(argstr='%s',
                          desc="fileMode",
                          exists=True,
                          mandatory=True,
                          position=1)
    var1 = traits.String(argstr='%s',
                         desc="var1",
                         exists=True,
                         mandatory=True,
                         position=2)
    var2 = traits.String(argstr='%s',
                         desc="var2",
                         exists=True,
                         mandatory=True,
                         position=3)
    radius = traits.List(argstr='%s',
                         type="traits.Float",
                         sep=",",
                         desc="radius",
                         exists=True,
                         mandatory=True,
                         position=4)
    outFilename = traits.Str(argstr='%s',
                             desc="outFilename",
                             exists=True,
                             mandatory=True,
                             position=5)
Ejemplo n.º 2
0
    def __init__(self, fname=""):

        self.data = eta.Dict()
        self.fname = eta.File()
        self.plotting = eta.String()
        self.open_VERT = eta.Button("Open VERT")
        self.only_I = False
        self.only_dIdV = False
        self.pointers = []
        self.fname = os.getcwdu()
        self.plotting = "V"
class GenerateProjectorCalibration(HasTraits):
    #width = traits.Int
    #height = traits.Int
    display_id = traits.String
    plot = Instance(Component)
    linedraw = Instance(LineSegmentTool)
    viewport_id = traits.String('viewport_0')
    display_mode = traits.Trait('white on black', 'black on white')
    client = traits.Any
    blit_compressed_image_proxy = traits.Any

    set_display_server_mode_proxy = traits.Any

    traits_view = View(
                    Group(
        Item('display_mode'),
        Item('viewport_id'),
                        Item('plot', editor=ComponentEditor(),
                             show_label=False),
                        orientation = "vertical"),
                    resizable=True,
                    )

    def __init__(self,*args,**kwargs):
        display_coords_filename = kwargs.pop('display_coords_filename')
        super( GenerateProjectorCalibration, self ).__init__(*args,**kwargs)

        fd = open(display_coords_filename,mode='r')
        data = pickle.load(fd)
        fd.close()

        self.param_name = 'virtual_display_config_json_string'
        self.fqdn = '/virtual_displays/'+self.display_id + '/' + self.viewport_id
        self.fqpn = self.fqdn + '/' + self.param_name
        self.client = dynamic_reconfigure.client.Client(self.fqdn)

        self._update_image()
        if 1:
            virtual_display_json_str = rospy.get_param(self.fqpn)
            this_virtual_display = json.loads( virtual_display_json_str )

        if 1:
            virtual_display_json_str = rospy.get_param(self.fqpn)
            this_virtual_display = json.loads( virtual_display_json_str )

            all_points_ok = True
            # error check
            for (x,y) in this_virtual_display['viewport']:
                if (x >= self.width) or (y >= self.height):
                    all_points_ok = False
                    break
            if all_points_ok:
                self.linedraw.points = this_virtual_display['viewport']
            # else:
            #     self.linedraw.points = []
            self._update_image()

    def _update_image(self):
        self._image = np.zeros( (self.height, self.width, 3), dtype=np.uint8)
        # draw polygon
        if len(self.linedraw.points)>=3:
            pts = [ (posint(y,self.height-1),posint(x,self.width-1)) for (x,y) in self.linedraw.points]
            mahotas.polygon.fill_polygon(pts, self._image[:,:,0])
            self._image[:,:,0] *= 255
            self._image[:,:,1] = self._image[:,:,0]
            self._image[:,:,2] = self._image[:,:,0]

        # draw red horizontal stripes
        for i in range(0,self.height,100):
            self._image[i:i+10,:,0] = 255

        # draw blue vertical stripes
        for i in range(0,self.width,100):
            self._image[:,i:i+10,2] = 255

        if hasattr(self,'_pd'):
            self._pd.set_data("imagedata", self._image)
        self.send_array()
        if len(self.linedraw.points) >= 3:
            self.update_ROS_params()

    def _plot_default(self):
        self._pd = ArrayPlotData()
        self._pd.set_data("imagedata", self._image)

        plot = Plot(self._pd, default_origin="top left")
        plot.x_axis.orientation = "top"
        img_plot = plot.img_plot("imagedata")[0]

        plot.bgcolor = "white"

        # Tweak some of the plot properties
        plot.title = "Click to add points, press Enter to clear selection"
        plot.padding = 50
        plot.line_width = 1

