Exemple #1
0
def test_qa(caplog):
    caplog.set_level(logging.CRITICAL)

    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=False)
    batch_size = 2
    n_epochs = 1
    evaluate_every = 4
    base_LM_model = "bert-base-cased"

    tokenizer = Tokenizer.load(pretrained_model_name_or_path=base_LM_model,
                               do_lower_case=False)
    label_list = ["start_token", "end_token"]
    processor = SquadProcessor(tokenizer=tokenizer,
                               max_seq_len=20,
                               doc_stride=10,
                               max_query_length=6,
                               train_filename="train-sample.json",
                               dev_filename="dev-sample.json",
                               test_filename=None,
                               data_dir="samples/qa",
                               label_list=label_list,
                               metric="squad")

    data_silo = DataSilo(processor=processor, batch_size=batch_size)
    language_model = LanguageModel.load(base_LM_model)
    prediction_head = QuestionAnsweringHead(layer_dims=[768, len(label_list)])
    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[prediction_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_token"],
        device=device,
    )

    optimizer, warmup_linear = initialize_optimizer(
        model=model,
        learning_rate=1e-5,
        warmup_proportion=0.2,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
    )
    trainer = Trainer(
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        warmup_linear=warmup_linear,
        evaluate_every=evaluate_every,
        device=device,
    )
    model = trainer.train(model)
    save_dir = "testsave/qa"
    model.save(save_dir)
    processor.save(save_dir)
Exemple #2
0
    def train_on_split(silo_to_use, n_fold):
        logger.info(
            f"############ Crossvalidation: Fold {n_fold} ############")

        # fine-tune pre-trained question-answering model
        model = AdaptiveModel.convert_from_transformers(
            lang_model, device=device, task_type="question_answering")
        model.connect_heads_with_processor(data_silo.processor.tasks,
                                           require_labels=True)
        # If positive, thjs will boost "No Answer" as prediction.
        # If negative, this will prevent the model from giving "No Answer" as prediction.
        model.prediction_heads[0].no_ans_boost = no_ans_boost
        # Number of predictions the model will make per Question.
        # The multiple predictions are used for evaluating top n recall.
        model.prediction_heads[0].n_best = accuracy_at

        # # or train question-answering models from scratch
        # # Create an AdaptiveModel
        # # a) which consists of a pretrained language model as a basis
        # language_model = LanguageModel.load(lang_model)
        # # b) and a prediction head on top that is suited for our task => Question-answering
        # prediction_head = QuestionAnsweringHead(no_ans_boost=no_ans_boost, n_best=accuracy_at)
        # model = AdaptiveModel(
        #    language_model=language_model,
        #    prediction_heads=[prediction_head],
        #    embeds_dropout_prob=0.1,
        #    lm_output_types=["per_token"],
        #    device=device,)

        # Create an optimizer
        model, optimizer, lr_schedule = initialize_optimizer(
            model=model,
            learning_rate=learning_rate,
            device=device,
            n_batches=len(silo_to_use.loaders["train"]),
            n_epochs=n_epochs,
            use_amp=use_amp)

        # Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
        # Also create an EarlyStopping instance and pass it on to the trainer

        trainer = Trainer(model=model,
                          optimizer=optimizer,
                          data_silo=silo_to_use,
                          epochs=n_epochs,
                          n_gpu=n_gpu,
                          lr_schedule=lr_schedule,
                          evaluate_every=evaluate_every,
                          device=device,
                          evaluator_test=False)

        # train it
        trainer.train()

        return trainer.model
Exemple #3
0
def distilbert_squad(request):
    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=False)
    batch_size = 2
    n_epochs = 1
    evaluate_every = 4
    base_LM_model = "distilbert-base-uncased"

    tokenizer = Tokenizer.load(pretrained_model_name_or_path=base_LM_model,
                               do_lower_case=True,
                               use_fast=request.param)
    label_list = ["start_token", "end_token"]
    processor = SquadProcessor(tokenizer=tokenizer,
                               max_seq_len=20,
                               doc_stride=10,
                               max_query_length=6,
                               train_filename="train-sample.json",
                               dev_filename="dev-sample.json",
                               test_filename=None,
                               data_dir=Path("samples/qa"),
                               label_list=label_list,
                               metric="squad")

    data_silo = DataSilo(processor=processor,
                         batch_size=batch_size,
                         max_processes=1)
    language_model = LanguageModel.load(base_LM_model)
    prediction_head = QuestionAnsweringHead()
    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[prediction_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_token"],
        device=device,
    )

    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=2e-5,
        #optimizer_opts={'name': 'AdamW', 'lr': 2E-05},
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
        device=device)
    trainer = Trainer(model=model,
                      optimizer=optimizer,
                      data_silo=data_silo,
                      epochs=n_epochs,
                      n_gpu=n_gpu,
                      lr_schedule=lr_schedule,
                      evaluate_every=evaluate_every,
                      device=device)
    trainer.train()

    return model, processor
Exemple #4
0
    def predict_with_targets(
            cls, splits: Splits,
            task_data: Dict[str,
                            Any]) -> Dict[str, Tuple[Sequences, Sequences]]:
        params: Params = task_data["params"]
        data_silo, farm_data = build_data_silo(params, splits,
                                               task_data["processor"])

        set_all_seeds(seed=42)
        device, n_gpu = initialize_device_settings(use_cuda=True)

        evaluate_every = 400

        lr_schedule, model, optimizer = build_model(
            len(data_silo.loaders["train"]), device, params.n_epochs,
            task_data)

        trainer = Trainer(
            model=model,
            optimizer=optimizer,
            data_silo=data_silo,
            epochs=params.n_epochs,
            n_gpu=n_gpu,
            lr_schedule=lr_schedule,
            evaluate_every=evaluate_every,
            device=device,
        )

        trainer.train()

        # 8. Hooray! You have a model. Store it:
        # save_dir = "saved_models/bert-german-ner-tutorial"
        # model.save(save_dir)
        # processor.save(save_dir)

        inferencer = Inferencer(
            model,
            task_data["processor"],
            task_type="ner",
            batch_size=16,
            num_processes=8,
            gpu=True,
        )

        out = {
            split_name: predict_iob(inferencer, split_name, split_data)
            for split_name, split_data in farm_data.items()
        }

        return out
    def train_on_split(silo_to_use, n_fold, save_dir, dev):
        # Create an AdaptiveModel
        # a) which consists of a pretrained language model as a basis
        language_model = LanguageModel.load(lang_model)
        # b) and a prediction head on top that is suited for our task => Text classification
        prediction_head = MultiLabelTextClassificationHead(
            # there is still an error with class weights ...
            # class_weights=data_silo.calculate_class_weights(task_name="text_classification"),
            num_labels=len(label_list))

        model = AdaptiveModel(
            language_model=language_model,
            prediction_heads=[prediction_head],
            embeds_dropout_prob=0.2,
            lm_output_types=["per_sequence"],
            device=dev)

        # Create an optimizer
        model, optimizer, lr_schedule = initialize_optimizer(
            model=model,
            learning_rate=0.5e-5,
            device=dev,
            n_batches=len(silo_to_use.loaders["train"]),
            n_epochs=n_epochs)

        # Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
        # Also create an EarlyStopping instance and pass it on to the trainer
        save_dir = Path(str(save_dir) + f"-{n_fold}")
        # unfortunately, early stopping is still not working
        earlystopping = EarlyStopping(
            metric="f1_macro", mode="max",
            save_dir=save_dir,  # where to save the best model
            patience=5 # number of evaluations to wait for improvement before terminating the training
        )

        trainer = Trainer(model=model, optimizer=optimizer,
                          data_silo=silo_to_use, epochs=n_epochs,
                          n_gpu=n_gpu, lr_schedule=lr_schedule,
                          evaluate_every=evaluate_every,
                          device=dev, evaluator_test=False,
                          #early_stopping=earlystopping)
                          )
        # train it
        trainer.train()
        trainer.model.save(save_dir)
        return trainer.model
Exemple #6
0
def doc_classifcation():
    device, n_gpu = initialize_device_settings(use_cuda=True, use_amp=use_amp)

    tokenizer = AutoTokenizer.from_pretrained(lang_model, strip_accents=False)
    #tokenizer = Tokenizer.load(
    #    pretrained_model_name_or_path=lang_model,
    #    do_lower_case=do_lower_case)

    processor = TextClassificationProcessor(tokenizer=tokenizer,
                                            max_seq_len=128,
                                            data_dir=Path("./data/germeval18"),
                                            label_list=label_list,
                                            metric=metric,
                                            dev_filename="test.tsv",  # we want to evaluate against test
                                            label_column_name="coarse_label",
                                            )

    data_silo = DataSilo(
        processor=processor,
        batch_size=batch_size)

    language_model = LanguageModel.load(lang_model)
    prediction_head = TextClassificationHead(
        class_weights=data_silo.calculate_class_weights(task_name="text_classification"),
        num_labels=len(label_list))

    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[prediction_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_sequence"],
        device=device)

    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=3e-5,
        device=device,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
        use_amp=use_amp)

    earlystopping = EarlyStopping(
        metric=metric, mode="max",
        #save_dir=Path("./saved_models"),
        patience=3
    )

    trainer = Trainer(
        model=model,
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        early_stopping=earlystopping,
        device=device)

    trainer.train()

    return earlystopping.best_so_far
def train_from_scratch():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )

    ml_logger = MLFlowLogger(tracking_uri="")
    ml_logger.init_experiment(experiment_name="from_scratch", run_name="debug")

    #########################
    ######## Settings
    ########################
    set_all_seeds(seed=39)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    evaluate_every = 5000
    vocab_size = 30522
    # dev_filename = None
    save_dir = Path("saved_models/train_from_scratch")

    n_epochs = 10
    learning_rate = 1e-4
    warmup_proportion = 0.05
    batch_size = 16  # (probably only possible via gradient accumulation steps)
    max_seq_len = 64

    data_dir = Path("data/lm_finetune_nips")
    train_filename = "train.txt"
    dev_filename = "dev.txt"

    # 1.Create a tokenizer
    tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    processor = BertStyleLMProcessor(
        data_dir=data_dir,
        tokenizer=tokenizer,
        max_seq_len=max_seq_len,
        train_filename=train_filename,
        dev_filename=dev_filename,
        test_filename=None,
    )

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and
    #    calculates a few descriptive statistics of our datasets
    stream_data_silo = StreamingDataSilo(processor=processor,
                                         batch_size=batch_size)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.from_scratch("bert", vocab_size)

    # b) and *two* prediction heads on top that are suited for our task => Language Model finetuning
    lm_prediction_head = BertLMHead(768, vocab_size)
    next_sentence_head = NextSentenceHead([768, 2], task_name="nextsentence")

    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[lm_prediction_head, next_sentence_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_token", "per_sequence"],
        device=device,
    )

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=learning_rate,
        schedule_opts={
            "name": "LinearWarmup",
            "warmup_proportion": warmup_proportion
        },
        n_batches=len(stream_data_silo.get_data_loader("train")),
        n_epochs=n_epochs,
        device=device,
        grad_acc_steps=8,
    )

    # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time
    trainer = Trainer.create_or_load_checkpoint(
        model=model,
        optimizer=optimizer,
        data_silo=stream_data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device,
        grad_acc_steps=8,
        checkpoint_root_dir=Path(
            "saved_models/train_from_scratch/checkpoints"),
    )
    # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    model.save(save_dir)
    processor.save(save_dir)
def doc_classification_with_earlystopping():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO)

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    # for local logging instead:
    # ml_logger = MLFlowLogger(tracking_uri="logs")
    ml_logger.init_experiment(experiment_name="Public_FARM",
                              run_name="DocClassification_ES_f1_1")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    use_amp = None
    device, n_gpu = initialize_device_settings(use_cuda=True)
    n_epochs = 20
    batch_size = 32
    evaluate_every = 100
    lang_model = "bert-base-german-cased"
    do_lower_case = False

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model,
                               do_lower_case=do_lower_case)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    # Here we load GermEval 2018 Data automaticaly if it is not available.
    # GermEval 2018 only has train.tsv and test.tsv dataset - no dev.tsv

    # The processor wants to know the possible labels ...
    label_list = ["OTHER", "OFFENSE"]

    # The evaluation on the dev-set can be done with one of the predefined metrics or with a
    # metric defined as a function from (preds, labels) to a dict that contains all the actual
    # metrics values. The function must get registered under a string name and the string name must
    # be used.
    def mymetrics(preds, labels):
        acc = simple_accuracy(preds, labels)
        f1other = f1_score(y_true=labels, y_pred=preds, pos_label="OTHER")
        f1offense = f1_score(y_true=labels, y_pred=preds, pos_label="OFFENSE")
        f1macro = f1_score(y_true=labels, y_pred=preds, average="macro")
        f1micro = f1_score(y_true=labels, y_pred=preds, average="macro")
        return {
            "acc": acc,
            "f1_other": f1other,
            "f1_offense": f1offense,
            "f1_macro": f1macro,
            "f1_micro": f1micro
        }

    register_metrics('mymetrics', mymetrics)
    metric = 'mymetrics'

    processor = TextClassificationProcessor(
        tokenizer=tokenizer,
        max_seq_len=64,
        data_dir=Path("../data/germeval18"),
        label_list=label_list,
        metric=metric,
        label_column_name="coarse_label")

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
    data_silo = DataSilo(processor=processor, batch_size=batch_size)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.load(lang_model)
    # b) and a prediction head on top that is suited for our task => Text classification
    prediction_head = TextClassificationHead(
        num_labels=len(label_list),
        class_weights=data_silo.calculate_class_weights(
            task_name="text_classification"))

    model = AdaptiveModel(language_model=language_model,
                          prediction_heads=[prediction_head],
                          embeds_dropout_prob=0.2,
                          lm_output_types=["per_sequence"],
                          device=device)

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=0.5e-5,
        device=device,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
        use_amp=use_amp)

    # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
    # Also create an EarlyStopping instance and pass it on to the trainer

    # An early stopping instance can be used to save the model that performs best on the dev set
    # according to some metric and stop training when no improvement is happening for some iterations.
    earlystopping = EarlyStopping(
        metric="f1_offense",
        mode=
        "max",  # use the metric from our own metrics function instead of loss
        # metric="f1_macro", mode="max",  # use f1_macro from the dev evaluator of the trainer
        # metric="loss", mode="min",   # use loss from the dev evaluator of the trainer
        save_dir=Path("saved_models/bert-german-doc-tutorial-es"
                      ),  # where to save the best model
        patience=
        5  # number of evaluations to wait for improvement before terminating the training
    )

    trainer = Trainer(model=model,
                      optimizer=optimizer,
                      data_silo=data_silo,
                      epochs=n_epochs,
                      n_gpu=n_gpu,
                      lr_schedule=lr_schedule,
                      evaluate_every=evaluate_every,
                      device=device,
                      early_stopping=earlystopping)

    # 7. Let it grow
    trainer.train()

    # 8. Hooray! You have a model.
    # NOTE: if early stopping is used, the best model has been stored already in the directory
    # defined with the EarlyStopping instance
    # The model we have at this moment is the model from the last training epoch that was carried
    # out before early stopping terminated the training
    save_dir = Path("saved_models/bert-german-doc-tutorial")
    model.save(save_dir)
    processor.save(save_dir)

    # 9. Load it & harvest your fruits (Inference)
    basic_texts = [
        {
            "text":
            "Schartau sagte dem Tagesspiegel, dass Fischer ein Idiot sei"
        },
        {
            "text": "Martin Müller spielt Handball in Berlin"
        },
    ]

