def test_qa(caplog): caplog.set_level(logging.CRITICAL) set_all_seeds(seed=42) device, n_gpu = initialize_device_settings(use_cuda=False) batch_size = 2 n_epochs = 1 evaluate_every = 4 base_LM_model = "bert-base-cased" tokenizer = Tokenizer.load(pretrained_model_name_or_path=base_LM_model, do_lower_case=False) label_list = ["start_token", "end_token"] processor = SquadProcessor(tokenizer=tokenizer, max_seq_len=20, doc_stride=10, max_query_length=6, train_filename="train-sample.json", dev_filename="dev-sample.json", test_filename=None, data_dir="samples/qa", label_list=label_list, metric="squad") data_silo = DataSilo(processor=processor, batch_size=batch_size) language_model = LanguageModel.load(base_LM_model) prediction_head = QuestionAnsweringHead(layer_dims=[768, len(label_list)]) model = AdaptiveModel( language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm_output_types=["per_token"], device=device, ) optimizer, warmup_linear = initialize_optimizer( model=model, learning_rate=1e-5, warmup_proportion=0.2, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, ) trainer = Trainer( optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, warmup_linear=warmup_linear, evaluate_every=evaluate_every, device=device, ) model = trainer.train(model) save_dir = "testsave/qa" model.save(save_dir) processor.save(save_dir)
def train_on_split(silo_to_use, n_fold): logger.info( f"############ Crossvalidation: Fold {n_fold} ############") # fine-tune pre-trained question-answering model model = AdaptiveModel.convert_from_transformers( lang_model, device=device, task_type="question_answering") model.connect_heads_with_processor(data_silo.processor.tasks, require_labels=True) # If positive, thjs will boost "No Answer" as prediction. # If negative, this will prevent the model from giving "No Answer" as prediction. model.prediction_heads[0].no_ans_boost = no_ans_boost # Number of predictions the model will make per Question. # The multiple predictions are used for evaluating top n recall. model.prediction_heads[0].n_best = accuracy_at # # or train question-answering models from scratch # # Create an AdaptiveModel # # a) which consists of a pretrained language model as a basis # language_model = LanguageModel.load(lang_model) # # b) and a prediction head on top that is suited for our task => Question-answering # prediction_head = QuestionAnsweringHead(no_ans_boost=no_ans_boost, n_best=accuracy_at) # model = AdaptiveModel( # language_model=language_model, # prediction_heads=[prediction_head], # embeds_dropout_prob=0.1, # lm_output_types=["per_token"], # device=device,) # Create an optimizer model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=learning_rate, device=device, n_batches=len(silo_to_use.loaders["train"]), n_epochs=n_epochs, use_amp=use_amp) # Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time # Also create an EarlyStopping instance and pass it on to the trainer trainer = Trainer(model=model, optimizer=optimizer, data_silo=silo_to_use, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device, evaluator_test=False) # train it trainer.train() return trainer.model
def distilbert_squad(request): set_all_seeds(seed=42) device, n_gpu = initialize_device_settings(use_cuda=False) batch_size = 2 n_epochs = 1 evaluate_every = 4 base_LM_model = "distilbert-base-uncased" tokenizer = Tokenizer.load(pretrained_model_name_or_path=base_LM_model, do_lower_case=True, use_fast=request.param) label_list = ["start_token", "end_token"] processor = SquadProcessor(tokenizer=tokenizer, max_seq_len=20, doc_stride=10, max_query_length=6, train_filename="train-sample.json", dev_filename="dev-sample.json", test_filename=None, data_dir=Path("samples/qa"), label_list=label_list, metric="squad") data_silo = DataSilo(processor=processor, batch_size=batch_size, max_processes=1) language_model = LanguageModel.load(base_LM_model) prediction_head = QuestionAnsweringHead() model = AdaptiveModel( language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm_output_types=["per_token"], device=device, ) model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=2e-5, #optimizer_opts={'name': 'AdamW', 'lr': 2E-05}, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, device=device) trainer = Trainer(model=model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device) trainer.train() return model, processor
def predict_with_targets( cls, splits: Splits, task_data: Dict[str, Any]) -> Dict[str, Tuple[Sequences, Sequences]]: params: Params = task_data["params"] data_silo, farm_data = build_data_silo(params, splits, task_data["processor"]) set_all_seeds(seed=42) device, n_gpu = initialize_device_settings(use_cuda=True) evaluate_every = 400 lr_schedule, model, optimizer = build_model( len(data_silo.loaders["train"]), device, params.n_epochs, task_data) trainer = Trainer( model=model, optimizer=optimizer, data_silo=data_silo, epochs=params.n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device, ) trainer.train() # 8. Hooray! You have a model. Store it: # save_dir = "saved_models/bert-german-ner-tutorial" # model.save(save_dir) # processor.save(save_dir) inferencer = Inferencer( model, task_data["processor"], task_type="ner", batch_size=16, num_processes=8, gpu=True, ) out = { split_name: predict_iob(inferencer, split_name, split_data) for split_name, split_data in farm_data.items() } return out
def train_on_split(silo_to_use, n_fold, save_dir, dev): # Create an AdaptiveModel # a) which consists of a pretrained language model as a basis language_model = LanguageModel.load(lang_model) # b) and a prediction head on top that is suited for our task => Text classification prediction_head = MultiLabelTextClassificationHead( # there is still an error with class weights ... # class_weights=data_silo.calculate_class_weights(task_name="text_classification"), num_labels=len(label_list)) model = AdaptiveModel( language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.2, lm_output_types=["per_sequence"], device=dev) # Create an optimizer model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=0.5e-5, device=dev, n_batches=len(silo_to_use.loaders["train"]), n_epochs=n_epochs) # Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time # Also create an EarlyStopping instance and pass it on to the trainer save_dir = Path(str(save_dir) + f"-{n_fold}") # unfortunately, early stopping is still not working earlystopping = EarlyStopping( metric="f1_macro", mode="max", save_dir=save_dir, # where to save the best model patience=5 # number of evaluations to wait for improvement before terminating the training ) trainer = Trainer(model=model, optimizer=optimizer, data_silo=silo_to_use, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=dev, evaluator_test=False, #early_stopping=earlystopping) ) # train it trainer.train() trainer.model.save(save_dir) return trainer.model
def doc_classifcation(): device, n_gpu = initialize_device_settings(use_cuda=True, use_amp=use_amp) tokenizer = AutoTokenizer.from_pretrained(lang_model, strip_accents=False) #tokenizer = Tokenizer.load( # pretrained_model_name_or_path=lang_model, # do_lower_case=do_lower_case) processor = TextClassificationProcessor(tokenizer=tokenizer, max_seq_len=128, data_dir=Path("./data/germeval18"), label_list=label_list, metric=metric, dev_filename="test.tsv", # we want to evaluate against test label_column_name="coarse_label", ) data_silo = DataSilo( processor=processor, batch_size=batch_size) language_model = LanguageModel.load(lang_model) prediction_head = TextClassificationHead( class_weights=data_silo.calculate_class_weights(task_name="text_classification"), num_labels=len(label_list)) model = AdaptiveModel( language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm_output_types=["per_sequence"], device=device) model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=3e-5, device=device, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, use_amp=use_amp) earlystopping = EarlyStopping( metric=metric, mode="max", #save_dir=Path("./saved_models"), patience=3 ) trainer = Trainer( model=model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, early_stopping=earlystopping, device=device) trainer.train() return earlystopping.best_so_far