        # Attach some tools to the plot
        pan = PanTool(plot, drag_button="right", constrain_key="shift")
        plot.tools.append(pan)
        zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
        plot.overlays.append(zoom)

        return plot

    def _linedraw_default(self):
        linedraw = LineSegmentTool(self.plot,color=(0.5,0.5,0.9,1.0))
        self.plot.overlays.append(linedraw)
        linedraw.on_trait_change( self.points_changed, 'points[]')
        return linedraw

    def points_changed(self):
        self._update_image()

    @traits.on_trait_change('display_mode')
    def send_array(self):
        # create an array
        if self.display_mode.endswith(' on black'):
            bgcolor = (0,0,0,1)
        elif self.display_mode.endswith(' on white'):
            bgcolor = (1,1,1,1)

        if self.display_mode.startswith('black '):
            color = (0,0,0,1)
        elif self.display_mode.startswith('white '):
            color = (1,1,1,1)

        fname = tempfile.mktemp('.png')
        try:
            scipy.misc.imsave(fname, self._image )
            image = freemovr_engine.msg.FreemoVRCompressedImage()
            image.format = 'png'
            image.data = open(fname).read()
            self.blit_compressed_image_proxy(image)
        finally:
            os.unlink(fname)

    def get_viewport_verts(self):
        # convert to integers
        pts = [ (posint(x,self.width-1),posint(y,self.height-1)) for (x,y) in self.linedraw.points]
        # convert to list of lists for maximal json compatibility
        return [ list(x) for x in pts ]
Ejemplo n.º 4
0
class DeviceAnalogInState(traits.HasTraits):
    """encapsulate all (relevant) analog input state on the device

    Making these variables a member of their own HasTraits class means
    that updates to the device can be treated in an atomic way.
    """
    # Analog input state
    AIN0_enabled = traits.Bool(False)
    AIN0_name = traits.String("AIN0")
    AIN1_enabled = traits.Bool(False)
    AIN1_name = traits.String("AIN1")
    AIN2_enabled = traits.Bool(True)
    AIN2_name = traits.String("AIN2")
    AIN3_enabled = traits.Bool(False)
    AIN3_name = traits.String("AIN3")
    trigger_device = traits.Instance('DeviceModel',transient=True)

    adc_prescaler = traits.Trait(128.0,{
        128.0:0x07,64.0: 0x06,
        # According to Atmel's at90usb1287 manual, faster than this is
        # too fast to get good measurements with 8MHz crystal.
        ## '32': 0x05,'16': 0x04,'8': 0x03,
        ## '4': 0x02,'2': 0x00, # also 0x01
        })
    downsample_bits = traits.Range(low=0,high=2**5-1,value=0)
    AIN_running = traits.Bool(False)
    sample_rate_total = traits.Property(label='Sample rate (Hz), all channels',
                                        depends_on=['adc_prescaler',
                                                    'trigger_device',
                                                    'downsample_bits'])
    sample_rate_chan = traits.Property(label='each channel',
                                       depends_on=['sample_rate_total',
                                                   'AIN0_enabled','AIN1_enabled',
                                                   'AIN2_enabled','AIN3_enabled',])

    # but useful when plotting/saving data
    Vcc = traits.Float(3.3)

    traits_view = View(Group(Group(Item('AIN_running'),
                                   Item(
        'Vcc',
        tooltip=('This does not set Vcc on the AT90USBKEY. Use to record the '
                 'value of Vcc. (default = 3.3V)')),
                                   orientation='horizontal'),
                                   Group(Item('AIN0_enabled',padding=0),
                                         Item('AIN0_name',padding=0),
                                         Item('AIN1_enabled',padding=0),
                                         Item('AIN1_name',padding=0),
                                         padding=0,
                                         orientation='horizontal'),
                                   Group(Item('AIN2_enabled',padding=0),
                                         Item('AIN2_name',padding=0),
                                         Item('AIN3_enabled',padding=0),
                                         Item('AIN3_name',padding=0),
                                         padding=0,
                                         orientation='horizontal'),
                             Group(Item('adc_prescaler'),
                                   Item('downsample_bits'),
                                   orientation='horizontal'),
                             Group(Item('sample_rate_total',
                                        #show_label=False,
                                        style='readonly',
                                        ),
                                   Item('sample_rate_chan',
                                        #show_label=False,
                                        style='readonly',
                                        ),
                                   orientation='horizontal'),
                             ))