    # Load from the final epoch directory and apply
    print("LOADING INFERENCER FROM FINAL MODEL DURING TRAINING")
    model = Inferencer.load(save_dir)
    result = model.inference_from_dicts(dicts=basic_texts)
    print(result)
    model.close_multiprocessing_pool()

    # Load from saved best model
    print("LOADING INFERENCER FROM BEST MODEL DURING TRAINING")
    model = Inferencer.load(earlystopping.save_dir)
    result = model.inference_from_dicts(dicts=basic_texts)
    print("APPLICATION ON BEST MODEL")
    print(result)
    model.close_multiprocessing_pool()
Exemple #9
0
)

# 5. Create an optimizer
optimizer, warmup_linear = initialize_optimizer(
    model=model,
    learning_rate=2e-5,
    warmup_proportion=0.1,
    n_examples=data_silo.n_samples("train"),
    batch_size=16,
    n_epochs=1,
)

# 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
trainer = Trainer(
    optimizer=optimizer,
    data_silo=data_silo,
    epochs=10,
    n_gpu=1,
    warmup_linear=warmup_linear,
    evaluate_every=100,
    device=device,
)

# 7. Let it grow! Watch the tracked metrics live on the public mlflow server: http://80.158.39.167:5000/
model = trainer.train(model)

# 8. Hooray! You have a model. Store it:
save_dir = "save/bert-german-lm-tutorial"
model.save(save_dir)
processor.save(save_dir)
Exemple #10
0
# 5. Create an optimizer
model, optimizer, lr_schedule = initialize_optimizer(
    model=model,
    learning_rate=2e-5,
    device=device,
    n_batches=len(data_silo.loaders["train"]),
    n_epochs=n_epochs,
    use_amp=use_amp)

# 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
trainer = Trainer(
    optimizer=optimizer,
    data_silo=data_silo,
    epochs=n_epochs,
    n_gpu=n_gpu,
    lr_schedule=lr_schedule,
    evaluate_every=evaluate_every,
    device=device,
)

# 7. Let it grow
model = trainer.train(model)

# 8. Hooray! You have a model. Store it:
save_dir = "saved_models/bert-german-doc-tutorial"
model.save(save_dir)
processor.save(save_dir)

# 9. Load it & harvest your fruits (Inference)
basic_texts = [
Exemple #11
0
    def train(
        self,
        data_dir: str,
        train_filename: str,
        dev_filename: Optional[str] = None,
        test_filename: Optional[str] = None,
        use_gpu: Optional[bool] = None,
        batch_size: int = 10,
        n_epochs: int = 2,
        learning_rate: float = 1e-5,
        max_seq_len: Optional[int] = None,
        warmup_proportion: float = 0.2,
        dev_split: float = 0,
        evaluate_every: int = 300,
        save_dir: Optional[str] = None,
        num_processes: Optional[int] = None,
        use_amp: str = None,
    ):
        """
        Fine-tune a model on a QA dataset. Options:

        - Take a plain language model (e.g. `bert-base-cased`) and train it for QA (e.g. on SQuAD data)
        - Take a QA model (e.g. `deepset/bert-base-cased-squad2`) and fine-tune it for your domain (e.g. using your labels collected via the haystack annotation tool)

        :param data_dir: Path to directory containing your training data in SQuAD style
        :param train_filename: Filename of training data
        :param dev_filename: Filename of dev / eval data
        :param test_filename: Filename of test data
        :param dev_split: Instead of specifying a dev_filename, you can also specify a ratio (e.g. 0.1) here
                          that gets split off from training data for eval.
        :param use_gpu: Whether to use GPU (if available)
        :param batch_size: Number of samples the model receives in one batch for training
        :param n_epochs: Number of iterations on the whole training data set
        :param learning_rate: Learning rate of the optimizer
        :param max_seq_len: Maximum text length (in tokens). Everything longer gets cut down.
        :param warmup_proportion: Proportion of training steps until maximum learning rate is reached.
                                  Until that point LR is increasing linearly. After that it's decreasing again linearly.
                                  Options for different schedules are available in FARM.
        :param evaluate_every: Evaluate the model every X steps on the hold-out eval dataset
        :param save_dir: Path to store the final model
        :param num_processes: The number of processes for `multiprocessing.Pool` during preprocessing.
                              Set to value of 1 to disable multiprocessing. When set to 1, you cannot split away a dev set from train set.
                              Set to None to use all CPU cores minus one.
        :param use_amp: Optimization level of NVIDIA's automatic mixed precision (AMP). The higher the level, the faster the model.
                        Available options:
                        None (Don't use AMP)
                        "O0" (Normal FP32 training)
                        "O1" (Mixed Precision => Recommended)
                        "O2" (Almost FP16)
                        "O3" (Pure FP16).
                        See details on: https://nvidia.github.io/apex/amp.html
        :return: None
        """

        if dev_filename:
            dev_split = 0

        if num_processes is None:
            num_processes = multiprocessing.cpu_count() - 1 or 1

        set_all_seeds(seed=42)

        # For these variables, by default, we use the value set when initializing the FARMReader.
        # These can also be manually set when train() is called if you want a different value at train vs inference
        if use_gpu is None:
            use_gpu = self.use_gpu
        if max_seq_len is None:
            max_seq_len = self.max_seq_len

        device, n_gpu = initialize_device_settings(use_cuda=use_gpu,
                                                   use_amp=use_amp)

        if not save_dir:
            save_dir = f"../../saved_models/{self.inferencer.model.language_model.name}"

        # 1. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
        label_list = ["start_token", "end_token"]
        metric = "squad"
        processor = SquadProcessor(
            tokenizer=self.inferencer.processor.tokenizer,
            max_seq_len=max_seq_len,
            label_list=label_list,
            metric=metric,
            train_filename=train_filename,
            dev_filename=dev_filename,
            dev_split=dev_split,
            test_filename=test_filename,
            data_dir=Path(data_dir),
        )

        # 2. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them
        # and calculates a few descriptive statistics of our datasets
        data_silo = DataSilo(processor=processor,
                             batch_size=batch_size,
                             distributed=False,
                             max_processes=num_processes)

        # Quick-fix until this is fixed upstream in FARM:
        # We must avoid applying DataParallel twice (once when loading the inferencer,
        # once when calling initalize_optimizer)
        self.inferencer.model.save("tmp_model")
        model = BaseAdaptiveModel.load(load_dir="tmp_model",
                                       device=device,
                                       strict=True)
        shutil.rmtree('tmp_model')

        # 3. Create an optimizer and pass the already initialized model
        model, optimizer, lr_schedule = initialize_optimizer(
            model=model,
            # model=self.inferencer.model,
            learning_rate=learning_rate,
            schedule_opts={
                "name": "LinearWarmup",
                "warmup_proportion": warmup_proportion
            },
            n_batches=len(data_silo.loaders["train"]),
            n_epochs=n_epochs,
            device=device,
            use_amp=use_amp,
        )
        # 4. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time
        trainer = Trainer(
            model=model,
            optimizer=optimizer,
            data_silo=data_silo,
            epochs=n_epochs,
            n_gpu=n_gpu,
            lr_schedule=lr_schedule,
            evaluate_every=evaluate_every,
            device=device,
            use_amp=use_amp,
        )

        # 5. Let it grow!
        self.inferencer.model = trainer.train()
        self.save(Path(save_dir))
Exemple #12
0
def test_qa(caplog):
    caplog.set_level(logging.CRITICAL)