def train_from_scratch(): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) ml_logger = MLFlowLogger(tracking_uri="") ml_logger.init_experiment(experiment_name="from_scratch", run_name="debug") ######################### ######## Settings ######################## set_all_seeds(seed=39) device, n_gpu = initialize_device_settings(use_cuda=True) evaluate_every = 5000 vocab_size = 30522 # dev_filename = None save_dir = Path("saved_models/train_from_scratch") n_epochs = 10 learning_rate = 1e-4 warmup_proportion = 0.05 batch_size = 16 # (probably only possible via gradient accumulation steps) max_seq_len = 64 data_dir = Path("data/lm_finetune_nips") train_filename = "train.txt" dev_filename = "dev.txt" # 1.Create a tokenizer tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset processor = BertStyleLMProcessor( data_dir=data_dir, tokenizer=tokenizer, max_seq_len=max_seq_len, train_filename=train_filename, dev_filename=dev_filename, test_filename=None, ) # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and # calculates a few descriptive statistics of our datasets stream_data_silo = StreamingDataSilo(processor=processor, batch_size=batch_size) # 4. Create an AdaptiveModel # a) which consists of a pretrained language model as a basis language_model = LanguageModel.from_scratch("bert", vocab_size) # b) and *two* prediction heads on top that are suited for our task => Language Model finetuning lm_prediction_head = BertLMHead(768, vocab_size) next_sentence_head = NextSentenceHead([768, 2], task_name="nextsentence") model = AdaptiveModel( language_model=language_model, prediction_heads=[lm_prediction_head, next_sentence_head], embeds_dropout_prob=0.1, lm_output_types=["per_token", "per_sequence"], device=device, ) # 5. Create an optimizer model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=learning_rate, schedule_opts={ "name": "LinearWarmup", "warmup_proportion": warmup_proportion }, n_batches=len(stream_data_silo.get_data_loader("train")), n_epochs=n_epochs, device=device, grad_acc_steps=8, ) # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time trainer = Trainer.create_or_load_checkpoint( model=model, optimizer=optimizer, data_silo=stream_data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device, grad_acc_steps=8, checkpoint_root_dir=Path( "saved_models/train_from_scratch/checkpoints"), ) # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai trainer.train() # 8. Hooray! You have a model. Store it: model.save(save_dir) processor.save(save_dir)
def doc_classification_with_earlystopping(): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO) ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/") # for local logging instead: # ml_logger = MLFlowLogger(tracking_uri="logs") ml_logger.init_experiment(experiment_name="Public_FARM", run_name="DocClassification_ES_f1_1") ########################## ########## Settings ########################## set_all_seeds(seed=42) use_amp = None device, n_gpu = initialize_device_settings(use_cuda=True) n_epochs = 20 batch_size = 32 evaluate_every = 100 lang_model = "bert-base-german-cased" do_lower_case = False # 1.Create a tokenizer tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model, do_lower_case=do_lower_case) # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset # Here we load GermEval 2018 Data automaticaly if it is not available. # GermEval 2018 only has train.tsv and test.tsv dataset - no dev.tsv # The processor wants to know the possible labels ... label_list = ["OTHER", "OFFENSE"] # The evaluation on the dev-set can be done with one of the predefined metrics or with a # metric defined as a function from (preds, labels) to a dict that contains all the actual # metrics values. The function must get registered under a string name and the string name must # be used. def mymetrics(preds, labels): acc = simple_accuracy(preds, labels) f1other = f1_score(y_true=labels, y_pred=preds, pos_label="OTHER") f1offense = f1_score(y_true=labels, y_pred=preds, pos_label="OFFENSE") f1macro = f1_score(y_true=labels, y_pred=preds, average="macro") f1micro = f1_score(y_true=labels, y_pred=preds, average="macro") return { "acc": acc, "f1_other": f1other, "f1_offense": f1offense, "f1_macro": f1macro, "f1_micro": f1micro } register_metrics('mymetrics', mymetrics) metric = 'mymetrics' processor = TextClassificationProcessor( tokenizer=tokenizer, max_seq_len=64, data_dir=Path("../data/germeval18"), label_list=label_list, metric=metric, label_column_name="coarse_label") # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets data_silo = DataSilo(processor=processor, batch_size=batch_size) # 4. Create an AdaptiveModel # a) which consists of a pretrained language model as a basis language_model = LanguageModel.load(lang_model) # b) and a prediction head on top that is suited for our task => Text classification prediction_head = TextClassificationHead( num_labels=len(label_list), class_weights=data_silo.calculate_class_weights( task_name="text_classification")) model = AdaptiveModel(language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.2, lm_output_types=["per_sequence"], device=device) # 5. Create an optimizer model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=0.5e-5, device=device, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, use_amp=use_amp) # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time # Also create an EarlyStopping instance and pass it on to the trainer # An early stopping instance can be used to save the model that performs best on the dev set # according to some metric and stop training when no improvement is happening for some iterations. earlystopping = EarlyStopping( metric="f1_offense", mode= "max", # use the metric from our own metrics function instead of loss # metric="f1_macro", mode="max", # use f1_macro from the dev evaluator of the trainer # metric="loss", mode="min", # use loss from the dev evaluator of the trainer save_dir=Path("saved_models/bert-german-doc-tutorial-es" ), # where to save the best model patience= 5 # number of evaluations to wait for improvement before terminating the training ) trainer = Trainer(model=model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device, early_stopping=earlystopping) # 7. Let it grow trainer.train() # 8. Hooray! You have a model. # NOTE: if early stopping is used, the best model has been stored already in the directory # defined with the EarlyStopping instance # The model we have at this moment is the model from the last training epoch that was carried # out before early stopping terminated the training save_dir = Path("saved_models/bert-german-doc-tutorial") model.save(save_dir) processor.save(save_dir) # 9. Load it & harvest your fruits (Inference) basic_texts = [ { "text": "Schartau sagte dem Tagesspiegel, dass Fischer ein Idiot sei" }, { "text": "Martin Müller spielt Handball in Berlin" }, ] # Load from the final epoch directory and apply print("LOADING INFERENCER FROM FINAL MODEL DURING TRAINING") model = Inferencer.load(save_dir) result = model.inference_from_dicts(dicts=basic_texts) print(result) model.close_multiprocessing_pool() # Load from saved best model print("LOADING INFERENCER FROM BEST MODEL DURING TRAINING") model = Inferencer.load(earlystopping.save_dir) result = model.inference_from_dicts(dicts=basic_texts) print("APPLICATION ON BEST MODEL") print(result) model.close_multiprocessing_pool()
) # 5. Create an optimizer optimizer, warmup_linear = initialize_optimizer( model=model, learning_rate=2e-5, warmup_proportion=0.1, n_examples=data_silo.n_samples("train"), batch_size=16, n_epochs=1, ) # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time trainer = Trainer( optimizer=optimizer, data_silo=data_silo, epochs=10, n_gpu=1, warmup_linear=warmup_linear, evaluate_every=100, device=device, ) # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: http://80.158.39.167:5000/ model = trainer.train(model) # 8. Hooray! You have a model. Store it: save_dir = "save/bert-german-lm-tutorial" model.save(save_dir) processor.save(save_dir)
# 5. Create an optimizer model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=2e-5, device=device, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, use_amp=use_amp) # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time trainer = Trainer( optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device, ) # 7. Let it grow model = trainer.train(model) # 8. Hooray! You have a model. Store it: save_dir = "saved_models/bert-german-doc-tutorial" model.save(save_dir) processor.save(save_dir) # 9. Load it & harvest your fruits (Inference) basic_texts = [
def train( self, data_dir: str, train_filename: str, dev_filename: Optional[str] = None, test_filename: Optional[str] = None, use_gpu: Optional[bool] = None, batch_size: int = 10, n_epochs: int = 2, learning_rate: float = 1e-5, max_seq_len: Optional[int] = None, warmup_proportion: float = 0.2, dev_split: float = 0, evaluate_every: int = 300, save_dir: Optional[str] = None, num_processes: Optional[int] = None, use_amp: str = None, ): """ Fine-tune a model on a QA dataset. Options: - Take a plain language model (e.g. `bert-base-cased`) and train it for QA (e.g. on SQuAD data) - Take a QA model (e.g. `deepset/bert-base-cased-squad2`) and fine-tune it for your domain (e.g. using your labels collected via the haystack annotation tool) :param data_dir: Path to directory containing your training data in SQuAD style :param train_filename: Filename of training data :param dev_filename: Filename of dev / eval data :param test_filename: Filename of test data :param dev_split: Instead of specifying a