    @traits.cached_property
    def _get_sample_rate_total(self):
        if self.trigger_device is not None:
            input_frequency = self.trigger_device.FOSC/self.adc_prescaler
        else:
            input_frequency = 100*1e3 # fake value
        # from USBKEY datasheet:
        if input_frequency < 50*1e3:
            warnings.warn('ADC sample frequency is too slow to get good sampling')
        if input_frequency > 200*1e3:
            warnings.warn('ADC sample frequency is too fast to get good sampling')
        #print 'input_frequency %.1f (kHz)'%(input_frequency/1000.0,)
        clock_cycles_per_sample = 13.0
        clock_adc = input_frequency/clock_cycles_per_sample
        downsample_factor = self.downsample_bits+1
        downsampled_clock_adc = clock_adc/downsample_factor
        return downsampled_clock_adc

    @traits.cached_property
    def _get_sample_rate_chan(self):
        n_chan = sum(map(int,[self.AIN0_enabled,self.AIN1_enabled,
                              self.AIN2_enabled,self.AIN3_enabled]))
        if n_chan == 0:
            return 0.0
        rate = self.sample_rate_total/float(n_chan)
        return rate
Ejemplo n.º 5
0
class itkConstantImageMathInputSpec(CommandLineInputSpec):
    inFilename = File(argstr='%s', desc = "inFilename", exists = True, mandatory = True, position = 0)
    fileMode = traits.Str(argstr='%s', desc = "fileMode", exists = True, mandatory = True, position = 1)
    value = traits.Int(argstr='%s', desc = "value", exists = True, mandatory = True, position = 2)
    operation = traits.String(argstr='%s', desc = "operation", exists = True, mandatory = True, position = 3)
    outFilename = traits.Str(argstr='%s', desc = "outFilename", exists = True, mandatory = True, position = 4)
Ejemplo n.º 6
0
class Fit(traits.HasTraits):

    name = traits.Str(desc="name of fit")
    function = traits.Str(desc="function we are fitting with all parameters")
    variablesList = traits.List(Parameter)
    calculatedParametersList = traits.List(CalculatedParameter)
    xs = None  # will be a scipy array
    ys = None  # will be a scipy array
    zs = None  # will be a scipy array
    performFitButton = traits.Button("Perform Fit")
    getInitialParametersButton = traits.Button("Guess Initial Values")
    usePreviousFitValuesButton = traits.Button("Use Previous Fit")
    drawRequestButton = traits.Button("Draw Fit")
    setSizeButton = traits.Button("Set Initial Size")
    chooseVariablesButtons = traits.Button("choose logged variables")
    logLibrarianButton = traits.Button("librarian")
    logLastFitButton = traits.Button("log current fit")
    removeLastFitButton = traits.Button("remove last fit")
    autoFitBool = traits.Bool(
        False,
        desc=
        "Automatically perform this Fit with current settings whenever a new image is loaded"
    )
    autoGuessBool = traits.Bool(
        False,
        desc=
        "Whenever a fit is completed replace the guess values with the calculated values (useful for increasing speed of the next fit)"
    )
    autoDrawBool = traits.Bool(
        False,
        desc=
        "Once a fit is complete update the drawing of the fit or draw the fit for the first time"
    )
    autoSizeBool = traits.Bool(
        False,
        desc=
        "If TOF variable is read from latest XML and is equal to 0.11ms (or time set in Physics) then it will automatically update the physics sizex and sizey with the Sigma x and sigma y from the gaussian fit"
    )
    logBool = traits.Bool(
        False, desc="Log the calculated and fitted values with a timestamp")
    logName = traits.String(
        desc="name of the scan - will be used in the folder name")
    logDirectory = os.path.join("\\\\ursa", "AQOGroupFolder",
                                "Experiment Humphry", "Data", "eagleLogs")
    latestSequence = os.path.join("\\\\ursa", "AQOGroupFolder",
                                  "Experiment Humphry",
                                  "Experiment Control And Software",
                                  "currentSequence", "latestSequence.xml")

    logFile = traits.File(desc="file path of logFile")

