Ejemplo n.º 1
0
    def test_getData_area_cut_date(self):

        # both testfiles have enough rainfall in swath at 0.5 mm threshold and given box
        area=[-15, 5, 15, 20]
        min_rain_swath = 2000
        min_rain_box = 500
        min_tpixel = 2500
        rain_thresh = 0.5

        obj = trmm.ReadWA(test_dir, area=area)

        td=obj.get_data(obj.fpaths[1])
        box = np.where((td['lon'].values > area[0]) & (td['lon'].values < area[2]) & (td['lat'].values > area[1]) & (td['lat'].values < area[3]))
        # files are properly filtered according to the rain/box overlap thresholds
        assert len(box[0]) > min_tpixel
        assert np.sum(td['p'].values[box] > rain_thresh) > min_rain_box

        # use cut on two files
        obj = trmm.ReadWA(test_dir)
        td = obj.get_data(obj.fpaths[0], cut = [8,10])
        assert td['lat'].values[:, 0].max() <= 10
        assert td['lat'].values[:, 0].min() >= 8

        td = obj.get_data(obj.fpaths[1])
        assert td['lat'].values[:, 0].max() >= 10
        assert td['lat'].values[:, 0].min() <= 8

        # get time and via index get same array, cut works the same
        td = obj.get_ddata(2007,8,16,19,16, cut = [8,10])
        assert td['lat'].values[:, 0].max() <= 10
        assert td['lat'].values[:, 0].min() >= 8

        td2 = obj.get_data(obj.fpaths[0], cut = [8, 10])
        assert_array_equal(td2['p'].values, td['p'].values)
        assert_array_equal(td2['flags'].values, td['flags'].values)
Ejemplo n.º 2
0
    def test_trmmReadWA(self):

        obj = trmm.ReadWA(test_dir)
        files = obj.fpaths

        assert files == [
            test_dir+'/2007/08/2A25.20070816.55562.7.gra',
            test_dir+'/2007/08/2A25.20070817.55577.7.gra']

        with self.assertRaises(SystemExit):
            trmm.ReadWA(test_dir, yrange=range(1999,2000))
Ejemplo n.º 3
0
    def test_write_netcdf(self):
        obj = trmm.ReadWA(test_dir)

        with self.assertRaises(OSError):
            da = obj.get_data(obj.fpaths[1], netcdf_path='/does/not/exist/test.nc')

        da = obj.get_data(obj.fpaths[1], netcdf_path= test_write+'/test.nc')
Ejemplo n.º 4
0
    def test_ll_to_MSG_TRMM(self):

        test_dir = '/users/global/cornkle/data/pythonWorkspace/proj_CEH/eod/tests/test_files/trmm'
        obj = trmm.ReadWA(test_dir)
        dat = obj.get_data(obj.fpaths[0], cut=[3, 4])
        lon = dat['lon'].values
        lat = dat['lat'].values

        dir = tm_utils.ll_toMSG(lon, lat)
        assert np.unique(ua.unique_of_pair(dir['x'],
                                           dir['y'])).size == lon.size
Ejemplo n.º 5
0
def netcdf():
    trmm_folder = "/users/global/cornkle/data/OBS/TRMM/trmm_swaths_WA/"
    box = [-11, 9, 11, 21]  # W, S, E, N
    #
    # # make grid
    # # define projection
    # proj = pyproj.Proj('+proj=merc +lat_0=0. +lon_0=0.')
    # # get lower left x,y fr 10W, 4N
    # x, y = pyproj.transform(salem.wgs84, proj, [box[0], box[2]], [box[1], box[3]])
    # dx = 5000  # 5km grid
    # nx, r = divmod(x[1] - x[0], dx)
    # ny, r = divmod(y[1] - y[0], dx)
    # # make salem grid
    # grid = salem.Grid(nxny=(nx, ny), dxdy=(5000, 5000), ll_corner=(x[0], y[0]), proj=proj)

    lsta = xr.open_dataset(constants.LSTA_TESTFILE)
    grid = lsta.salem.grid
    xi, yi = grid.ij_coordinates
    lon, lat = grid.ll_coordinates

    t = trmm.ReadWA(trmm_folder, yrange=YRANGE, area=[box[0], box[1], box[2], box[3]])

    cnt = 0

    # cycle through TRMM dates - only dates tat have a certain number of pixels in llbox are considered      
    for _y, _m, _d, _h, _mi in zip(t.dates.y, t.dates.m, t.dates.d, t.dates.h, t.dates.mi):