dev_filename, you can also specify a ratio (e.g. 0.1) here that gets split off from training data for eval. :param use_gpu: Whether to use GPU (if available) :param batch_size: Number of samples the model receives in one batch for training :param n_epochs: Number of iterations on the whole training data set :param learning_rate: Learning rate of the optimizer :param max_seq_len: Maximum text length (in tokens). Everything longer gets cut down. :param warmup_proportion: Proportion of training steps until maximum learning rate is reached. Until that point LR is increasing linearly. After that it's decreasing again linearly. Options for different schedules are available in FARM. :param evaluate_every: Evaluate the model every X steps on the hold-out eval dataset :param save_dir: Path to store the final model :param num_processes: The number of processes for `multiprocessing.Pool` during preprocessing. Set to value of 1 to disable multiprocessing. When set to 1, you cannot split away a dev set from train set. Set to None to use all CPU cores minus one. :param use_amp: Optimization level of NVIDIA's automatic mixed precision (AMP). The higher the level, the faster the model. Available options: None (Don't use AMP) "O0" (Normal FP32 training) "O1" (Mixed Precision => Recommended) "O2" (Almost FP16) "O3" (Pure FP16). See details on: https://nvidia.github.io/apex/amp.html :return: None """ if dev_filename: dev_split = 0 if num_processes is None: num_processes = multiprocessing.cpu_count() - 1 or 1 set_all_seeds(seed=42) # For these variables, by default, we use the value set when initializing the FARMReader. # These can also be manually set when train() is called if you want a different value at train vs inference if use_gpu is None: use_gpu = self.use_gpu if max_seq_len is None: max_seq_len = self.max_seq_len device, n_gpu = initialize_device_settings(use_cuda=use_gpu, use_amp=use_amp) if not save_dir: save_dir = f"../../saved_models/{self.inferencer.model.language_model.name}" # 1. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset label_list = ["start_token", "end_token"] metric = "squad" processor = SquadProcessor( tokenizer=self.inferencer.processor.tokenizer, max_seq_len=max_seq_len, label_list=label_list, metric=metric, train_filename=train_filename, dev_filename=dev_filename, dev_split=dev_split, test_filename=test_filename, data_dir=Path(data_dir), ) # 2. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them # and calculates a few descriptive statistics of our datasets data_silo = DataSilo(processor=processor, batch_size=batch_size, distributed=False, max_processes=num_processes) # Quick-fix until this is fixed upstream in FARM: # We must avoid applying DataParallel twice (once when loading the inferencer, # once when calling initalize_optimizer) self.inferencer.model.save("tmp_model") model = BaseAdaptiveModel.load(load_dir="tmp_model", device=device, strict=True) shutil.rmtree('tmp_model') # 3. Create an optimizer and pass the already initialized model model, optimizer, lr_schedule = initialize_optimizer( model=model, # model=self.inferencer.model, learning_rate=learning_rate, schedule_opts={ "name": "LinearWarmup", "warmup_proportion": warmup_proportion }, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, device=device, use_amp=use_amp, ) # 4. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time trainer = Trainer( model=model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device, use_amp=use_amp, ) # 5. Let it grow! self.inferencer.model = trainer.train() self.save(Path(save_dir))
def test_qa(caplog): caplog.set_level(logging.CRITICAL) set_all_seeds(seed=42) device, n_gpu = initialize_device_settings(use_cuda=False) batch_size = 2 n_epochs = 1 evaluate_every = 4 base_LM_model = "bert-base-cased" tokenizer = BertTokenizer.from_pretrained( pretrained_model_name_or_path=base_LM_model, do_lower_case=False) label_list = ["start_token", "end_token"] processor = SquadProcessor(tokenizer=tokenizer, max_seq_len=16, max_query_length=4, train_filename="train-sample.json", dev_filename="dev-sample.json", test_filename=None, data_dir="samples/qa", labels=label_list, metric="squad") data_silo = DataSilo(processor=processor, batch_size=batch_size) language_model = Bert.load(base_LM_model) prediction_head = QuestionAnsweringHead(layer_dims=[768, len(label_list)]) model = AdaptiveModel( language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm_output_types=["per_token"], device=device, ) optimizer, warmup_linear = initialize_optimizer( model=model, learning_rate=1e-5, warmup_proportion=0.2, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, ) trainer = Trainer( optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, warmup_linear=warmup_linear, evaluate_every=evaluate_every, device=device, ) model = trainer.train(model) save_dir = "testsave/qa" model.save(save_dir) processor.save(save_dir) QA_input = [{ "questions": ["In what country is Normandy located?"], "text": 'The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th and 11th centuries gave their name to Normandy, a region in France. They were descended from Norse ("Norman" comes from "Norseman") raiders and pirates from Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear fealty to King Charles III of West Francia. Through generations of assimilation and mixing with the native Frankish and Roman-Gaulish populations, their descendants would gradually merge with the Carolingian-based cultures of West Francia. The distinct cultural and ethnic identity of the Normans emerged initially in the first half of the 10th century, and it continued to evolve over the succeeding centuries.', }] model = Inferencer.load(save_dir) result = model.run_inference(dicts=QA_input) assert isinstance(result[0]["predictions"][0]["end"], int)
def dense_passage_retrieval(): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/") ml_logger.init_experiment(experiment_name="FARM-dense_passage_retrieval", run_name="Run_dpr") ########################## ########## Settings ########################## set_all_seeds(seed=42) batch_size = 4 n_epochs = 3 distributed = False # enable for multi GPU training via DDP evaluate_every = 1000 question_lang_model = "facebook/dpr-question_encoder-single-nq-base" passage_lang_model = "facebook/dpr-ctx_encoder-single-nq-base" do_lower_case = True use_fast = True embed_title = True num_hard_negatives = 1 similarity_function = "dot_product" train_filename = "nq-train.json" dev_filename = "nq-dev.json" test_filename = "nq-dev.json" max_samples = None # load a smaller dataset (e.g. for debugging) # For multi GPU Training via DDP we need to get the local rank args = parse_arguments() device, n_gpu = initialize_device_settings(use_cuda=True, local_rank=args.local_rank) # 1.Create question and passage tokenizers query_tokenizer = Tokenizer.load( pretrained_model_name_or_path=question_lang_model, do_lower_case=do_lower_case, use_fast=use_fast) passage_tokenizer = Tokenizer.load( pretrained_model_name_or_path=passage_lang_model, do_lower_case=do_lower_case, use_fast=use_fast) # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset # data_dir "data/retriever" should contain DPR training and dev files downloaded from https://github.com/facebookresearch/DPR # i.e., nq-train.json, nq-dev.json or trivia-train.json, trivia-dev.json label_list = ["hard_negative", "positive"] metric = "text_similarity_metric" processor = TextSimilarityProcessor(query_tokenizer=query_tokenizer, passage_tokenizer=passage_tokenizer, max_seq_len_query=64, max_seq_len_passage=256, label_list=label_list, metric=metric, data_dir="../data/retriever", train_filename=train_filename, dev_filename=dev_filename, test_filename=test_filename, embed_title=embed_title, num_hard_negatives=num_hard_negatives, max_samples=max_samples) # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets # NOTE: In FARM, the dev set metrics differ from test set metrics in that they are calculated on a token level instead of a word level data_silo = DataSilo(processor=processor, batch_size=batch_size, distributed=distributed) # 4. Create an BiAdaptiveModel+ # a) which consists of 2 pretrained language models as a basis question_language_model = LanguageModel.load( pretrained_model_name_or_path="bert-base-uncased", language_model_class="DPRQuestionEncoder") passage_language_model = LanguageModel.load( pretrained_model_name_or_path="bert-base-uncased", language_model_class="DPRContextEncoder") # b) and a prediction head on top that is suited for our task => Question Answering prediction_head = TextSimilarityHead( similarity_function=similarity_function) model = BiAdaptiveModel( language_model1=question_language_model, language_model2=passage_language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm1_output_types=["per_sequence"], lm2_output_types=["per_sequence"], device=device, ) # 5. Create an optimizer model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=1e-5, optimizer_opts={"name": "TransformersAdamW", "correct_bias": True, "weight_decay": 0.0, \ "eps": 1e-08}, schedule_opts={"name": "LinearWarmup", "num_warmup_steps": 100}, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, grad_acc_steps=1, device=device, distributed=distributed ) # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time trainer = Trainer( model=model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device, ) # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai trainer.train() # 8. Hooray! You have a model. Store it: save_dir = Path("../saved_models/dpr-tutorial") model.save(save_dir) processor.save(save_dir) # 9. Evaluate test_data_loader = data_silo.get_data_loader("test") if test_data_loader is not None: evaluator_test = Evaluator(data_loader=test_data_loader, tasks=data_silo.processor.tasks, device=device) model.connect_heads_with_processor(processor.tasks) test_result = evaluator_test.eval(model)