    logAnalyserBool = traits.Bool(
        False, desc="only use log analyser script when True")
    logAnalysers = [
    ]  #list containing full paths to each logAnalyser file to run
    logAnalyserDisplayString = traits.String(
        desc=
        "comma separated read only string that is a list of all logAnalyser python scripts to run. Use button to choose files"
    )
    logAnalyserSelectButton = traits.Button("sel. analyser",
                                            image='@icons:function_node',
                                            style="toolbar")
    xmlLogVariables = []
    imageInspectorReference = None  #will be a reference to the image inspector
    fitting = traits.Bool(False)  #true when performing fit
    fitted = traits.Bool(
        False)  #true when current data displayed has been fitted
    fitSubSpace = traits.Bool(
        False)  #true when current data displayed has been fitted
    startX = traits.Int
    startY = traits.Int
    endX = traits.Int
    endY = traits.Int
    fittingStatus = traits.Str()
    fitThread = None
    fitTimeLimit = traits.Float(
        10.0,
        desc=
        "Time limit in seconds for fitting function. Only has an effect when fitTimeLimitBool is True"
    )
    fitTimeLimitBool = traits.Bool(
        True,
        desc=
        "If True then fitting functions will be limited to time limit defined by fitTimeLimit "
    )
    physics = traits.Instance(
        physicsProperties.physicsProperties.PhysicsProperties)
    #status strings
    notFittedForCurrentStatus = "Not Fitted for Current Image"
    fittedForCurrentImageStatus = "Fit Complete for Current Image"
    currentlyFittingStatus = "Currently Fitting..."
    failedFitStatus = "Failed to finish fit. See logger"
    timeExceededStatus = "Fit exceeded user time limit"

    lmfitModel = traits.Instance(
        lmfit.Model
    )  #reference to the lmfit model  must be initialised in subclass
    mostRecentModelResult = None  # updated to the most recent ModelResult object from lmfit when a fit thread is performed

    fitSubSpaceGroup = traitsui.VGroup(
        traitsui.Item("fitSubSpace", label="Fit Sub Space", resizable=True),
        traitsui.VGroup(traitsui.HGroup(
            traitsui.Item("startX", resizable=True),
            traitsui.Item("startY", resizable=True)),
                        traitsui.HGroup(traitsui.Item("endX", resizable=True),
                                        traitsui.Item("endY", resizable=True)),
                        visible_when="fitSubSpace"),
        label="Fit Sub Space",
        show_border=True)

    generalGroup = traitsui.VGroup(traitsui.Item("name",
                                                 label="Fit Name",
                                                 style="readonly",
                                                 resizable=True),
                                   traitsui.Item("function",
                                                 label="Fit Function",
                                                 style="readonly",
                                                 resizable=True),
                                   fitSubSpaceGroup,
                                   label="Fit",
                                   show_border=True)

    variablesGroup = traitsui.VGroup(traitsui.Item(
        "variablesList",
        editor=traitsui.ListEditor(style="custom"),
        show_label=False,
        resizable=True),
                                     show_border=True,
                                     label="parameters")

    derivedGroup = traitsui.VGroup(traitsui.Item(
        "calculatedParametersList",
        editor=traitsui.ListEditor(style="custom"),
        show_label=False,
        resizable=True),
                                   show_border=True,
                                   label="derived values")

    buttons = traitsui.VGroup(
        traitsui.HGroup(
            traitsui.Item("autoFitBool", label="Auto fit?", resizable=True),
            traitsui.Item("performFitButton", show_label=False,
                          resizable=True)),
        traitsui.HGroup(
            traitsui.Item("autoGuessBool", label="Auto guess?",
                          resizable=True),
            traitsui.Item("getInitialParametersButton",
                          show_label=False,
                          resizable=True)),
        traitsui.HGroup(
            traitsui.Item("autoDrawBool", label="Auto draw?", resizable=True),
            traitsui.Item("drawRequestButton",
                          show_label=False,
                          resizable=True)),
        traitsui.HGroup(
            traitsui.Item("autoSizeBool", label="Auto size?", resizable=True),
            traitsui.Item("setSizeButton", show_label=False, resizable=True)),
        traitsui.HGroup(
            traitsui.Item("usePreviousFitValuesButton",
                          show_label=False,
                          resizable=True)))

    logGroup = traitsui.VGroup(traitsui.HGroup(
        traitsui.Item("logBool", resizable=True),
        traitsui.Item("chooseVariablesButtons",
                      show_label=False,
                      resizable=True)),
                               traitsui.HGroup(
                                   traitsui.Item("logName", resizable=True)),
                               traitsui.HGroup(
                                   traitsui.Item("removeLastFitButton",
                                                 show_label=False,
                                                 resizable=True),
                                   traitsui.Item("logLastFitButton",
                                                 show_label=False,
                                                 resizable=True)),
                               traitsui.HGroup(
                                   traitsui.Item("logAnalyserBool",
                                                 label="analyser?",
                                                 resizable=True),
                                   traitsui.Item("logAnalyserDisplayString",
                                                 show_label=False,
                                                 style="readonly",
                                                 resizable=True),
                                   traitsui.Item("logAnalyserSelectButton",
                                                 show_label=False,
                                                 resizable=True)),
                               label="Logging",
                               show_border=True)