        # dummy = np.empty((ny,nx))*-100#np.NAN
        td = t.get_ddata(_y, _m, _d, _h, _mi, cut=[box[1], box[3]])


        date = [pd.datetime(_y, _m, _d, _h, _mi)]
        print(date)

        # ensure minimum trmm rainfall in area
        if len(np.where(td['p'].values > 0)[0]) < 100:  # at least 100 pixel with rainfall
            print('Kickout: TRMM min pixel = 100')
            continue

            # Transform lons, lats to grid
        xt, yt = grid.transform(td['lon'].values.flatten(), td['lat'].values.flatten(), crs=salem.wgs84)

        # Convert for griddata input
        tpoints = np.array((yt, xt)).T
        inter = np.array((np.ravel(yi), np.ravel(xi))).T

        # Interpolate using delaunay triangularization
        dummyt = griddata(tpoints, td['p'].values.flatten(), inter, method='linear')
        outt = dummyt.reshape((grid.ny, grid.nx))

        for nb in range(5):
            boole = np.isnan(outt)
            outt[boole] = -1000
            grad = np.gradient(outt)
            outt[boole] = np.nan
            outt[abs(grad[1]) > 300] = np.nan
            outt[abs(grad[0]) > 300] = np.nan

        if np.nanmin(outt)<0:
            continue
            print('Makes no sense!')

        #     # add MSG
        # # define the "0 lag" frist
        # msg_folder = '/users/global/cornkle/data/OBS/meteosat_SA15'
        # m = msg.ReadMsg(msg_folder)
        # arr = np.array([15, 30, 45, 60, 0])
        # dm = arr - _mi
        # ind = (np.abs(dm)).argmin()
        #
        # dt0 = dm[ind]
        # ndate = date + dt.timedelta(minutes=int(dt0))
        #
        # m.set_date(ndate.year, ndate.month, ndate.day, ndate.hour, ndate.minute)
        #
        # if not m.dpath:
        #     print('Date missing')
        #     out = np.empty_like(outt)
        #     out.fill(np.nan)
        #
        # else:
        #     ml0 = m.get_data(llbox=box)
        #
        #     xm, ym = grid.transform(ml0['lon'].values.flatten(), ml0['lat'].values.flatten(), crs=salem.wgs84)
        #     mpoints = np.array((ym, xm)).T
        #     out = griddata(mpoints, ml0['t'].values.flatten(), inter, method='linear')
        #     out = out.reshape((grid.ny, grid.nx))
        #
        #
        # da = xr.Dataset({'p': (['x', 'y'], outt),
        #                  # 't': (['x', 'y'], out)
        #                  },
        #                 coords={'lon': (['x', 'y'], lon),
        #                         'lat': (['x', 'y'], lat),
        #                         'time': date})

        da = xr.DataArray(outt[None,...],
                          coords={'time': date, 'lat': lat[:,0], 'lon': lon[0,:]},
                          dims=['time', 'lat', 'lon'])  # [np.newaxis, :]
        ds = xr.Dataset({'p': da})


        savefile = '/users/global/cornkle/TRMMfiles/' + date[0].strftime('%Y-%m-%d_%H:%M:%S') + '.nc'
        try:
            os.remove(savefile)
        except OSError:
            pass
        ds.to_netcdf(path=savefile, mode='w')
        print('Saved ' + savefile)

        cnt = cnt + 1

    print('Saved ' + str(cnt) + ' TRMM swaths as netcdf.')
Ejemplo n.º 6
0
def tm_overlap_blobs():