def test_ner(caplog): caplog.set_level(logging.CRITICAL) set_all_seeds(seed=42) device, n_gpu = initialize_device_settings(use_cuda=False) n_epochs = 1 batch_size = 2 evaluate_every = 1 lang_model = "bert-base-german-cased" tokenizer = Tokenizer.load( pretrained_model_name_or_path=lang_model, do_lower_case=False ) ner_labels = ["[PAD]", "X", "O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-OTH", "I-OTH"] processor = NERProcessor( tokenizer=tokenizer, max_seq_len=8, data_dir="samples/ner", train_filename="train-sample.txt", dev_filename="dev-sample.txt", test_filename=None, delimiter=" ", label_list=ner_labels, metric="seq_f1" ) data_silo = DataSilo(processor=processor, batch_size=batch_size) language_model = LanguageModel.load(lang_model) prediction_head = TokenClassificationHead(layer_dims=[768, len(ner_labels)]) model = AdaptiveModel( language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm_output_types=["per_token"], device=device, ) optimizer, warmup_linear = initialize_optimizer( model=model, learning_rate=2e-5, warmup_proportion=0.1, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, ) trainer = Trainer( optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, warmup_linear=warmup_linear, evaluate_every=evaluate_every, device=device, ) save_dir = "testsave/ner" model = trainer.train(model) model.save(save_dir) processor.save(save_dir) basic_texts = [ {"text": "Schartau sagte dem Tagesspiegel, dass Fischer ein Idiot sei"}, ] model = Inferencer.load(save_dir) result = model.inference_from_dicts(dicts=basic_texts) assert result[0]["predictions"][0]["context"] == "sagte" assert isinstance(result[0]["predictions"][0]["probability"], np.float32)
def execML(self, job): start_time = time.time() if job.task == 'analyse': basic_texts = [] # Will donwload and store dataset... sample = self.downloadAndConvertText(job, job.data_sample) for text in sample.encode('utf-8').splitlines(): basic_texts.append({'text': text.decode('utf-8')}) # Will donwload and store model... self.downloadAndStoreZIPModel(job, job.model) self.updateJobStatus(job, 'analysing') save_dir = 'tmp/' + job.model['id'] model = Inferencer.load(save_dir) result = model.inference_from_dicts(dicts=basic_texts) self.persistResult(job, result) model.close_multiprocessing_pool() self.updateJobStatus(job, 'completed') elif job.task == 'train': self.updateJobStatus(job, 'training') # Will donwload and store dataset... self.downloadAndStoreZIPDataset(job, job.data_source) # Will donwload and store model... self.downloadAndStoreZIPModel(job, job.model) set_all_seeds(seed=42) device, n_gpu = initialize_device_settings(use_cuda=True) n_epochs = 4 evaluate_every = 400 do_lower_case = False batch_size = 32 lang_model = os.path.join(Path.cwd(), 'tmp', job.model['id']) ner_labels = [ "[PAD]", "X", "O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-OTH", "I-OTH" ] # 1. Create a tokenizer tokenizer = Tokenizer.load( pretrained_model_name_or_path=lang_model, do_lower_case=do_lower_case, tokenizer_class='BertTokenizer' ) #tokenizer_class='BertTokenizer' # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset processor = NERProcessor(tokenizer=tokenizer, max_seq_len=128, data_dir=str( os.path.join(Path.cwd(), 'tmp', job.data_source['id'])), delimiter=' ', metric='seq_f1', label_list=ner_labels) # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets data_silo = DataSilo(processor=processor, batch_size=batch_size, max_processes=1) # 4. Create an AdaptiveModel # 4.1 which consists of a pretrained language model as a basis language_model = LanguageModel.load(lang_model) # 4.2 and a prediction head on top that is suited for our task => NER prediction_head = TokenClassificationHead( num_labels=len(ner_labels)) model = AdaptiveModel( language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm_output_types=['per_token'], device=device, ) # 5. Create an optimizer model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=1e-5, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, device=device, ) # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time trainer = Trainer( model=model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device, ) # 7. Let it grow trainer.train() # 8. Hooray! You have a model. Store it: newModelId = str(uuid.uuid4()) save_dir = 'tmp/' + newModelId model.save(save_dir) processor.save(save_dir) model.close_multiprocessing_pool() self.persistZIPModel(newModelId, job) self.updateJobStatus(job, 'completed') elapsed_time = time.time() - start_time print('Execution time max: ', elapsed_time, 'for job.id:', job.id, flush=True) return {'status': True, 'code': 'ok', 'msg': 'success'}
def run_experiment(args): logger.info("\n***********************************************" f"\n************* Experiment: {args.task.name} ************" "\n************************************************") ml_logger = MlLogger(tracking_uri=args.logging.mlflow_url) ml_logger.init_experiment( experiment_name=args.logging.mlflow_experiment, run_name=args.logging.mlflow_run_name, nested=args.logging.mlflow_nested, ) validate_args(args) distributed = bool(args.general.local_rank != -1) # Init device and distributed settings device, n_gpu = initialize_device_settings( use_cuda=args.general.cuda, local_rank=args.general.local_rank, fp16=args.general.fp16, ) args.parameter.batch_size = int(args.parameter.batch_size // args.parameter.gradient_accumulation_steps) if n_gpu > 1: args.parameter.batch_size = args.parameter.batch_size * n_gpu set_all_seeds(args.general.seed) # Prepare Data tokenizer = Tokenizer.load(args.parameter.model, do_lower_case=args.parameter.lower_case) processor = Processor.load( tokenizer=tokenizer, max_seq_len=args.parameter.max_seq_len, data_dir=args.general.data_dir, **args.task.toDict( ), # args is of type DotMap and needs conversion to std python dicts ) data_silo = DataSilo( processor=processor, batch_size=args.parameter.batch_size, distributed=distributed, ) class_weights = None if args.parameter.balance_classes: task_names = list(processor.tasks.keys()) if len(task_names) > 1: raise NotImplementedError( f"Balancing classes is currently not supported for multitask experiments. Got tasks: {task_names} " ) class_weights = data_silo.calculate_class_weights( task_name=task_names[0]) model = get_adaptive_model( lm_output_type=args.parameter.lm_output_type, prediction_heads=args.parameter.prediction_head, layer_dims=args.parameter.layer_dims, model=args.parameter.model, device=device, class_weights=class_weights, embeds_dropout_prob=args.parameter.embeds_dropout_prob, ) # Init optimizer # TODO: warmup linear is sometimes NONE depending on fp16 - is there a neater way to handle this? optimizer, warmup_linear = initialize_optimizer( model=model, learning_rate=args.parameter.learning_rate, warmup_proportion=args.parameter.warmup_proportion, loss_scale=args.general.loss_scale, fp16=args.general.fp16, n_batches=len(data_silo.loaders["train"]), grad_acc_steps=args.parameter.gradient_accumulation_steps, n_epochs=args.parameter.epochs, ) trainer = Trainer( optimizer=optimizer, data_silo=data_silo, epochs=args.parameter.epochs, n_gpu=n_gpu, grad_acc_steps=args.parameter.gradient_accumulation_steps, fp16=args.general.fp16, local_rank=args.general.local_rank, warmup_linear=warmup_linear, evaluate_every=args.logging.eval_every, device=device, ) model = trainer.train(model) model_name = ( f"{model.language_model.name}-{model.language_model.language}-{args.task.name}" ) processor.save(f"{args.general.output_dir}/{model_name}") model.save(f"{args.general.output_dir}/{model_name}")