    actionsGroup = traitsui.VGroup(traitsui.Item("fittingStatus",
                                                 style="readonly",
                                                 resizable=True),
                                   logGroup,
                                   buttons,
                                   label="Fit Actions",
                                   show_border=True)
    traits_view = traitsui.View(traitsui.VGroup(generalGroup, variablesGroup,
                                                derivedGroup, actionsGroup),
                                kind="subpanel")

    def __init__(self, **traitsDict):
        super(Fit, self).__init__(**traitsDict)
        self.startX = 0
        self.startY = 0
        self.lmfitModel = lmfit.Model(self.fitFunc)

    def _set_xs(self, xs):
        self.xs = xs

    def _set_ys(self, ys):
        self.ys = ys

    def _set_zs(self, zs):
        self.zs = zs

    def _fittingStatus_default(self):
        return self.notFittedForCurrentStatus

    def _getInitialValues(self):
        """returns ordered list of initial values from variables List """
        return [_.initialValue for _ in self.variablesList]

    def _getParameters(self):
        """creates an lmfit parameters object based on the user input in variablesList """
        return lmfit.Parameters(
            {_.name: _.parameter
             for _ in self.variablesList})

    def _getCalculatedValues(self):
        """returns ordered list of fitted values from variables List """
        return [_.calculatedValue for _ in self.variablesList]

    def _intelligentInitialValues(self):
        """If possible we can auto set the initial parameters to intelligent guesses user can always overwrite them """
        self._setInitialValues(self._getIntelligentInitialValues())

    def _get_subSpaceArrays(self):
        """returns the arrays of the selected sub space. If subspace is not
        activated then returns the full arrays"""
        if self.fitSubSpace:
            xs = self.xs[self.startX:self.endX]
            ys = self.ys[self.startY:self.endY]
            logger.info("xs array sliced length %s " % (xs.shape))
            logger.info("ys array sliced length %s  " % (ys.shape))
            zs = self.zs[self.startY:self.endY, self.startX:self.endX]
            logger.info("zs sub space array %s,%s " % (zs.shape))

            return xs, ys, zs
        else:
            return self.xs, self.ys, self.zs

    def _getIntelligentInitialValues(self):
        """If possible we can auto set the initial parameters to intelligent guesses user can always overwrite them """
        logger.debug("Dummy function should not be called directly")
        return
        #in python this should be a pass statement. I.e. user has to overwrite this

    def fitFunc(self, data, *p):
        """Function that we are trying to fit to. """
        logger.error("Dummy function should not be called directly")
        return
        #in python this should be a pass statement. I.e. user has to overwrite this

    def _setCalculatedValues(self, modelFitResult):
        """updates calculated values with calculated argument """
        parametersResult = modelFitResult.params
        for variable in self.variablesList:
            variable.calculatedValue = parametersResult[variable.name].value

    def _setCalculatedValuesErrors(self, modelFitResult):
        """given the covariance matrix returned by scipy optimize fit
        convert this into stdeviation errors for parameters list and updated
        the stdevError attribute of variables"""
        parametersResult = modelFitResult.params
        for variable in self.variablesList:
            variable.stdevError = parametersResult[variable.name].stderr

    def _setInitialValues(self, guesses):
        """updates calculated values with calculated argument """
        c = 0
        for variable in self.variablesList:
            variable.initialValue = guesses[c]
            c += 1

    def deriveCalculatedParameters(self):
        """Wrapper for subclass definition of deriving calculated parameters
        can put more general calls in here"""
        if self.fitted:
            self._deriveCalculatedParameters()

    def _deriveCalculatedParameters(self):
        """Should be implemented by subclass. should update all variables in calculate parameters list"""
        logger.error("Should only be called by subclass")
        return

    def _fit_routine(self):
        """This function performs the fit in an appropriate thread and 
        updates necessary values when the fit has been performed"""
        self.fitting = True
        if self.fitThread and self.fitThread.isAlive():
            logger.warning(
                "Fitting is already running. You should wait till this fit has timed out before a new thread is started...."
            )
            #logger.warning("I will start a new fitting thread but your previous thread may finish at some undetermined time. you probably had bad starting conditions :( !")
            return
        self.fitThread = FitThread()  #new fitting thread
        self.fitThread.fitReference = self
        self.fitThread.isCurrentFitThread = True  # user can create multiple fit threads on a particular fit but only the latest one will have an effect in the GUI
        self.fitThread.start()
        self.fittingStatus = self.currentlyFittingStatus