    trmm_folder = "/users/global/cornkle/data/OBS/TRMM/trmm_swaths_WA/"
    msg_folder = '/users/global/cornkle/data/OBS/meteosat_WA30'

    tObj = trmm.ReadWA(trmm_folder, area=AREA, yrange=YRANGE)
    mObj = msg.ReadMsg(msg_folder)

    files = tObj.fpaths
    dates = tObj.dates

    mdic = defaultdict(list)
    mdic_f = defaultdict(list)

    mlon = mObj.lon
    mlat = mObj.lat

    mll = tm_utils.ll_toMSG(mlon, mlat)
    mxy = ua.unique_of_pair(mll['x'], mll['y'])

    cnt = 0
    datess = []

    # cycle through TRMM dates - only dates tat have a certain number of pixels in llbox are considered
    for _y, _m, _d, _h, _mi in zip(dates.y, dates.m, dates.d, dates.h,
                                   dates.mi):

        # set zero shift time for msg
        date = dt.datetime(_y, _m, _d, _h, _mi)

        dt0 = tm_utils.minute_delta(_mi, 30)
        print('TRMM', date, 'dt', dt0, 'MSG',
              date + dt.timedelta(minutes=int(dt0)))
        #time difference max
        # if abs(dt0) > 4:
        #     continue

        ndate = date + dt.timedelta(minutes=int(dt0))
        print('TRMM', date, 'MSG', ndate)

        mObj.set_date(ndate.year, ndate.month, ndate.day, ndate.hour,
                      ndate.minute)

        if not (mObj.tpath or mObj.bpath):
            print('No table or blob file, continue')
            continue

        dff = mObj.get_table()
        dstring = str(ndate.year) + '-' + str(
            ndate.month).zfill(2) + '-' + str(ndate.day).zfill(2) + ' ' + str(
                ndate.hour).zfill(2) + ':' + str(
                    ndate.minute).zfill(2) + ':' + str(00).zfill(2)
        if not dstring in dff['Date'].as_matrix():
            continue

        sel = dff.loc[dff['Date'] == dstring]
        big = sel.loc[sel['Area'] >= 25000]  # only mcs over 25.000km2
        print('big area', big['Area'].values)
        if big.empty:
            continue

        td = tObj.get_ddata(_y, _m, _d, _h, _mi, cut=[0, 22])
        try:
            if not td:
                print('TRMM problem')
                continue
        except:
            pass

        md = mObj.get_data(llbox=AREA)

        md_blob = mObj.get_blob(llbox=AREA)

        blobs = md_blob.values

        blat = big['Lat'].values.tolist()
        blon = big['Lon'].values.tolist()
        barea = big['Area'].values.tolist()
        btemp = big['Temp'].values.tolist()

        for lon, lat, bt, ba in zip(blon, blat, btemp, barea):

            mcs = tm_utils.ll_toMSG(lon, lat)
            point = np.where((mll['x'] == mcs['x']) & (mll['y'] == mcs['y']))

            # if not all(point):
            #     if mcs['x'] > mll['x'].max() or mcs['x'] < mll['x'].min() or mcs['y'] > mll['y'].max() or mcs['y'] < mll['y'].min():
            #         continue
            #     else:
            #         print('Point not found but should be in!')
            #         continue

            # blob number

            nb = blobs[point]
            # if we find a 0 instead of a blob, continue
            if not nb[0]:
                continue

            isblob = np.where(blobs == nb)

            if isblob[0].size < 2500:
                print('Ooops blob too small? This should not happen')
                continue

            # lat lons of complete blob
            blats = md['lat'].values[isblob]
            blons = md['lon'].values[isblob]

            # msg indices of complete blob
            my = mll['y'][isblob]
            mx = mll['x'][isblob]

            blatmin, blatmax = blats.min(), blats.max()
            blonmin, blonmax = blons.min(), blons.max()

            # whole blob must be inside TRMM. Attention: This draws a rectangle.
            # There is still a chance that blob is not in TRMM. Checked later!