def xlmr_qa_demo(): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/") ml_logger.init_experiment(experiment_name="Public_FARM", run_name="run_xmlr_qa") ######################### ######## Settings ######################## set_all_seeds(seed=42) device, n_gpu = initialize_device_settings(use_cuda=True) batch_size = 3 grad_acc_steps = 8 n_epochs = 2 evaluate_every = 200 base_LM_model = "xlm-roberta-large" data_dir = Path("../data/squad20") train_filename = Path("train-v2.0.json") dev_filename = Path("dev-v2.0.json") save_dir = Path("../saved_models/xlmr-large-qa") inference_file = Path("../data/MLQA_V1/dev/dev-context-de-question-de.json") predictions_file = save_dir / "predictions.json" full_predictions_file = save_dir / "full_predictions.json" max_processes_for_inference = 8 train = True inference = False if train: # 1.Create a tokenizer tokenizer = Tokenizer.load(pretrained_model_name_or_path=base_LM_model) # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset label_list = ["start_token", "end_token"] metric = "squad" processor = SquadProcessor( tokenizer=tokenizer, max_seq_len=384, label_list=label_list, metric=metric, train_filename=train_filename, dev_filename=dev_filename, test_filename=None, data_dir=data_dir, dev_split=0.0 ) # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets data_silo = DataSilo(processor=processor, batch_size=batch_size, distributed=False, max_processes=1) # 4. Create an AdaptiveModel # a) which consists of a pretrained language model as a basis language_model = LanguageModel.load(base_LM_model, n_added_tokens=3) # b) and a prediction head on top that is suited for our task => Question Answering prediction_head = QuestionAnsweringHead() model = AdaptiveModel( language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm_output_types=["per_token"], device=device, ) # 5. Create an optimizer model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=3e-5, schedule_opts={"name": "LinearWarmup", "warmup_proportion": 0.2}, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, grad_acc_steps=grad_acc_steps, device=device ) # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time trainer = Trainer( optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device, ) # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai model = trainer.train(model) # 8. Hooray! You have a model. Store it: model.save(save_dir) processor.save(save_dir) if inference: model = Inferencer.load(save_dir, batch_size=32, gpu=True) full_result = model.inference_from_file( file=inference_file, max_processes=max_processes_for_inference, ) for x in full_result: print(x) print() result = {r["id"]: r["preds"][0][0] for r in full_result} full_result = {r["id"]: r["preds"] for r in full_result} json.dump(result, open(predictions_file, "w"), indent=4, ensure_ascii=False) json.dump(full_result, open(full_predictions_file, "w"), indent=4, ensure_ascii=False)
def question_answering(): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO) ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/") ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_natural_questions") ########################## ########## Settings ########################## set_all_seeds(seed=42) device, n_gpu = initialize_device_settings(use_cuda=True) batch_size = 24 n_epochs = 1 evaluate_every = 500 lang_model = "deepset/roberta-base-squad2" # start with a model that can already extract answers do_lower_case = False # roberta is a cased model train_filename = "train_medium.jsonl" dev_filename = "dev_medium.jsonl" keep_is_impossible = 0.15 # downsample negative examples after data conversion downsample_context_size = 300 # reduce length of wikipedia articles to relevant part around the answer # 1.Create a tokenizer tokenizer = Tokenizer.load( pretrained_model_name_or_path=lang_model, do_lower_case=do_lower_case ) # Add HTML tag tokens to the tokenizer vocabulary, so they do not get split apart html_tags = [ "<Th>","</Th>", "<Td>","</Td>", "<Tr>","</Tr>", "<Li>","</Li>", "<P>" ,"</P>", "<Ul>","</Ul>", "<H1>","</H1>", "<H2>","</H2>", "<H3>","</H3>", "<H4>","</H4>", "<H5>", "</H5>", "<Td_colspan=", ] tokenizer.add_tokens(html_tags) # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset processor = NaturalQuestionsProcessor( tokenizer=tokenizer, max_seq_len=384, train_filename=train_filename, dev_filename=dev_filename, keep_no_answer=keep_is_impossible, downsample_context_size=downsample_context_size, data_dir=Path("../data/natural_questions"), ) # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets data_silo = DataSilo(processor=processor, batch_size=batch_size, caching=True) # 4. Create an AdaptiveModel # a) which consists of a pretrained language model as a basis language_model = LanguageModel.load(lang_model,n_added_tokens=len(html_tags)) # b) and in case of Natural Questions we need two Prediction Heads # one for extractive Question Answering qa_head = QuestionAnsweringHead() # another one for answering yes/no questions or deciding if the given text passage might contain an answer classification_head = TextClassificationHead(num_labels=len(processor.answer_type_list)) # answer_type_list = ["is_impossible", "span", "yes", "no"] model = AdaptiveModel( language_model=language_model, prediction_heads=[qa_head, classification_head], embeds_dropout_prob=0.1, lm_output_types=["per_token", "per_sequence"], device=device, ) # 5. Create an optimizer model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=3e-5, schedule_opts={"name": "LinearWarmup", "warmup_proportion": 0.2}, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, device=device ) # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time trainer = Trainer( model=model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device, ) # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai trainer.train() # 8. Hooray! You have a model. Store it: save_dir = Path("../saved_models/roberta-base-squad2-nq") model.save(save_dir) processor.save(save_dir) # 9. Since training on the whole NQ corpus requires substantial compute resources we trained and uploaded a model on s3 fetch_archive_from_http("https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/models/roberta-base-squad2-nq.zip", output_dir="../saved_models/farm") QA_input = [ { "qas": ["Did GameTrailers rated Twilight Princess as one of the best games ever created?"], "context": "Twilight Princess was released to universal critical acclaim and commercial success. It received perfect scores from major publications such as 1UP.com, Computer and Video Games, Electronic Gaming Monthly, Game Informer, GamesRadar, and GameSpy. On the review aggregators GameRankings and Metacritic, Twilight Princess has average scores of 95% and 95 for the Wii version and scores of 95% and 96 for the GameCube version. GameTrailers in their review called it one of the greatest games ever created." } ] model = QAInferencer.load(model_name_or_path="../saved_models/farm/roberta-base-squad2-nq", batch_size=batch_size, gpu=True) result = model.inference_from_dicts(dicts=QA_input, return_json=False) # result is a list of QAPred objects print(f"\nQuestion: Did GameTrailers rated Twilight Princess as one of the best games ever created?" f"\nAnswer from model: {result[0].prediction[0].answer}") model.close_multiprocessing_pool()
def train(self, data_dir, train_filename, dev_filename=None, test_file_name=None, use_gpu=None, batch_size=10, n_epochs=2, learning_rate=1e-5, max_seq_len=None, warmup_proportion=0.2, dev_split=0.1, evaluate_every=300, save_dir=None): """ Fine-tune a model on a QA dataset. Options: - Take a plain language model (e.g. `bert-base-cased`) and train it for QA (e.g. on SQuAD data) - Take a QA model (e.g. `deepset/bert-base-cased-squad2`) and fine-tune it for your domain (e.g. using your labels collected via the haystack annotation tool) :param data_dir: Path to directory containing your training data in SQuAD style :param train_filename: filename of training data :param dev_filename: filename of dev / eval data :param test_file_name: filename of test data :param dev_split: Instead of specifying a dev_filename you can also specify a ratio (e.g. 0.1) here that get's split off from training data for eval. :param use_gpu: Whether to use GPU (if available) :param batch_size: Number of samples the model receives in one batch for training :param n_epochs: number of iterations on the whole training data set :param learning_rate: learning rate of the optimizer :param max_seq_len: maximum text length (in tokens). Everything longer gets cut down. :param warmup_proportion: Proportion of training steps until maximum learning rate is reached. Until that point LR is increasing linearly. After that it's decreasing again linearly. Options for different schedules are available in FARM. :param evaluate_every: Evaluate the model every X steps on the hold-out eval dataset :param save_dir: Path to store the final model :return: None """ if dev_filename: dev_split = None set_all_seeds(seed=42) # For these variables, by default, we use the value set when initializing the FARMReader. # These can also be manually set when train() is called if you want a different value at train vs inference if use_gpu is None: use_gpu = self.use_gpu if max_seq_len is None: max_seq_len = self.max_seq_len device, n_gpu = initialize_device_settings(use_cuda=use_gpu) if not save_dir: save_dir = f"../../saved_models/{self.inferencer.model.language_model.name}" save_dir = Path(save_dir) # 1. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset label_list = ["start_token", "end_token"] metric = "squad" processor = SquadProcessor( tokenizer=self.inferencer.processor.tokenizer, max_seq_len=max_seq_len, label_list=label_list, metric=metric, train_filename=train_filename, dev_filename=dev_filename, dev_split=dev_split, test_filename=test_file_name, data_dir=Path(data_dir), ) # 2. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them # and calculates a few descriptive statistics of our datasets data_silo = DataSilo(processor=processor, batch_size=batch_size, distributed=False) # 3. Create an optimizer and pass the already initialized model model, optimizer, lr_schedule = initialize_optimizer( model=self.inferencer.model, learning_rate=learning_rate, schedule_opts={ "name": "LinearWarmup", "warmup_proportion": warmup_proportion }, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, device=device) # 4. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time trainer = Trainer( model=model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device, ) # 5. Let it grow! self.inferencer.model = trainer.train() self.save(save_dir)
def ner(): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/") ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_ner") ########################## ########## Settings ########################## set_all_seeds(seed=42) device, n_gpu = initialize_device_settings(use_cuda=True) n_epochs = 4 batch_size = 32 evaluate_every = 400 lang_model = "bert-base-german-cased" do_lower_case = False # 1.Create a tokenizer tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model, do_lower_case=do_lower_case) # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset # See test/sample/ner/train-sample.txt for an example of the data format that is expected by the Processor ner_labels = [ "[PAD]", "X", "O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-OTH", "I-OTH" ] processor = NERProcessor(tokenizer=tokenizer, max_seq_len=128, data_dir=Path("../data/conll03-de"), delimiter=" ", metric="seq_f1", label_list=ner_labels) # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets data_silo = DataSilo(processor=processor, batch_size=batch_size) # 4. Create an AdaptiveModel # a) which consists of a pretrained language model as a basis language_model = LanguageModel.load(lang_model) # b) and a prediction head on top that is suited for our task => NER prediction_head = TokenClassificationHead(num_labels=len(ner_labels)) model = AdaptiveModel( language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm_output_types=["per_token"], device=device, ) # 5. Create an optimizer model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=1e-5, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, device=device, ) # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time trainer = Trainer( model=model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device, ) # 7. Let it grow trainer.train() # 8. Hooray! You have a model. Store it: save_dir = "saved_models/bert-german-ner-tutorial" model.save(save_dir) processor.save(save_dir) # 9. Load it & harvest your fruits (Inference) basic_texts = [ { "text": "Schartau sagte dem Tagesspiegel, dass Fischer ein Idiot sei" }, { "text": "Martin Müller spielt Handball in Berlin" }, ] model = Inferencer.load(save_dir) result = model.inference_from_dicts(dicts=basic_texts) print(result)
def doc_classifcation(): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO) ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/") ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_doc_classification_fasttext") ########################## ########## Settings ########################## set_all_seeds(seed=42) n_epochs = 3 batch_size = 32 evaluate_every = 100 # load fasttext from a local path: #fasttext_model = "../saved_models/fasttext-german-uncased" # or through s3 fasttext_model = "fasttext-german-uncased" do_lower_case = True max_features = 10_000 # maximum number of unique words we will transform device, n_gpu = initialize_device_settings(use_cuda=True) # 1. To make Fasttext work within FARM and with advanced aggregation strategies, we need a fixed vocabulary and associated Wordembeddings ft_converter = Fasttext_converter( pretrained_model_name_or_path=fasttext_model, do_lower_case=do_lower_case, data_path=Path("../data/germeval18"), train_filename="train.tsv", output_path=Path("../saved_models/fasttext-german-uncased-converted"), language="German", max_features=max_features) # We convert the data to have fixed size vocab and embeddings vocab_counts = ft_converter.convert_on_data() # 2. Create a tokenizer tokenizer = Tokenizer.load( pretrained_model_name_or_path=ft_converter.output_path, do_lower_case=do_lower_case) # 3. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset # Here we load GermEval 2018 Data automaticaly if it is not available. # GermEval 2018 only has train.tsv and test.tsv dataset - no dev.tsv label_list = ["OTHER", "OFFENSE"] metric = "f1_macro" processor = TextClassificationProcessor( tokenizer=tokenizer, max_seq_len=128, data_dir=ft_converter.data_path, label_list=label_list, train_filename=ft_converter.train_filename, dev_split=0, test_filename="test.tsv", metric=metric, label_column_name="coarse_label") # 4. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a # few descriptive statistics of our datasets data_silo = DataSilo( processor=processor, batch_size=batch_size, max_processes=1 ) # multiprocessing with WordembeddingTokenizer is not optimal - so disable it # 5. Create an AdaptiveModel # a) which consists of the newly created embedding model as a basis. language_model = LanguageModel.load(ft_converter.output_path) # b) and a prediction head on top that is suited for our task => Text classification # Since we do not have a powerful Transformer based Language Model, we need a slightly deeper NN # for going the Classification prediction_head = TextClassificationHead( layer_dims=[300, 600, len(label_list)], class_weights=data_silo.calculate_class_weights( task_name="text_classification"), num_labels=len(label_list)) model = AdaptiveModel(language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm_output_types=["per_sequence"], device=device) # 6. Create an optimizer model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=3e-3, device=device, n_batches=len( data_silo.get_data_loader("train") ), #len(data_silo.loaders["train"]),streaming: len(data_silo.get_data_loader("train")) n_epochs=n_epochs) # 7. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time trainer = Trainer(model=model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device) # 8. Let it grow trainer.train()
def train_evaluation_single(seed=42): ########################## ########## Settings ########################## set_all_seeds(seed=seed) device, n_gpu = initialize_device_settings(use_cuda=True) batch_size = 32 * 4 # 4x V100 n_epochs = 2 evaluate_every = 2000000 # disabling dev eval lang_model = "roberta-base" do_lower_case = False # roberta is a cased model train_filename = "train-v2.0.json" dev_filename = "dev-v2.0.json" # Load model and train tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model, do_lower_case=do_lower_case) processor = SquadProcessor( tokenizer=tokenizer, max_seq_len=256, label_list=["start_token", "end_token"], metric="squad", train_filename=train_filename, dev_filename=dev_filename, test_filename=None, data_dir=Path("testsave/data/squad20"), ) data_silo = DataSilo(processor=processor, batch_size=batch_size, distributed=False) language_model = LanguageModel.load(lang_model) prediction_head = QuestionAnsweringHead() model = AdaptiveModel( language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm_output_types=["per_token"], device=device, ) model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=3e-5, schedule_opts={ "name": "LinearWarmup", "warmup_proportion": 0.2 }, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, device=device) trainer = Trainer( model=model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device, ) starttime = time() trainer.train() elapsed = time() - starttime save_dir = Path("testsave/roberta-qa-dev") model.save(save_dir) processor.save(save_dir) # Create Evaluator evaluator = Evaluator(data_loader=data_silo.get_data_loader("dev"), tasks=data_silo.processor.tasks, device=device) results = evaluator.eval(model) f1_score = results[0]["f1"] * 100 em_score = results[0]["EM"] * 100 tnrecall = results[0]["top_n_recall"] * 100 print(results) print(elapsed) gold_f1 = 82.155 gold_EM = 77.714 gold_tnrecall = 97.3721 # gold_elapsed = 1286.30 np.testing.assert_allclose( f1_score, gold_f1, rtol=0.01, err_msg=f"FARM Training changed for f1 score by: {f1_score - gold_f1}") np.testing.assert_allclose( em_score, gold_EM, rtol=0.01, err_msg=f"FARM Training changed for EM by: {em_score - gold_EM}") np.testing.assert_allclose( tnrecall, gold_tnrecall, rtol=0.01, err_msg= f"FARM Training changed for top 1 recall by: {em_score - gold_EM}") np.testing.assert_allclose( elapsed, gold_elapsed, rtol=0.1, err_msg= f"FARM Eval speed changed significantly by: {elapsed - gold_elapsed} seconds" )