    def _perform_fit(self):
        """Perform the fit using scipy optimise curve fit.
        We must supply x and y as one argument and zs as anothger. in the form
        xs: 0 1 2 0 1 2 0 
        ys: 0 0 0 1 1 1 2
        zs: 1 5 6 1 9 8 2
        Hence the use of repeat and tile in  positions and unravel for zs
        initially xs,ys is a linspace array and zs is a 2d image array
        """
        if self.xs is None or self.ys is None or self.zs is None:
            logger.warning(
                "attempted to fit data but had no data inside the Fit object. set xs,ys,zs first"
            )
            return ([], [])
        params = self._getParameters()
        if self.fitSubSpace:  #fit only the sub space
            #create xs, ys and zs which are appropriate slices of the arrays
            xs, ys, zs = self._get_subSpaceArrays()
        else:  #fit the whole array of data (slower)
            xs, ys, zs = self.xs, self.ys, self.zs
        positions = scipy.array([
            scipy.tile(xs, len(ys)),
            scipy.repeat(ys, len(xs))
        ])  #for creating data necessary for gauss2D function
        if self.fitTimeLimitBool:
            modelFitResult = self.lmfitModel.fit(scipy.ravel(zs),
                                                 positions=positions,
                                                 params=params,
                                                 iter_cb=self.getFitCallback(
                                                     time.time()))
        else:  #no iter callback
            modelFitResult = self.lmfitModel.fit(scipy.ravel(zs),
                                                 positions=positions,
                                                 params=params)
        return modelFitResult

    def getFitCallback(self, startTime):
        """returns the callback function that is called at every iteration of fit to check if it 
        has been running too long"""
        def fitCallback(params, iter, resid, *args, **kws):
            """check the time and compare to start time """
            if time.time() - startTime > self.fitTimeLimit:
                raise FitException("Fit time exceeded user limit")

        return fitCallback

    def _performFitButton_fired(self):
        self._fit_routine()

    def _getInitialParametersButton_fired(self):
        self._intelligentInitialValues()

    def _drawRequestButton_fired(self):
        """tells the imageInspector to try and draw this fit as an overlay contour plot"""
        self.imageInspectorReference.addFitPlot(self)

    def _setSizeButton_fired(self):
        """use the sigmaX and sigmaY from the current fit to overwrite the 
        inTrapSizeX and inTrapSizeY parameters in the Physics Instance"""
        self.physics.inTrapSizeX = abs(self.sigmax.calculatedValue)
        self.physics.inTrapSizeY = abs(self.sigmay.calculatedValue)

    def _getFitFuncData(self):
        """if data has been fitted, this returns the zs data for the ideal
        fitted function using the calculated paramters"""
        positions = [
            scipy.tile(self.xs, len(self.ys)),
            scipy.repeat(self.ys, len(self.xs))
        ]  #for creating data necessary for gauss2D function
        zsravelled = self.fitFunc(positions, *self._getCalculatedValues())
        return zsravelled.reshape(self.zs.shape)

    def _logAnalyserSelectButton_fired(self):
        """open a fast file editor for selecting many files """
        fileDialog = FileDialog(action="open files")
        fileDialog.open()
        if fileDialog.return_code == pyface.constant.OK:
            self.logAnalysers = fileDialog.paths
            logger.info("selected log analysers: %s " % self.logAnalysers)
        self.logAnalyserDisplayString = str(
            [os.path.split(path)[1] for path in self.logAnalysers])

    def runSingleAnalyser(self, module):
        """runs the logAnalyser module calling the run function and returns the 
        columnNames and values as a list"""
        exec("import logAnalysers.%s as currentAnalyser" % module)
        reload(
            currentAnalyser
        )  #in case it has changed..#could make this only when user requests
        #now the array also contains the raw image as this may be different to zs if you are using a processor
        if hasattr(self.imageInspectorReference, "rawImage"):
            rawImage = self.imageInspectorReference.rawImage
        else:
            rawImage = None
        return currentAnalyser.run([self.xs, self.ys, self.zs, rawImage],
                                   self.physics.variables, self.variablesList,
                                   self.calculatedParametersList)