    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=False)
    batch_size = 2
    n_epochs = 1
    evaluate_every = 4
    base_LM_model = "bert-base-cased"

    tokenizer = BertTokenizer.from_pretrained(
        pretrained_model_name_or_path=base_LM_model, do_lower_case=False)
    label_list = ["start_token", "end_token"]
    processor = SquadProcessor(tokenizer=tokenizer,
                               max_seq_len=16,
                               max_query_length=4,
                               train_filename="train-sample.json",
                               dev_filename="dev-sample.json",
                               test_filename=None,
                               data_dir="samples/qa",
                               labels=label_list,
                               metric="squad")

    data_silo = DataSilo(processor=processor, batch_size=batch_size)
    language_model = Bert.load(base_LM_model)
    prediction_head = QuestionAnsweringHead(layer_dims=[768, len(label_list)])
    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[prediction_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_token"],
        device=device,
    )

    optimizer, warmup_linear = initialize_optimizer(
        model=model,
        learning_rate=1e-5,
        warmup_proportion=0.2,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
    )
    trainer = Trainer(
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        warmup_linear=warmup_linear,
        evaluate_every=evaluate_every,
        device=device,
    )
    model = trainer.train(model)
    save_dir = "testsave/qa"
    model.save(save_dir)
    processor.save(save_dir)

    QA_input = [{
        "questions": ["In what country is Normandy located?"],
        "text":
        'The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th and 11th centuries gave their name to Normandy, a region in France. They were descended from Norse ("Norman" comes from "Norseman") raiders and pirates from Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear fealty to King Charles III of West Francia. Through generations of assimilation and mixing with the native Frankish and Roman-Gaulish populations, their descendants would gradually merge with the Carolingian-based cultures of West Francia. The distinct cultural and ethnic identity of the Normans emerged initially in the first half of the 10th century, and it continued to evolve over the succeeding centuries.',
    }]

    model = Inferencer.load(save_dir)
    result = model.run_inference(dicts=QA_input)
    assert isinstance(result[0]["predictions"][0]["end"], int)
Exemple #13
0
def dense_passage_retrieval():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="FARM-dense_passage_retrieval",
                              run_name="Run_dpr")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    batch_size = 4
    n_epochs = 3
    distributed = False  # enable for multi GPU training via DDP
    evaluate_every = 1000
    question_lang_model = "facebook/dpr-question_encoder-single-nq-base"
    passage_lang_model = "facebook/dpr-ctx_encoder-single-nq-base"
    do_lower_case = True
    use_fast = True
    embed_title = True
    num_hard_negatives = 1
    similarity_function = "dot_product"
    train_filename = "nq-train.json"
    dev_filename = "nq-dev.json"
    test_filename = "nq-dev.json"
    max_samples = None  # load a smaller dataset (e.g. for debugging)

    # For multi GPU Training via DDP we need to get the local rank
    args = parse_arguments()
    device, n_gpu = initialize_device_settings(use_cuda=True,
                                               local_rank=args.local_rank)

    # 1.Create question and passage tokenizers
    query_tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=question_lang_model,
        do_lower_case=do_lower_case,
        use_fast=use_fast)
    passage_tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=passage_lang_model,
        do_lower_case=do_lower_case,
        use_fast=use_fast)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    # data_dir "data/retriever" should contain DPR training and dev files downloaded from https://github.com/facebookresearch/DPR
    # i.e., nq-train.json, nq-dev.json or trivia-train.json, trivia-dev.json
    label_list = ["hard_negative", "positive"]
    metric = "text_similarity_metric"
    processor = TextSimilarityProcessor(query_tokenizer=query_tokenizer,
                                        passage_tokenizer=passage_tokenizer,
                                        max_seq_len_query=64,
                                        max_seq_len_passage=256,
                                        label_list=label_list,
                                        metric=metric,
                                        data_dir="../data/retriever",
                                        train_filename=train_filename,
                                        dev_filename=dev_filename,
                                        test_filename=test_filename,
                                        embed_title=embed_title,
                                        num_hard_negatives=num_hard_negatives,
                                        max_samples=max_samples)

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
    # NOTE: In FARM, the dev set metrics differ from test set metrics in that they are calculated on a token level instead of a word level
    data_silo = DataSilo(processor=processor,
                         batch_size=batch_size,
                         distributed=distributed)

    # 4. Create an BiAdaptiveModel+
    # a) which consists of 2 pretrained language models as a basis
    question_language_model = LanguageModel.load(
        pretrained_model_name_or_path="bert-base-uncased",
        language_model_class="DPRQuestionEncoder")
    passage_language_model = LanguageModel.load(
        pretrained_model_name_or_path="bert-base-uncased",
        language_model_class="DPRContextEncoder")

    # b) and a prediction head on top that is suited for our task => Question Answering
    prediction_head = TextSimilarityHead(
        similarity_function=similarity_function)

    model = BiAdaptiveModel(
        language_model1=question_language_model,
        language_model2=passage_language_model,
        prediction_heads=[prediction_head],
        embeds_dropout_prob=0.1,
        lm1_output_types=["per_sequence"],
        lm2_output_types=["per_sequence"],
        device=device,
    )

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=1e-5,
        optimizer_opts={"name": "TransformersAdamW", "correct_bias": True, "weight_decay": 0.0, \
                        "eps": 1e-08},
        schedule_opts={"name": "LinearWarmup", "num_warmup_steps": 100},
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
        grad_acc_steps=1,
        device=device,
        distributed=distributed
    )

    # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time
    trainer = Trainer(
        model=model,
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device,
    )

    # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    save_dir = Path("../saved_models/dpr-tutorial")
    model.save(save_dir)
    processor.save(save_dir)

    # 9. Evaluate
    test_data_loader = data_silo.get_data_loader("test")
    if test_data_loader is not None:
        evaluator_test = Evaluator(data_loader=test_data_loader,
                                   tasks=data_silo.processor.tasks,
                                   device=device)
        model.connect_heads_with_processor(processor.tasks)
        test_result = evaluator_test.eval(model)
Exemple #14
0
def test_ner(caplog):
    caplog.set_level(logging.CRITICAL)

    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=False)
    n_epochs = 1
    batch_size = 2
    evaluate_every = 1
    lang_model = "bert-base-german-cased"

    tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=lang_model, do_lower_case=False
    )

    ner_labels = ["[PAD]", "X", "O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-OTH",
                  "I-OTH"]

    processor = NERProcessor(
        tokenizer=tokenizer,
        max_seq_len=8,
        data_dir="samples/ner",
        train_filename="train-sample.txt",
        dev_filename="dev-sample.txt",
        test_filename=None,
        delimiter=" ",
        label_list=ner_labels,
        metric="seq_f1"
    )

    data_silo = DataSilo(processor=processor, batch_size=batch_size)
    language_model = LanguageModel.load(lang_model)
    prediction_head = TokenClassificationHead(layer_dims=[768, len(ner_labels)])

    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[prediction_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_token"],
        device=device,
    )

    optimizer, warmup_linear = initialize_optimizer(
        model=model,
        learning_rate=2e-5,
        warmup_proportion=0.1,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
    )

    trainer = Trainer(
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        warmup_linear=warmup_linear,
        evaluate_every=evaluate_every,
        device=device,
    )

    save_dir = "testsave/ner"
    model = trainer.train(model)
    model.save(save_dir)
    processor.save(save_dir)