def test_lm_finetuning(caplog): caplog.set_level(logging.CRITICAL) set_all_seeds(seed=42) device, n_gpu = initialize_device_settings(use_cuda=False) n_epochs = 1 batch_size = 1 evaluate_every = 2 lang_model = "bert-base-cased" tokenizer = BertTokenizer.from_pretrained( pretrained_model_name_or_path=lang_model, do_lower_case=False, never_split_chars=["-", "_"]) processor = BertStyleLMProcessor( data_dir="samples/lm_finetuning", train_filename="train-sample.txt", test_filename="test-sample.txt", dev_filename=None, tokenizer=tokenizer, max_seq_len=12, ) data_silo = DataSilo(processor=processor, batch_size=batch_size) language_model = Bert.load(lang_model) lm_prediction_head = BertLMHead.load(lang_model) next_sentence_head = NextSentenceHead.load(lang_model) model = AdaptiveModel( language_model=language_model, prediction_heads=[lm_prediction_head, next_sentence_head], embeds_dropout_prob=0.1, lm_output_types=["per_token", "per_sequence"], device=device, ) optimizer, warmup_linear = initialize_optimizer( model=model, learning_rate=2e-5, warmup_proportion=0.1, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, ) trainer = Trainer( optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, warmup_linear=warmup_linear, evaluate_every=evaluate_every, device=device, ) model = trainer.train(model) save_dir = "testsave/lm_finetuning" model.save(save_dir) processor.save(save_dir) basic_texts = [ { "text": "Farmer's life is great." }, { "text": "It's nothing for big city kids though." }, ] model = Inferencer.load(save_dir, embedder_only=True) result = model.extract_vectors(dicts=basic_texts) assert result[0]["context"] == [ 'Farmer', "'", 's', 'life', 'is', 'great', '.' ] assert result[0]["vec"].shape == (768, ) # TODO check why results vary accross runs with same seed assert isinstance(result[0]["vec"][0], np.float32)
def question_answering(): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/") ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_question_answering") ########################## ########## Settings ########################## set_all_seeds(seed=42) device, n_gpu = initialize_device_settings(use_cuda=True) batch_size = 24 n_epochs = 2 evaluate_every = 2000 lang_model = "roberta-base" do_lower_case = False # roberta is a cased model train_filename = "train-v2.0.json" dev_filename = "dev-v2.0.json" # 1.Create a tokenizer tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model, do_lower_case=do_lower_case) # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset label_list = ["start_token", "end_token"] metric = "squad" processor = SquadProcessor( tokenizer=tokenizer, max_seq_len=384, label_list=label_list, metric=metric, train_filename=train_filename, dev_filename=dev_filename, test_filename=None, data_dir=Path("../data/squad20"), ) # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets # NOTE: In FARM, the dev set metrics differ from test set metrics in that they are calculated on a token level instead of a word level data_silo = DataSilo(processor=processor, batch_size=batch_size, distributed=False) # 4. Create an AdaptiveModel # a) which consists of a pretrained language model as a basis language_model = LanguageModel.load(lang_model) # b) and a prediction head on top that is suited for our task => Question Answering prediction_head = QuestionAnsweringHead() model = AdaptiveModel( language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm_output_types=["per_token"], device=device, ) # 5. Create an optimizer model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=3e-5, schedule_opts={ "name": "LinearWarmup", "warmup_proportion": 0.2 }, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, device=device) # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time trainer = Trainer( model=model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device, ) # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai trainer.train() # 8. Hooray! You have a model. Store it: save_dir = Path("../saved_models/bert-english-qa-tutorial") model.save(save_dir) processor.save(save_dir) # 9. Load it & harvest your fruits (Inference) QA_input = [{ "qas": ["Who counted the game among the best ever made?"], "context": "Twilight Princess was released to universal critical acclaim and commercial success. It received perfect scores from major publications such as 1UP.com, Computer and Video Games, Electronic Gaming Monthly, Game Informer, GamesRadar, and GameSpy. On the review aggregators GameRankings and Metacritic, Twilight Princess has average scores of 95% and 95 for the Wii version and scores of 95% and 96 for the GameCube version. GameTrailers in their review called it one of the greatest games ever created." }] model = QAInferencer.load(save_dir, batch_size=40, gpu=True) result = model.inference_from_dicts(dicts=QA_input)[0] pprint.pprint(result) # 10. Do Inference on whole SQuAD Dataset & write the predictions file to disk filename = os.path.join(processor.data_dir, processor.dev_filename) result = model.inference_from_file(file=filename, return_json=False) result_squad = [x.to_squad_eval() for x in result] write_squad_predictions(predictions=result_squad, predictions_filename=filename, out_filename="predictions.json")
def test_ner_amp(caplog): caplog.set_level(logging.CRITICAL) set_all_seeds(seed=42) device, n_gpu = initialize_device_settings(use_cuda=True) n_epochs = 1 batch_size = 2 evaluate_every = 1 lang_model = "bert-base-german-cased" if AMP_AVAILABLE: use_amp = 'O1' else: use_amp = None tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model, do_lower_case=False) ner_labels = [ "[PAD]", "X", "O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-OTH", "I-OTH" ] processor = NERProcessor(tokenizer=tokenizer, max_seq_len=8, data_dir=Path("samples/ner"), train_filename=Path("train-sample.txt"), dev_filename=Path("dev-sample.txt"), test_filename=None, delimiter=" ", label_list=ner_labels, metric="seq_f1") data_silo = DataSilo(processor=processor, batch_size=batch_size, max_processes=1) language_model = LanguageModel.load(lang_model) prediction_head = TokenClassificationHead(num_labels=13) model = AdaptiveModel(language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm_output_types=["per_token"], device=device) model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=2e-05, schedule_opts=None, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, device=device, use_amp=use_amp) trainer = Trainer( model=model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device, ) save_dir = Path("testsave/ner") trainer.train() model.save(save_dir) processor.save(save_dir) basic_texts = [ { "text": "1980 kam der Crown von Toyota" }, ] model = Inferencer.load(save_dir, gpu=True) result = model.inference_from_dicts(dicts=basic_texts, max_processes=1) #print(result) assert result[0]["predictions"][0]["context"] == "Crown" assert isinstance(result[0]["predictions"][0]["probability"], np.float32)
def doc_classifcation(): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO) ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/") ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_doc_classification") ########################## ########## Settings ########################## set_all_seeds(seed=42) n_epochs = 1 batch_size = 32 evaluate_every = 100 lang_model = "bert-base-german-cased" # or a local path: # lang_model = Path("../saved_models/farm-bert-base-cased") use_amp = None device, n_gpu = initialize_device_settings(use_cuda=True, use_amp=use_amp) # 1.Create a tokenizer tokenizer = Tokenizer.load( pretrained_model_name_or_path=lang_model, do_lower_case=False) # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset # Here we load GermEval 2018 Data. label_list = ["OTHER", "OFFENSE"] metric = "f1_macro" processor = TextClassificationProcessor(tokenizer=tokenizer, max_seq_len=128, data_dir=Path("../data/germeval18"), label_list=label_list, metric=metric, label_column_name="coarse_label" ) # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a # few descriptive statistics of our datasets data_silo = DataSilo( processor=processor, batch_size=batch_size) # 4. Create an AdaptiveModel # a) which consists of a pretrained language model as a basis language_model = LanguageModel.load(lang_model) # b) and a prediction head on top that is suited for our task => Text classification prediction_head = TextClassificationHead( class_weights=data_silo.calculate_class_weights(task_name="text_classification"), num_labels=len(label_list)) model = AdaptiveModel( language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm_output_types=["per_sequence"], device=device) # 5. Create an optimizer model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=3e-5, device=device, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, use_amp=use_amp) # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time trainer = Trainer( model=model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device) # 7. Let it grow trainer.train() # 8. Hooray! You have a model. Store it: save_dir = Path("saved_models/bert-german-doc-tutorial") model.save(save_dir) processor.save(save_dir) # 9. Load it & harvest your fruits (Inference) basic_texts = [ {"text": "Schartau sagte dem Tagesspiegel, dass Fischer ein Idiot sei"}, {"text": "Martin Müller spielt Handball in Berlin"}, ] model = Inferencer.load(save_dir) result = model.inference_from_dicts(dicts=basic_texts) print(result)