    def runAnalyser(self):
        """ if logAnalyserBool is true we perform runAnalyser at the end of _log_fit
        runAnalyser checks that logAnalyser exists and is a python script with a valid run()function
        it then performs the run method and passes to the run function:
        -the image data as a numpy array
        -the xml variables dictionary
        -the fitted paramaters
        -the derived values"""
        for logAnalyser in self.logAnalysers:
            if not os.path.isfile(logAnalyser):
                logger.error(
                    "attempted to runAnalyser but could not find the logAnalyser File: %s"
                    % logAnalyser)
                return
        #these will contain the final column names and values
        finalColumns = []
        finalValues = []
        #iterate over each selected logAnalyser get the column names and values and add them to the master lists
        for logAnalyser in self.logAnalysers:
            directory, module = os.path.split(logAnalyser)
            module, ext = os.path.splitext(module)
            if ext != ".py":
                logger.error("file was not a python module. %s" % logAnalyser)
            else:
                columns, values = self.runSingleAnalyser(module)
                finalColumns.extend(columns)
                finalValues.extend(values)
        return finalColumns, finalValues

    def mostRecentModelFitReport(self):
        """returns the lmfit fit report of the most recent 
        lmfit model results object"""
        if self.mostRecentModelResult is not None:
            return lmfit.fit_report(self.mostRecentModelResult) + "\n\n"
        else:
            return "No fit performed"

    def getCalculatedParameters(self):
        """useful for print returns tuple list of calculated parameter name and value """
        return [(_.name, _.value) for _ in self.calculatedParametersList]

    def _log_fit(self):

        if self.logName == "":
            logger.warning("no log file defined. Will not log")
            return
        #generate folders if they don't exist
        logFolder = os.path.join(self.logDirectory, self.logName)
        if not os.path.isdir(logFolder):
            logger.info("creating a new log folder %s" % logFolder)
            os.mkdir(logFolder)

        imagesFolder = os.path.join(logFolder, "images")
        if not os.path.isdir(imagesFolder):
            logger.info("creating a new images Folder %s" % imagesFolder)
            os.mkdir(imagesFolder)

        commentsFile = os.path.join(logFolder, "comments.txt")
        if not os.path.exists(commentsFile):
            logger.info("creating a comments file %s" % commentsFile)
            open(commentsFile,
                 "a+").close()  #create a comments file in every folder!

        firstSequenceCopy = os.path.join(logFolder,
                                         "copyOfInitialSequence.ctr")
        if not os.path.exists(firstSequenceCopy):
            logger.info("creating a copy of the first sequence %s -> %s" %
                        (self.latestSequence, firstSequenceCopy))
            shutil.copy(self.latestSequence, firstSequenceCopy)

        if self.imageInspectorReference.model.imageMode == "process raw image":  #if we are using a processor, save the details of the processor used to the log folder
            processorParamtersFile = os.path.join(logFolder,
                                                  "processorOptions.txt")
            processorPythonScript = os.path.join(logFolder,
                                                 "usedProcessor.py")  #TODO!
            if not os.path.exists(processorParamtersFile):
                with open(processorParamtersFile, "a+") as processorParamsFile:
                    string = str(self.imageInspectorReference.model.
                                 chosenProcessor) + "\n"
                    string += str(self.imageInspectorReference.model.processor.
                                  optionsDict)
                    processorParamsFile.write(string)

        logger.debug("finished all checks on log folder")
        #copy current image
        try:
            shutil.copy(self.imageInspectorReference.selectedFile,
                        imagesFolder)
        except IOError as e:
            logger.error("Could not copy image. Got IOError: %s " % e.message)
        except Exception as e:
            logger.error("Could not copy image. Got %s: %s " %
                         (type(e), e.message))
            raise e
        logger.info("copying current image")
        self.logFile = os.path.join(logFolder, self.logName + ".csv")

        #analyser logic
        if self.logAnalyserBool:  #run the analyser script as requested
            logger.info(
                "log analyser bool enabled... will attempt to run analyser script"
            )
            analyserResult = self.runAnalyser()
            logger.info("analyser result = %s " % list(analyserResult))
            if analyserResult is None:
                analyserColumnNames = []
                analyserValues = []
                #analyser failed. continue as if nothing happened
            else:
                analyserColumnNames, analyserValues = analyserResult
        else:  #no analyser enabled
            analyserColumnNames = []
            analyserValues = []