    basic_texts = [
        {"text": "Schartau sagte dem Tagesspiegel, dass Fischer ein Idiot sei"},
    ]
    model = Inferencer.load(save_dir)
    result = model.inference_from_dicts(dicts=basic_texts)
    assert result[0]["predictions"][0]["context"] == "sagte"
    assert isinstance(result[0]["predictions"][0]["probability"], np.float32)
 def execML(self, job):
     start_time = time.time()
     if job.task == 'analyse':
         basic_texts = []
         # Will donwload and store dataset...
         sample = self.downloadAndConvertText(job, job.data_sample)
         for text in sample.encode('utf-8').splitlines():
             basic_texts.append({'text': text.decode('utf-8')})
         # Will donwload and store model...
         self.downloadAndStoreZIPModel(job, job.model)
         self.updateJobStatus(job, 'analysing')
         save_dir = 'tmp/' + job.model['id']
         model = Inferencer.load(save_dir)
         result = model.inference_from_dicts(dicts=basic_texts)
         self.persistResult(job, result)
         model.close_multiprocessing_pool()
         self.updateJobStatus(job, 'completed')
     elif job.task == 'train':
         self.updateJobStatus(job, 'training')
         # Will donwload and store dataset...
         self.downloadAndStoreZIPDataset(job, job.data_source)
         # Will donwload and store model...
         self.downloadAndStoreZIPModel(job, job.model)
         set_all_seeds(seed=42)
         device, n_gpu = initialize_device_settings(use_cuda=True)
         n_epochs = 4
         evaluate_every = 400
         do_lower_case = False
         batch_size = 32
         lang_model = os.path.join(Path.cwd(), 'tmp', job.model['id'])
         ner_labels = [
             "[PAD]", "X", "O", "B-MISC", "I-MISC", "B-PER", "I-PER",
             "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-OTH", "I-OTH"
         ]
         # 1. Create a tokenizer
         tokenizer = Tokenizer.load(
             pretrained_model_name_or_path=lang_model,
             do_lower_case=do_lower_case,
             tokenizer_class='BertTokenizer'
         )  #tokenizer_class='BertTokenizer'
         # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
         processor = NERProcessor(tokenizer=tokenizer,
                                  max_seq_len=128,
                                  data_dir=str(
                                      os.path.join(Path.cwd(), 'tmp',
                                                   job.data_source['id'])),
                                  delimiter=' ',
                                  metric='seq_f1',
                                  label_list=ner_labels)
         # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
         data_silo = DataSilo(processor=processor,
                              batch_size=batch_size,
                              max_processes=1)
         # 4. Create an AdaptiveModel
         # 4.1 which consists of a pretrained language model as a basis
         language_model = LanguageModel.load(lang_model)
         # 4.2 and a prediction head on top that is suited for our task => NER
         prediction_head = TokenClassificationHead(
             num_labels=len(ner_labels))
         model = AdaptiveModel(
             language_model=language_model,
             prediction_heads=[prediction_head],
             embeds_dropout_prob=0.1,
             lm_output_types=['per_token'],
             device=device,
         )
         # 5. Create an optimizer
         model, optimizer, lr_schedule = initialize_optimizer(
             model=model,
             learning_rate=1e-5,
             n_batches=len(data_silo.loaders["train"]),
             n_epochs=n_epochs,
             device=device,
         )
         # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
         trainer = Trainer(
             model=model,
             optimizer=optimizer,
             data_silo=data_silo,
             epochs=n_epochs,
             n_gpu=n_gpu,
             lr_schedule=lr_schedule,
             evaluate_every=evaluate_every,
             device=device,
         )
         # 7. Let it grow
         trainer.train()
         # 8. Hooray! You have a model. Store it:
         newModelId = str(uuid.uuid4())
         save_dir = 'tmp/' + newModelId
         model.save(save_dir)
         processor.save(save_dir)
         model.close_multiprocessing_pool()
         self.persistZIPModel(newModelId, job)
         self.updateJobStatus(job, 'completed')
     elapsed_time = time.time() - start_time
     print('Execution time max: ',
           elapsed_time,
           'for job.id:',
           job.id,
           flush=True)
     return {'status': True, 'code': 'ok', 'msg': 'success'}
Exemple #16
0
def run_experiment(args):

    logger.info("\n***********************************************"
                f"\n************* Experiment: {args.task.name} ************"
                "\n************************************************")
    ml_logger = MlLogger(tracking_uri=args.logging.mlflow_url)
    ml_logger.init_experiment(
        experiment_name=args.logging.mlflow_experiment,
        run_name=args.logging.mlflow_run_name,
        nested=args.logging.mlflow_nested,
    )

    validate_args(args)
    distributed = bool(args.general.local_rank != -1)

    # Init device and distributed settings
    device, n_gpu = initialize_device_settings(
        use_cuda=args.general.cuda,
        local_rank=args.general.local_rank,
        fp16=args.general.fp16,
    )

    args.parameter.batch_size = int(args.parameter.batch_size //
                                    args.parameter.gradient_accumulation_steps)
    if n_gpu > 1:
        args.parameter.batch_size = args.parameter.batch_size * n_gpu
    set_all_seeds(args.general.seed)

    # Prepare Data
    tokenizer = Tokenizer.load(args.parameter.model,
                               do_lower_case=args.parameter.lower_case)

    processor = Processor.load(
        tokenizer=tokenizer,
        max_seq_len=args.parameter.max_seq_len,
        data_dir=args.general.data_dir,
        **args.task.toDict(
        ),  # args is of type DotMap and needs conversion to std python dicts
    )

    data_silo = DataSilo(
        processor=processor,
        batch_size=args.parameter.batch_size,
        distributed=distributed,
    )

    class_weights = None
    if args.parameter.balance_classes:
        task_names = list(processor.tasks.keys())
        if len(task_names) > 1:
            raise NotImplementedError(
                f"Balancing classes is currently not supported for multitask experiments. Got tasks:  {task_names} "
            )
        class_weights = data_silo.calculate_class_weights(
            task_name=task_names[0])

    model = get_adaptive_model(
        lm_output_type=args.parameter.lm_output_type,
        prediction_heads=args.parameter.prediction_head,
        layer_dims=args.parameter.layer_dims,
        model=args.parameter.model,
        device=device,
        class_weights=class_weights,
        embeds_dropout_prob=args.parameter.embeds_dropout_prob,
    )

    # Init optimizer

    # TODO: warmup linear is sometimes NONE depending on fp16 - is there a neater way to handle this?
    optimizer, warmup_linear = initialize_optimizer(
        model=model,
        learning_rate=args.parameter.learning_rate,
        warmup_proportion=args.parameter.warmup_proportion,
        loss_scale=args.general.loss_scale,
        fp16=args.general.fp16,
        n_batches=len(data_silo.loaders["train"]),
        grad_acc_steps=args.parameter.gradient_accumulation_steps,
        n_epochs=args.parameter.epochs,
    )

    trainer = Trainer(
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=args.parameter.epochs,
        n_gpu=n_gpu,
        grad_acc_steps=args.parameter.gradient_accumulation_steps,
        fp16=args.general.fp16,
        local_rank=args.general.local_rank,
        warmup_linear=warmup_linear,
        evaluate_every=args.logging.eval_every,
        device=device,
    )

    model = trainer.train(model)

    model_name = (
        f"{model.language_model.name}-{model.language_model.language}-{args.task.name}"
    )
    processor.save(f"{args.general.output_dir}/{model_name}")
    model.save(f"{args.general.output_dir}/{model_name}")
Exemple #17
0
def xlmr_qa_demo():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM", run_name="run_xmlr_qa")

    #########################
    ######## Settings
    ########################
    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    batch_size = 3
    grad_acc_steps = 8
    n_epochs = 2
    evaluate_every = 200
    base_LM_model = "xlm-roberta-large"

    data_dir = Path("../data/squad20")
    train_filename = Path("train-v2.0.json")
    dev_filename = Path("dev-v2.0.json")

    save_dir = Path("../saved_models/xlmr-large-qa")

    inference_file = Path("../data/MLQA_V1/dev/dev-context-de-question-de.json")
    predictions_file = save_dir / "predictions.json"
    full_predictions_file = save_dir / "full_predictions.json"
    max_processes_for_inference = 8
    train = True
    inference = False

    if train:
        # 1.Create a tokenizer
        tokenizer = Tokenizer.load(pretrained_model_name_or_path=base_LM_model)
        # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
        label_list = ["start_token", "end_token"]
        metric = "squad"
        processor = SquadProcessor(
            tokenizer=tokenizer,
            max_seq_len=384,
            label_list=label_list,
            metric=metric,
            train_filename=train_filename,
            dev_filename=dev_filename,
            test_filename=None,
            data_dir=data_dir,
            dev_split=0.0
        )

        # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
        data_silo = DataSilo(processor=processor, batch_size=batch_size, distributed=False, max_processes=1)

        # 4. Create an AdaptiveModel
        # a) which consists of a pretrained language model as a basis
        language_model = LanguageModel.load(base_LM_model, n_added_tokens=3)
        # b) and a prediction head on top that is suited for our task => Question Answering
        prediction_head = QuestionAnsweringHead()

        model = AdaptiveModel(
            language_model=language_model,
            prediction_heads=[prediction_head],
            embeds_dropout_prob=0.1,
            lm_output_types=["per_token"],
            device=device,
        )

        # 5. Create an optimizer
        model, optimizer, lr_schedule = initialize_optimizer(
            model=model,
            learning_rate=3e-5,
            schedule_opts={"name": "LinearWarmup", "warmup_proportion": 0.2},
            n_batches=len(data_silo.loaders["train"]),
            n_epochs=n_epochs,
            grad_acc_steps=grad_acc_steps,
            device=device
        )

        # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time
        trainer = Trainer(
            optimizer=optimizer,
            data_silo=data_silo,
            epochs=n_epochs,
            n_gpu=n_gpu,
            lr_schedule=lr_schedule,
            evaluate_every=evaluate_every,
            device=device,
        )
        # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai
        model = trainer.train(model)

        # 8. Hooray! You have a model. Store it:
        model.save(save_dir)
        processor.save(save_dir)


    if inference:
        model = Inferencer.load(save_dir, batch_size=32, gpu=True)
        full_result = model.inference_from_file(
            file=inference_file,
            max_processes=max_processes_for_inference,
        )

        for x in full_result:
            print(x)
            print()

        result = {r["id"]: r["preds"][0][0] for r in full_result}
        full_result = {r["id"]: r["preds"] for r in full_result}

        json.dump(result,
                  open(predictions_file, "w"),
                  indent=4,
                  ensure_ascii=False)
        json.dump(full_result,
                  open(full_predictions_file, "w"),
                  indent=4,
                  ensure_ascii=False)
Exemple #18
0
def question_answering():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO)

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_natural_questions")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    batch_size = 24
    n_epochs = 1
    evaluate_every = 500
    lang_model = "deepset/roberta-base-squad2" # start with a model that can already extract answers
    do_lower_case = False # roberta is a cased model
    train_filename = "train_medium.jsonl"
    dev_filename = "dev_medium.jsonl"
    keep_is_impossible = 0.15 # downsample negative examples after data conversion
    downsample_context_size = 300 # reduce length of wikipedia articles to relevant part around the answer

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=lang_model, do_lower_case=do_lower_case
    )

    # Add HTML tag tokens to the tokenizer vocabulary, so they do not get split apart
    html_tags = [
                "<Th>","</Th>",
                "<Td>","</Td>",
                "<Tr>","</Tr>",
                "<Li>","</Li>",
                "<P>" ,"</P>",
                "<Ul>","</Ul>",
                "<H1>","</H1>",
                "<H2>","</H2>",
                "<H3>","</H3>",
                "<H4>","</H4>",
                "<H5>", "</H5>",
                "<Td_colspan=",
    ]
    tokenizer.add_tokens(html_tags)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    processor = NaturalQuestionsProcessor(
        tokenizer=tokenizer,
        max_seq_len=384,
        train_filename=train_filename,
        dev_filename=dev_filename,
        keep_no_answer=keep_is_impossible,
        downsample_context_size=downsample_context_size,
        data_dir=Path("../data/natural_questions"),
    )

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
    data_silo = DataSilo(processor=processor, batch_size=batch_size, caching=True)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.load(lang_model,n_added_tokens=len(html_tags))
    # b) and in case of Natural Questions we need two Prediction Heads
    #    one for extractive Question Answering
    qa_head = QuestionAnsweringHead()
    #    another one for answering yes/no questions or deciding if the given text passage might contain an answer
    classification_head = TextClassificationHead(num_labels=len(processor.answer_type_list)) # answer_type_list = ["is_impossible", "span", "yes", "no"]
    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[qa_head, classification_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_token", "per_sequence"],
        device=device,
    )

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=3e-5,
        schedule_opts={"name": "LinearWarmup", "warmup_proportion": 0.2},
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
        device=device
    )

    # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time
    trainer = Trainer(
        model=model,
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device,
    )

    # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    save_dir = Path("../saved_models/roberta-base-squad2-nq")
    model.save(save_dir)
    processor.save(save_dir)

    # 9. Since training on the whole NQ corpus requires substantial compute resources we trained and uploaded a model on s3
    fetch_archive_from_http("https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/models/roberta-base-squad2-nq.zip", output_dir="../saved_models/farm")
    QA_input = [
        {
            "qas": ["Did GameTrailers rated Twilight Princess as one of the best games ever created?"],
            "context":  "Twilight Princess was released to universal critical acclaim and commercial success. It received perfect scores from major publications such as 1UP.com, Computer and Video Games, Electronic Gaming Monthly, Game Informer, GamesRadar, and GameSpy. On the review aggregators GameRankings and Metacritic, Twilight Princess has average scores of 95% and 95 for the Wii version and scores of 95% and 96 for the GameCube version. GameTrailers in their review called it one of the greatest games ever created."
        }
    ]

    model = QAInferencer.load(model_name_or_path="../saved_models/farm/roberta-base-squad2-nq", batch_size=batch_size, gpu=True)
    result = model.inference_from_dicts(dicts=QA_input, return_json=False) # result is a list of QAPred objects

    print(f"\nQuestion: Did GameTrailers rated Twilight Princess as one of the best games ever created?"
          f"\nAnswer from model: {result[0].prediction[0].answer}")
    model.close_multiprocessing_pool()
Exemple #19
0
    def train(self,
              data_dir,
              train_filename,
              dev_filename=None,
              test_file_name=None,
              use_gpu=None,
              batch_size=10,
              n_epochs=2,
              learning_rate=1e-5,
              max_seq_len=None,
              warmup_proportion=0.2,
              dev_split=0.1,
              evaluate_every=300,
              save_dir=None):
        """
        Fine-tune a model on a QA dataset. Options:
        - Take a plain language model (e.g. `bert-base-cased`) and train it for QA (e.g. on SQuAD data)
        - Take a QA model (e.g. `deepset/bert-base-cased-squad2`) and fine-tune it for your domain (e.g. using your labels collected via the haystack annotation tool)

        :param data_dir: Path to directory containing your training data in SQuAD style
        :param train_filename: filename of training data
        :param dev_filename: filename of dev / eval data
        :param test_file_name: filename of test data
        :param dev_split: Instead of specifying a dev_filename you can also specify a ratio (e.g. 0.1) here
                          that get's split off from training data for eval.
        :param use_gpu: Whether to use GPU (if available)
        :param batch_size: Number of samples the model receives in one batch for training
        :param n_epochs: number of iterations on the whole training data set
        :param learning_rate: learning rate of the optimizer
        :param max_seq_len: maximum text length (in tokens). Everything longer gets cut down.
        :param warmup_proportion: Proportion of training steps until maximum learning rate is reached.
                                  Until that point LR is increasing linearly. After that it's decreasing again linearly.
                                  Options for different schedules are available in FARM.
        :param evaluate_every: Evaluate the model every X steps on the hold-out eval dataset
        :param save_dir: Path to store the final model
        :return: None
        """

        if dev_filename:
            dev_split = None

        set_all_seeds(seed=42)

        # For these variables, by default, we use the value set when initializing the FARMReader.
        # These can also be manually set when train() is called if you want a different value at train vs inference
        if use_gpu is None:
            use_gpu = self.use_gpu
        if max_seq_len is None:
            max_seq_len = self.max_seq_len

        device, n_gpu = initialize_device_settings(use_cuda=use_gpu)

        if not save_dir:
            save_dir = f"../../saved_models/{self.inferencer.model.language_model.name}"
        save_dir = Path(save_dir)