            if not (td['lon'].values.min() <
                    blonmin) & (td['lon'].values.max() > blonmax):
                continue
            if not (td['lat'].values.min() <
                    blatmin) & (td['lat'].values.max() > blatmax):
                continue

            ll_trmm = tm_utils.ll_toMSG(td['lon'].values, td['lat'].values)

            tx = ll_trmm['x']
            ty = ll_trmm['y']

            mpair = ua.unique_of_pair(mx, my)
            tpair = ua.unique_of_pair(tx, ty)
            #Do we need to do it that way?

            inter = np.in1d(tpair, mpair)  # returns false and true, whole grid
            inter_rev = np.in1d(
                mpair, tpair.flat[inter]
            )  # Attention: this leaves out meteosat cells where no closest TRMM cell (since TRMM is coarser!)

            # have at least 500 pixels shared for MCS between TRMM and MSG
            if sum(inter) < 500:
                continue

            print(_y, _m, _d, _h, _mi)

            bprcp = td['p'].values.flat[inter]
            bflags = td['flags'].values.flat[inter]
            mtt = md['t'].values[isblob].flat[inter_rev]

            # we need same number of TRMM and MSG per plot to do the masking
            if not bprcp.size == mtt.size:
                print('Tprcp and MSGT not same, someting wrong!')
                continue

            # rtest = np.copy(td['p'].values)  # check the TRMM pixels identified
            # rtest.flat[inter] = 1500  # np.where(inter)
            #
            #
            # maskr = np.zeros_like(md['t'].values)
            # maskr[isblob] = 1000
            # # np.where(maskr>999)
            #
            # mxinter = np.in1d(mxy, mpair[inter_rev])
            # maskrr = np.zeros_like(md['t'].values)
            # maskrr.flat[mxinter] = 1100
            #
            # plt.figure()
            # ax = plt.axes(projection=ccrs.PlateCarree())
            #
            # plt.contourf(mlon, mlat, maskr,
            #              transform=ccrs.PlateCarree())  # green, MSG blob
            # plt.contourf(td['lon'].values, td['lat'].values, rtest, levels=np.arange(1300, 1600, 100),
            #              transform=ccrs.PlateCarree())  # identified TRMM pixel
            # #Identified MSG temperatures, problem: only nearest to TRMM, omits MSG pixels
            # plt.contourf(mlon, mlat, maskrr, levels=np.arange(1097, 1099, 1),
            #              transform=ccrs.PlateCarree())  # green, MSG blob
            # ax.coastlines()

            if np.count_nonzero(bprcp) < 50:
                continue

            mask = tm_utils.getTRMMconv(bflags)  # filter for convective rain
            mask = np.array(mask)

            smask = tm_utils.getTRMMstrat(bflags)  # filter for convective rain
            smask = np.array(smask)

            nz_bprcp = np.sum(bprcp > 0.1)

            tall = np.nanmean(mtt[np.isfinite(bprcp)])

            # remove all these zero rainfall from blob
            bprcpNZ = bprcp[bprcp > 0.1]
            mttNZ = mtt[bprcp > 0.1]
            flagsNZ = bflags[bprcp > 0.1]
            maskNZ = tm_utils.getTRMMconv(
                flagsNZ)  # list of 0 and 1, flattened!
            smaskNZ = tm_utils.getTRMMstrat(
                flagsNZ)  # list of 0 and 1, flattened!

            if sum(maskNZ) < 2:
                continue
            datess.append(
                (_y, _m, _d, _h, _mi, ba, td['lon'].values.min(),
                 td['lon'].values.max(), td['lat'].values.min(),
                 td['lat'].values.max(), blonmin, blonmax, blatmin, blatmax))

            pm = np.nanmean(bprcpNZ)
            tm = np.nanmean(mttNZ)

            ppm = np.percentile(bprcpNZ, 98)
            pmax = np.nanmax(bprcp)
            pi = float(np.sum(bprcpNZ > 30)) / float(bprcpNZ.size)