        if not os.path.exists(self.logFile):
            variables = [_.name for _ in self.variablesList]
            calculated = [_.name for _ in self.calculatedParametersList]
            times = ["datetime", "epoch seconds"]
            info = ["img file name"]
            xmlVariables = self.xmlLogVariables
            columnNames = times + info + variables + calculated + xmlVariables + analyserColumnNames
            with open(
                    self.logFile, 'ab+'
            ) as logFile:  # note use of binary file so that windows doesn't write too many /r
                writer = csv.writer(logFile)
                writer.writerow(columnNames)
        #column names already exist so...
        logger.debug("copying current image")
        variables = [_.calculatedValue for _ in self.variablesList]
        calculated = [_.value for _ in self.calculatedParametersList]
        now = time.time()  #epoch seconds
        timeTuple = time.localtime(now)
        date = time.strftime("%Y-%m-%dT%H:%M:%S", timeTuple)
        times = [date, now]
        info = [self.imageInspectorReference.selectedFile]
        xmlVariables = [
            self.physics.variables[varName] for varName in self.xmlLogVariables
        ]
        data = times + info + variables + calculated + xmlVariables + analyserValues

        with open(self.logFile, 'ab+') as logFile:
            writer = csv.writer(logFile)
            writer.writerow(data)

    def _logLastFitButton_fired(self):
        """logs the fit. User can use this for non automated logging. i.e. log
        particular fits"""
        self._log_fit()

    def _removeLastFitButton_fired(self):
        """removes the last line in the log file """
        logFolder = os.path.join(self.logDirectory, self.logName)
        self.logFile = os.path.join(logFolder, self.logName + ".csv")
        if self.logFile == "":
            logger.warning("no log file defined. Will not log")
            return
        if not os.path.exists(self.logFile):
            logger.error(
                "cant remove a line from a log file that doesn't exist")
        with open(self.logFile, 'r') as logFile:
            lines = logFile.readlines()
        with open(self.logFile, 'wb') as logFile:
            logFile.writelines(lines[:-1])

    def saveLastFit(self):
        """saves result of last fit to a txt/csv file. This can be useful for live analysis
        or for generating sequences based on result of last fit"""
        try:
            with open(
                    self.imageInspectorReference.cameraModel + "-" +
                    self.physics.species + "-" + "lastFit.csv",
                    "wb") as lastFitFile:
                writer = csv.writer(lastFitFile)
                writer.writerow(["time", time.time()])
                for variable in self.variablesList:
                    writer.writerow([variable.name, variable.calculatedValue])
                for variable in self.calculatedParametersList:
                    writer.writerow([variable.name, variable.value])
        except Exception as e:
            logger.error("failed to save last fit to text file. message %s " %
                         e.message)

    def _chooseVariablesButtons_fired(self):
        self.xmlLogVariables = self.chooseVariables()

    def _usePreviousFitValuesButton_fired(self):
        """update the guess initial values with the value from the last fit """
        logger.info(
            "use previous fit values button fired. loading previous initial values"
        )
        self._setInitialValues(self._getCalculatedValues())

    def chooseVariables(self):
        """Opens a dialog asking user to select columns from a data File that has
        been selected. THese are then returned as a string suitable for Y cols input"""
        columns = self.physics.variables.keys()
        columns.sort()
        values = zip(range(0, len(columns)), columns)

        checklist_group = traitsui.Group(
            '10',  # insert vertical space
            traitsui.Label('Select the additional variables you wish to log'),
            traitsui.UItem('columns',
                           style='custom',
                           editor=traitsui.CheckListEditor(values=values,
                                                           cols=6)),
            traitsui.UItem('selectAllButton'))

        traits_view = traitsui.View(checklist_group,
                                    title='CheckListEditor',
                                    buttons=['OK'],
                                    resizable=True,
                                    kind='livemodal')

        col = ColumnEditor(numberOfColumns=len(columns))
        try:
            col.columns = [
                columns.index(varName) for varName in self.xmlLogVariables
            ]
        except Exception as e:
            logger.error(
                "couldn't selected correct variable names. Returning empty selection"
            )
            logger.error("%s " % e.message)
            col.columns = []
        col.edit_traits(view=traits_view)
        logger.debug("value of columns selected = %s ", col.columns)
        logger.debug("value of columns selected = %s ",
                     [columns[i] for i in col.columns])
        return [columns[i] for i in col.columns]

    def _logLibrarianButton_fired(self):
        """opens log librarian for current folder in logName box. """
        logFolder = os.path.join(self.logDirectory, self.logName)
        if not os.path.isdir(logFolder):
            logger.error(
                "cant open librarian on a log that doesn't exist.... Could not find %s"
                % logFolder)
            return
        librarian = plotObjects.logLibrarian.Librarian(logFolder=logFolder)
        librarian.edit_traits()