        # 1. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
        label_list = ["start_token", "end_token"]
        metric = "squad"
        processor = SquadProcessor(
            tokenizer=self.inferencer.processor.tokenizer,
            max_seq_len=max_seq_len,
            label_list=label_list,
            metric=metric,
            train_filename=train_filename,
            dev_filename=dev_filename,
            dev_split=dev_split,
            test_filename=test_file_name,
            data_dir=Path(data_dir),
        )

        # 2. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them
        # and calculates a few descriptive statistics of our datasets
        data_silo = DataSilo(processor=processor,
                             batch_size=batch_size,
                             distributed=False)

        # 3. Create an optimizer and pass the already initialized model
        model, optimizer, lr_schedule = initialize_optimizer(
            model=self.inferencer.model,
            learning_rate=learning_rate,
            schedule_opts={
                "name": "LinearWarmup",
                "warmup_proportion": warmup_proportion
            },
            n_batches=len(data_silo.loaders["train"]),
            n_epochs=n_epochs,
            device=device)
        # 4. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time
        trainer = Trainer(
            model=model,
            optimizer=optimizer,
            data_silo=data_silo,
            epochs=n_epochs,
            n_gpu=n_gpu,
            lr_schedule=lr_schedule,
            evaluate_every=evaluate_every,
            device=device,
        )
        # 5. Let it grow!
        self.inferencer.model = trainer.train()
        self.save(save_dir)
Exemple #20
0
def ner():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM",
                              run_name="Run_ner")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    n_epochs = 4
    batch_size = 32
    evaluate_every = 400
    lang_model = "bert-base-german-cased"
    do_lower_case = False

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model,
                               do_lower_case=do_lower_case)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    # See test/sample/ner/train-sample.txt for an example of the data format that is expected by the Processor
    ner_labels = [
        "[PAD]", "X", "O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG",
        "I-ORG", "B-LOC", "I-LOC", "B-OTH", "I-OTH"
    ]

    processor = NERProcessor(tokenizer=tokenizer,
                             max_seq_len=128,
                             data_dir=Path("../data/conll03-de"),
                             delimiter=" ",
                             metric="seq_f1",
                             label_list=ner_labels)

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
    data_silo = DataSilo(processor=processor, batch_size=batch_size)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.load(lang_model)
    # b) and a prediction head on top that is suited for our task => NER
    prediction_head = TokenClassificationHead(num_labels=len(ner_labels))

    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[prediction_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_token"],
        device=device,
    )

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=1e-5,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
        device=device,
    )

    # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
    trainer = Trainer(
        model=model,
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device,
    )

    # 7. Let it grow
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    save_dir = "saved_models/bert-german-ner-tutorial"
    model.save(save_dir)
    processor.save(save_dir)

    # 9. Load it & harvest your fruits (Inference)
    basic_texts = [
        {
            "text":
            "Schartau sagte dem Tagesspiegel, dass Fischer ein Idiot sei"
        },
        {
            "text": "Martin Müller spielt Handball in Berlin"
        },
    ]
    model = Inferencer.load(save_dir)
    result = model.inference_from_dicts(dicts=basic_texts)
    print(result)
Exemple #21
0
def doc_classifcation():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO)

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM",
                              run_name="Run_doc_classification_fasttext")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    n_epochs = 3
    batch_size = 32
    evaluate_every = 100
    # load fasttext from a local path:
    #fasttext_model = "../saved_models/fasttext-german-uncased"
    # or through s3
    fasttext_model = "fasttext-german-uncased"
    do_lower_case = True
    max_features = 10_000  # maximum number of unique words we will transform
    device, n_gpu = initialize_device_settings(use_cuda=True)

    # 1. To make Fasttext work within FARM and with advanced aggregation strategies, we need a fixed vocabulary and associated Wordembeddings
    ft_converter = Fasttext_converter(
        pretrained_model_name_or_path=fasttext_model,
        do_lower_case=do_lower_case,
        data_path=Path("../data/germeval18"),
        train_filename="train.tsv",
        output_path=Path("../saved_models/fasttext-german-uncased-converted"),
        language="German",
        max_features=max_features)
    # We convert the data to have fixed size vocab and embeddings
    vocab_counts = ft_converter.convert_on_data()

    # 2. Create a tokenizer
    tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=ft_converter.output_path,
        do_lower_case=do_lower_case)

    # 3. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    # Here we load GermEval 2018 Data automaticaly if it is not available.
    # GermEval 2018 only has train.tsv and test.tsv dataset - no dev.tsv
    label_list = ["OTHER", "OFFENSE"]
    metric = "f1_macro"

    processor = TextClassificationProcessor(
        tokenizer=tokenizer,
        max_seq_len=128,
        data_dir=ft_converter.data_path,
        label_list=label_list,
        train_filename=ft_converter.train_filename,
        dev_split=0,
        test_filename="test.tsv",
        metric=metric,
        label_column_name="coarse_label")

    # 4. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a
    #    few descriptive statistics of our datasets
    data_silo = DataSilo(
        processor=processor, batch_size=batch_size, max_processes=1
    )  # multiprocessing with WordembeddingTokenizer is not optimal - so disable it

    # 5. Create an AdaptiveModel
    # a) which consists of the newly created embedding model as a basis.
    language_model = LanguageModel.load(ft_converter.output_path)
    # b) and a prediction head on top that is suited for our task => Text classification
    # Since we do not have a powerful Transformer based Language Model, we need a slightly deeper NN
    # for going the Classification
    prediction_head = TextClassificationHead(
        layer_dims=[300, 600, len(label_list)],
        class_weights=data_silo.calculate_class_weights(
            task_name="text_classification"),
        num_labels=len(label_list))

    model = AdaptiveModel(language_model=language_model,
                          prediction_heads=[prediction_head],
                          embeds_dropout_prob=0.1,
                          lm_output_types=["per_sequence"],
                          device=device)

    # 6. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=3e-3,
        device=device,
        n_batches=len(
            data_silo.get_data_loader("train")
        ),  #len(data_silo.loaders["train"]),streaming: len(data_silo.get_data_loader("train"))
        n_epochs=n_epochs)

    # 7. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
    trainer = Trainer(model=model,
                      optimizer=optimizer,
                      data_silo=data_silo,
                      epochs=n_epochs,
                      n_gpu=n_gpu,
                      lr_schedule=lr_schedule,
                      evaluate_every=evaluate_every,
                      device=device)

    # 8. Let it grow
    trainer.train()
def train_evaluation_single(seed=42):
    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=seed)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    batch_size = 32 * 4  # 4x V100
    n_epochs = 2
    evaluate_every = 2000000  # disabling dev eval
    lang_model = "roberta-base"
    do_lower_case = False  # roberta is a cased model
    train_filename = "train-v2.0.json"
    dev_filename = "dev-v2.0.json"

    # Load model and train
    tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model,
                               do_lower_case=do_lower_case)
    processor = SquadProcessor(
        tokenizer=tokenizer,
        max_seq_len=256,
        label_list=["start_token", "end_token"],
        metric="squad",
        train_filename=train_filename,
        dev_filename=dev_filename,
        test_filename=None,
        data_dir=Path("testsave/data/squad20"),
    )
    data_silo = DataSilo(processor=processor,
                         batch_size=batch_size,
                         distributed=False)
    language_model = LanguageModel.load(lang_model)
    prediction_head = QuestionAnsweringHead()
    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[prediction_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_token"],
        device=device,
    )
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=3e-5,
        schedule_opts={
            "name": "LinearWarmup",
            "warmup_proportion": 0.2
        },
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
        device=device)
    trainer = Trainer(
        model=model,
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device,
    )
    starttime = time()
    trainer.train()
    elapsed = time() - starttime

    save_dir = Path("testsave/roberta-qa-dev")
    model.save(save_dir)
    processor.save(save_dir)