            mdic['p'].append(pm)  # prcp mean of every MCS (no zero)
            mdic['pp'].append(ppm)  # value of 98 percentile of MCS (no zero)
            mdic['rain'].append(bprcpNZ)  # whole rainfall field, no sum
            mdic['pmax'].append(pmax)  # maximum pcp in MCS
            mdic['pi'].append(pi)  # share of > 30mmh pixel of > 0 pixel
            mdic['t'].append(tm)  # T where PCP > 0 and overlap
            mdic['tall'].append(
                tall)  # T where cloud and TRMM valid (incl 0 rain)
            mdic['hod'].append(_h)  # hour of day for image
            mdic['yr'].append(_y)  # year for image
            mdic['mon'].append(_m)  # month for image
            mdic['lat'].append(lat)
            mdic['lon'].append(lon)
            mdic['tpixel_nzero'].append(
                nz_bprcp)  # nb pixel of MCS for PCP > 0
            mdic['tpixel'].append(bprcp.size)  # nb pixel of MCS including 0
            mdic['tpixel_conv'].append(sum(mask))  # number convective pixel
            mdic['tpixel_strat'].append(sum(smask))  # number stratiform pixel
            mdic['tpixel_zero'].append(np.size(bprcp) -
                                       np.size(nz_bprcp))  # number zero pixel
            mdic['twhole'].append(bt)
            mdic['area'].append(isblob[0].size)

            print('Passed flag filter')

            # check for at least 500 TRMM pixels in MSG above 0 rain
            # if np.count_nonzero(bprcp) < 500:
            #    continue

            pc = np.nanmean(bprcpNZ.flat[np.where(maskNZ)])
            tc = np.nanmean(mttNZ.flat[np.where(maskNZ)])
            pic = float(np.greater(bprcpNZ.flat[np.where(maskNZ)],
                                   30.).sum()) / float(sum(maskNZ))
            ppc = np.percentile(bprcpNZ.flat[np.where(maskNZ)], 98)
            pmaxc = bprcpNZ.flat[np.where(maskNZ)].max()

            #  print 'Nb', nb
            mdic_f['pconv'].append(pc)
            mdic_f['piconv'].append(pic)
            mdic_f['ppconv'].append(ppc)
            mdic_f['pmaxconv'].append(pmaxc)
            mdic_f['tconv'].append(tc)
            mdic_f['tnfconv'].append(tm)
            mdic_f['hod'].append(_h)
            mdic_f['yr'].append(_y)
            mdic_f['mon'].append(_m)
            mdic_f['lat'].append(lat)
            mdic_f['lon'].append(lon)
            mdic_f['tpixel_convNZ'].append(sum(maskNZ))
            mdic_f['tpixel_stratNZ'].append(sum(smaskNZ))
            cnt = cnt + 1
            print(cnt)

    myDicts = [mdic, mdic_f]
    for d in datess:
        print(d)

    pkl.dump(
        myDicts,
        open('/users/global/cornkle/data/OBS/test/c_paper_rainfield.p', 'wb')
    )  # MSG_TRMM_temp_pcp_300px'+str(yrange[0])+'-'+str(yrange[-1])+'_new.p', 'wb'))
    print('Saved ' + 'MSG_TRMM_temp_pcp_' + str(YRANGE[0]) + '-' +
          str(YRANGE[-1]) + '_new.p with ' + str(cnt) + ' MCSs')
Ejemplo n.º 7
0
def saveMCS():
    trmm_folder = "/users/global/cornkle/data/OBS/TRMM/trmm_swaths_WA/"
    msg_folder = '/users/global/cornkle/data/OBS/meteosat_WA30'

    t = trmm.ReadWA(trmm_folder, yrange=YRANGE, area=[-15, 4, 20, 25])  # (ll_lon, ll_lat, ur_lon, ur_lat) define initial TRMM box and scan for swaths in that box
    m = msg.ReadMsg(msg_folder)

    cnt = 0

    # minute array to find closest MSG minute
    arr = np.array([15, 30, 45, 60, 0])

    # loop through TRMM dates - only dates that have a certain number of pixels in llbox are considered
    for _y, _m, _d, _h, _mi in zip(t.dates.y, t.dates.m, t.dates.d, t.dates.h, t.dates.mi):

        tdic = t.get_ddata(_y, _m, _d, _h, _mi, cut=[3,26]) # cut TRMM data at lower/upper lat
        #get value of closest minute
        dm = arr - _mi
        dm = dm[dm<0]
        try:
            ind = (np.abs(dm)).argmin()
        except ValueError:
            continue