lm_output_types=["per_sequence_continuous"], device=device) # 5. Create an optimizer optimizer, warmup_linear = initialize_optimizer( model=model, learning_rate=2e-5, warmup_proportion=0.1, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs) # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time trainer = Trainer(optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, warmup_linear=warmup_linear, evaluate_every=evaluate_every, device=device) # 7. Let it grow model = trainer.train(model) # 8. Hooray! You have a model. Store it: save_dir = "saved_models/bert-doc-regression-tutorial" model.save(save_dir) processor.save(save_dir) # 9. Load it & harvest your fruits (Inference) # Add your own text adapted to the dataset you provide basic_texts = [
def test_doc_regression(caplog): caplog.set_level(logging.CRITICAL) set_all_seeds(seed=42) device, n_gpu = initialize_device_settings(use_cuda=False) n_epochs = 1 batch_size = 1 evaluate_every = 2 lang_model = "bert-base-cased" tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model, do_lower_case=False) processor = RegressionProcessor(tokenizer=tokenizer, max_seq_len=8, data_dir=Path("samples/doc_regr"), train_filename="train-sample.tsv", dev_filename="test-sample.tsv", test_filename=None, label_column_name="label") data_silo = DataSilo(processor=processor, batch_size=batch_size) language_model = LanguageModel.load(lang_model) prediction_head = RegressionHead() model = AdaptiveModel(language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm_output_types=["per_sequence_continuous"], device=device) model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=2e-5, #optimizer_opts={'name': 'AdamW', 'lr': 2E-05}, n_batches=len(data_silo.loaders["train"]), n_epochs=1, device=device, schedule_opts={ 'name': 'CosineWarmup', 'warmup_proportion': 0.1 }) trainer = Trainer(model=model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device) trainer.train() save_dir = Path("testsave/doc_regr") model.save(save_dir) processor.save(save_dir) basic_texts = [ { "text": "The dress is just fabulous and it totally fits my size. The fabric is of great quality and the seams are really well hidden. I am super happy with this purchase and I am looking forward to trying some more from the same brand." }, { "text": "it just did not fit right. The top is very thin showing everything." }, ] model = Inferencer.load(save_dir) result = model.inference_from_dicts(dicts=basic_texts) assert isinstance(result[0]["predictions"][0]["pred"], np.float32)
def train(self, data_dir: str, train_filename: str, dev_filename: str = None, test_filename: str = None, batch_size: int = 2, embed_title: bool = True, num_hard_negatives: int = 1, num_negatives: int = 0, n_epochs: int = 3, evaluate_every: int = 1000, n_gpu: int = 1, learning_rate: float = 1e-5, epsilon: float = 1e-08, weight_decay: float = 0.0, num_warmup_steps: int = 100, grad_acc_steps: int = 1, optimizer_name: str = "TransformersAdamW", optimizer_correct_bias: bool = True, save_dir: str = "../saved_models/dpr-tutorial", query_encoder_save_dir: str = "lm1", passage_encoder_save_dir: str = "lm2"): """ train a DensePassageRetrieval model :param data_dir: Directory where training file, dev file and test file are present :param train_filename: training filename :param dev_filename: development set filename, file to be used by model in eval step of training :param test_filename: test set filename, file to be used by model in test step after training :param batch_size: total number of samples in 1 batch of data :param embed_title: whether to concatenate passage title with each passage. The default setting in official DPR embeds passage title with the corresponding passage :param num_hard_negatives: number of hard negative passages(passages which are very similar(high score by BM25) to query but do not contain the answer :param num_negatives: number of negative passages(any random passage from dataset which do not contain answer to query) :param n_epochs: number of epochs to train the model on :param evaluate_every: number of training steps after evaluation is run :param n_gpu: number of gpus to train on :param learning_rate: learning rate of optimizer :param epsilon: epsilon parameter of optimizer :param weight_decay: weight decay parameter of optimizer :param grad_acc_steps: number of steps to accumulate gradient over before back-propagation is done :param optimizer_name: what optimizer to use (default: TransformersAdamW) :param num_warmup_steps: number of warmup steps :param optimizer_correct_bias: Whether to correct bias in optimizer :param save_dir: directory where models are saved :param query_encoder_save_dir: directory inside save_dir where query_encoder model files are saved :param passage_encoder_save_dir: directory inside save_dir where passage_encoder model files are saved """ self.embed_title = embed_title self.processor = TextSimilarityProcessor( tokenizer=self.query_tokenizer, passage_tokenizer=self.passage_tokenizer, max_seq_len_passage=self.max_seq_len_passage, max_seq_len_query=self.max_seq_len_query, label_list=["hard_negative", "positive"], metric="text_similarity_metric", data_dir=data_dir, train_filename=train_filename, dev_filename=dev_filename, test_filename=test_filename, embed_title=self.embed_title, num_hard_negatives=num_hard_negatives, num_negatives=num_negatives) self.model.connect_heads_with_processor(self.processor.tasks, require_labels=True) data_silo = DataSilo(processor=self.processor, batch_size=batch_size, distributed=False) # 5. Create an optimizer self.model, optimizer, lr_schedule = initialize_optimizer( model=self.model, learning_rate=learning_rate, optimizer_opts={ "name": optimizer_name, "correct_bias": optimizer_correct_bias, "weight_decay": weight_decay, "eps": epsilon }, schedule_opts={ "name": "LinearWarmup", "num_warmup_steps": num_warmup_steps }, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs, grad_acc_steps=grad_acc_steps, device=self.device) # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time trainer = Trainer( model=self.model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=self.device, ) # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai trainer.train() self.model.save(Path(save_dir), lm1_name=query_encoder_save_dir, lm2_name=passage_encoder_save_dir) self.processor.save(Path(save_dir))
def test_doc_classification(caplog): caplog.set_level(logging.CRITICAL) set_all_seeds(seed=42) device, n_gpu = initialize_device_settings(use_cuda=False) n_epochs = 1 batch_size = 8 evaluate_every = 30 lang_model = "bert-base-german-cased" tokenizer = BertTokenizer.from_pretrained( pretrained_model_name_or_path=lang_model, do_lower_case=False) processor = GermEval18CoarseProcessor(tokenizer=tokenizer, max_seq_len=64, data_dir="samples/doc_class", train_filename="train-sample.tsv", test_filename=None) data_silo = DataSilo(processor=processor, batch_size=batch_size) language_model = Bert.load(lang_model) prediction_head = TextClassificationHead( layer_dims=[768, len(processor.label_list)]) model = AdaptiveModel(language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm_output_types=["per_sequence"], device=device) optimizer, warmup_linear = initialize_optimizer( model=model, learning_rate=2e-5, warmup_proportion=0.1, n_examples=data_silo.n_samples("train"), batch_size=batch_size, n_epochs=1) trainer = Trainer(optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, warmup_linear=warmup_linear, evaluate_every=evaluate_every, device=device) model = trainer.train(model) save_dir = "testsave/doc_class" model.save(save_dir) processor.save(save_dir) basic_texts = [ { "text": "Schartau sagte dem Tagesspiegel, dass Fischer ein Idiot sei" }, { "text": "Martin Müller spielt Handball in Berlin" }, ] model = Inferencer.load(save_dir) result = model.run_inference(dicts=basic_texts) assert result[0]["predictions"][0]["label"] == "OTHER" assert abs(result[0]["predictions"][0]["probability"] - 0.5358161) <= 0.0001