        # set smallest lag time for msg
        date = dt.datetime(_y, _m, _d, _h, _mi)

        dt0 = dm[ind]
        ndate = date + dt.timedelta(minutes=int(dt0))
        m.set_date(ndate.year, ndate.month, ndate.day, ndate.hour, ndate.minute)
        mdic = m.get_data(llbox=[tdic['lon'].values.min(),  tdic['lat'].values.min(), tdic['lon'].values.max(),tdic['lat'].values.max()])

        # check whether date is completely missing or just 30mins interval exists
        if not mdic:
            dm = np.delete(dm, np.argmin(np.abs(dm)), axis=0)
            # try second closest minute
            try:
                dummy = np.min(np.abs(dm))> 15
            except ValueError:
                continue
            if dummy:
                print('Date missing')
                continue
            ind = (np.abs(dm)).argmin()
            dt0 = dm[ind]
            ndate = date + dt.timedelta(minutes=int(dt0))
            m.set_date(ndate.year, ndate.month, ndate.day, ndate.hour, ndate.minute)
            mdic = m.get_data(llbox=[tdic['lon'].values.min(), tdic['lat'].values.min(), tdic['lon'].values.max(),
                                     tdic['lat'].values.max()])
            if not mdic:
                print('Date missing')
                continue

        print('TRMM:', date, 'MSG:', ndate.year, ndate.month, ndate.day, ndate.hour, ndate.minute )

        lon1 = mdic['lon'].values # MSG coords
        lat1 = mdic['lat'].values
        mdic['t'].values[mdic['t'].values >= -10] = 0  # T threshold -10 for clouds
        ### filter minimum cloud size
        labels, numL = label(mdic['t'].values)
        u, inv = np.unique(labels, return_inverse=True)
        n = np.bincount(inv)
        goodinds = u[n > 39]  # defines minimum MCS size e.g. 9x39 ~ 350km2
        print(goodinds) # indices of clouds of "good size"

        if not sum(goodinds) > 0:
            continue

        for gi in goodinds:
            if gi == 0:  # index 0 is always background, ignore!
                continue

            inds = np.where(labels == gi) # position of cloud

            # cut a box for every single blob (cloud) from msg - get min max lat lon of the blob, cut upper lower from TRMM to match blob
            latmax, latmin = lat1[inds].max(), lat1[inds].min()
            lonmax, lonmin = lon1.values[inds].max(), lon1[inds].min()
            mmeans = np.percentile(mdic['t'].values[inds], 90)
            td = t.get_ddata(_y, _m, _d, _h, _mi, cut=[latmin - 1, latmax + 1]) # for each cloud, cut TRMM swath

            dt0 = dm[ind]

            ml0 = m.get_data(llbox=[lonmin - 1, latmin - 1, lonmax + 1, latmax + 1]) # cut cloud box in MSG
            if not ml0:
                continue

            #make salem grid
            grid = u_grid.make(ml0['lon'].values, ml0['lat'].values,5000)  # 5km regular grid from lat/lon coords
            lon, lat = grid.ll_coordinates # 5km grid lat/lon coordinates

            # interpolate TRMM and MSG to 5km common grid
            inter, mpoints = u_grid.griddata_input(ml0['lon'].values, ml0['lat'].values,grid)
            inter, tpoints = u_grid.griddata_input(td['lon'].values, td['lat'].values, grid)

            # Interpolate TRMM using delaunay triangularization
            try:
                dummyt = griddata(tpoints, td['p'].values.flatten(), inter, method='linear')
            except ValueError:
                continue
            outt = dummyt.reshape((grid.ny, grid.nx))

            if np.sum(np.isfinite(outt)) < 5:  # at least 5 valid pixel
                print('Kickout: TRMM min pixel  < 5')
                continue

            # Interpolate TRMM flags USING NEAREST
            dummyf = griddata(tpoints, td['flags'].values.flatten(), inter, method='nearest')
            outf = dummyf.reshape((grid.ny, grid.nx))
            outf=outf.astype(np.float)
            isnot = np.isnan(outt)
            outf[isnot]=np.nan

            ##remove artefact edges of interpolated TRMM
            for nb in range(5):
                boole = np.isnan(outt)
                outt[boole] = -1000
                grad = np.gradient(outt)
                outt[boole] = np.nan
                outt[abs(grad[1]) > 300] = np.nan
                outt[abs(grad[0]) > 300] = np.nan
                outf[abs(grad[1]) > 300] = np.nan
                outf[abs(grad[0]) > 300] = np.nan

            #get convective rainfall only
            outff = tm_utils.getTRMMconv(outf) ## from TRMM flags, get positions of convective rain
            outk = np.zeros_like(outt)
            outk[np.where(outff)]=outt[np.where(outff)]

            # Interpolate MSG using delaunay triangularization
            dummy = griddata(mpoints, ml0['t'].values.flatten(), inter, method='linear')
            dummy = dummy.reshape((grid.ny, grid.nx))
            outl = np.full_like(dummy, np.nan)
            xl, yl = grid.transform(lon1[inds], lat1[inds], crs=salem.wgs84, nearest=True, maskout=True)
            outl[yl.compressed(), xl.compressed()] = dummy[yl.compressed(), xl.compressed()]

            # TODO #### SHIFTING WITH RESPECT TO MIN T / MAX P - search for Pmax within 20km from Tmin, shift TRMM image
            #
            # tmin = np.argmin(outl)
            # pmax =
            #
            # dist =
            #

            tmask = np.isfinite(outt)
            mmask = np.isfinite(outl)
            mask2 = np.isfinite(outl[tmask])

            #last check for min area, crazy rainfall or crazy cloud size
            if (sum(mmask.flatten())*25 < 350) or (outt.max()>200) or (sum(mmask.flatten())*25 > 1500000):
                continue

            if sum(mask2.flatten()) < 5:  # Check minimum overlap between TRMM swath and MSG cloud
                print('Kickout: TRMM MSG overlap less than 3pix of cloud area')
                continue

            print('Hit:', gi)

            da = xr.Dataset({'p': (['x', 'y'], outt),  # rainfall field
                             'pconv': (['x', 'y'], outk), # convective rainfall
                             't_lag0': (['x', 'y'], dummy), # full T image in cutout region
                             'tc_lag0': (['x', 'y'], outl), # cloud area only
                             },
                            coords={'lon': (['x', 'y'], lon),
                                    'lat': (['x', 'y'], lat),
                                    'time': date})
            da.attrs['lag0'] = dt0  # lag in minutes between TRMM / MSG
            da.attrs['meanT'] = np.mean(outl[mmask])  # cloud mean T
            da.attrs['T90perc'] = mmeans # cloud 90perc T
            da.attrs['meanT_cut'] = np.mean(outl[tmask][mask2]) # cloud mean T in TRMM region
            da.attrs['area'] = sum(mmask.flatten()) # total cloud area
            da.attrs['area_cut'] = sum(mask2)  # cloud area overlapping with TRMM
            da.close()
            savefile = '/users/global/cornkle/MCSfiles/WA15_big_-40_15W-20E_zR/' + date.strftime('%Y-%m-%d_%H:%M:%S') + '_' + str(gi) + '.nc'
            try:
                os.remove(savefile)
            except OSError:
                pass
            da.to_netcdf(path=savefile, mode='w')
            print('Saved ' + savefile)

            cnt = cnt + 1

    print('Saved ' + str(cnt) + ' TRMM/MSG merged MCSs as netcdf.')