    # Create Evaluator
    evaluator = Evaluator(data_loader=data_silo.get_data_loader("dev"),
                          tasks=data_silo.processor.tasks,
                          device=device)

    results = evaluator.eval(model)
    f1_score = results[0]["f1"] * 100
    em_score = results[0]["EM"] * 100
    tnrecall = results[0]["top_n_recall"] * 100

    print(results)
    print(elapsed)

    gold_f1 = 82.155
    gold_EM = 77.714
    gold_tnrecall = 97.3721  #
    gold_elapsed = 1286.30
    np.testing.assert_allclose(
        f1_score,
        gold_f1,
        rtol=0.01,
        err_msg=f"FARM Training changed for f1 score by: {f1_score - gold_f1}")
    np.testing.assert_allclose(
        em_score,
        gold_EM,
        rtol=0.01,
        err_msg=f"FARM Training changed for EM by: {em_score - gold_EM}")
    np.testing.assert_allclose(
        tnrecall,
        gold_tnrecall,
        rtol=0.01,
        err_msg=
        f"FARM Training changed for top 1 recall by: {em_score - gold_EM}")
    np.testing.assert_allclose(
        elapsed,
        gold_elapsed,
        rtol=0.1,
        err_msg=
        f"FARM Eval speed changed significantly by: {elapsed - gold_elapsed} seconds"
    )
def test_lm_finetuning(caplog):
    caplog.set_level(logging.CRITICAL)

    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=False)
    n_epochs = 1
    batch_size = 1
    evaluate_every = 2
    lang_model = "bert-base-cased"

    tokenizer = BertTokenizer.from_pretrained(
        pretrained_model_name_or_path=lang_model,
        do_lower_case=False,
        never_split_chars=["-", "_"])

    processor = BertStyleLMProcessor(
        data_dir="samples/lm_finetuning",
        train_filename="train-sample.txt",
        test_filename="test-sample.txt",
        dev_filename=None,
        tokenizer=tokenizer,
        max_seq_len=12,
    )
    data_silo = DataSilo(processor=processor, batch_size=batch_size)

    language_model = Bert.load(lang_model)
    lm_prediction_head = BertLMHead.load(lang_model)
    next_sentence_head = NextSentenceHead.load(lang_model)

    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[lm_prediction_head, next_sentence_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_token", "per_sequence"],
        device=device,
    )

    optimizer, warmup_linear = initialize_optimizer(
        model=model,
        learning_rate=2e-5,
        warmup_proportion=0.1,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
    )

    trainer = Trainer(
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        warmup_linear=warmup_linear,
        evaluate_every=evaluate_every,
        device=device,
    )

    model = trainer.train(model)

    save_dir = "testsave/lm_finetuning"
    model.save(save_dir)
    processor.save(save_dir)

    basic_texts = [
        {
            "text": "Farmer's life is great."
        },
        {
            "text": "It's nothing for big city kids though."
        },
    ]
    model = Inferencer.load(save_dir, embedder_only=True)
    result = model.extract_vectors(dicts=basic_texts)
    assert result[0]["context"] == [
        'Farmer', "'", 's', 'life', 'is', 'great', '.'
    ]
    assert result[0]["vec"].shape == (768, )
    # TODO check why results vary accross runs with same seed
    assert isinstance(result[0]["vec"][0], np.float32)
Exemple #24
0
def question_answering():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM",
                              run_name="Run_question_answering")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    batch_size = 24
    n_epochs = 2
    evaluate_every = 2000
    lang_model = "roberta-base"
    do_lower_case = False  # roberta is a cased model
    train_filename = "train-v2.0.json"
    dev_filename = "dev-v2.0.json"

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model,
                               do_lower_case=do_lower_case)
    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    label_list = ["start_token", "end_token"]
    metric = "squad"
    processor = SquadProcessor(
        tokenizer=tokenizer,
        max_seq_len=384,
        label_list=label_list,
        metric=metric,
        train_filename=train_filename,
        dev_filename=dev_filename,
        test_filename=None,
        data_dir=Path("../data/squad20"),
    )

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets
    # NOTE: In FARM, the dev set metrics differ from test set metrics in that they are calculated on a token level instead of a word level
    data_silo = DataSilo(processor=processor,
                         batch_size=batch_size,
                         distributed=False)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.load(lang_model)
    # b) and a prediction head on top that is suited for our task => Question Answering
    prediction_head = QuestionAnsweringHead()

    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[prediction_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_token"],
        device=device,
    )

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=3e-5,
        schedule_opts={
            "name": "LinearWarmup",
            "warmup_proportion": 0.2
        },
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
        device=device)
    # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time
    trainer = Trainer(
        model=model,
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device,
    )
    # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    save_dir = Path("../saved_models/bert-english-qa-tutorial")
    model.save(save_dir)
    processor.save(save_dir)

    # 9. Load it & harvest your fruits (Inference)
    QA_input = [{
        "qas": ["Who counted the game among the best ever made?"],
        "context":
        "Twilight Princess was released to universal critical acclaim and commercial success. It received perfect scores from major publications such as 1UP.com, Computer and Video Games, Electronic Gaming Monthly, Game Informer, GamesRadar, and GameSpy. On the review aggregators GameRankings and Metacritic, Twilight Princess has average scores of 95% and 95 for the Wii version and scores of 95% and 96 for the GameCube version. GameTrailers in their review called it one of the greatest games ever created."
    }]

    model = QAInferencer.load(save_dir, batch_size=40, gpu=True)
    result = model.inference_from_dicts(dicts=QA_input)[0]

    pprint.pprint(result)

    # 10. Do Inference on whole SQuAD Dataset & write the predictions file to disk
    filename = os.path.join(processor.data_dir, processor.dev_filename)
    result = model.inference_from_file(file=filename, return_json=False)
    result_squad = [x.to_squad_eval() for x in result]

    write_squad_predictions(predictions=result_squad,
                            predictions_filename=filename,
                            out_filename="predictions.json")
Exemple #25
0
def test_ner_amp(caplog):
    caplog.set_level(logging.CRITICAL)

    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    n_epochs = 1
    batch_size = 2
    evaluate_every = 1
    lang_model = "bert-base-german-cased"
    if AMP_AVAILABLE:
        use_amp = 'O1'
    else:
        use_amp = None

    tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model,
                               do_lower_case=False)

    ner_labels = [
        "[PAD]", "X", "O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG",
        "I-ORG", "B-LOC", "I-LOC", "B-OTH", "I-OTH"
    ]

    processor = NERProcessor(tokenizer=tokenizer,
                             max_seq_len=8,
                             data_dir=Path("samples/ner"),
                             train_filename=Path("train-sample.txt"),
                             dev_filename=Path("dev-sample.txt"),
                             test_filename=None,
                             delimiter=" ",
                             label_list=ner_labels,
                             metric="seq_f1")

    data_silo = DataSilo(processor=processor,
                         batch_size=batch_size,
                         max_processes=1)
    language_model = LanguageModel.load(lang_model)
    prediction_head = TokenClassificationHead(num_labels=13)

    model = AdaptiveModel(language_model=language_model,
                          prediction_heads=[prediction_head],
                          embeds_dropout_prob=0.1,
                          lm_output_types=["per_token"],
                          device=device)

    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=2e-05,
        schedule_opts=None,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
        device=device,
        use_amp=use_amp)

    trainer = Trainer(
        model=model,
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device,
    )

    save_dir = Path("testsave/ner")
    trainer.train()
    model.save(save_dir)
    processor.save(save_dir)

    basic_texts = [
        {
            "text": "1980 kam der Crown von Toyota"
        },
    ]
    model = Inferencer.load(save_dir, gpu=True)
    result = model.inference_from_dicts(dicts=basic_texts, max_processes=1)
    #print(result)
    assert result[0]["predictions"][0]["context"] == "Crown"
    assert isinstance(result[0]["predictions"][0]["probability"], np.float32)
Exemple #26
0
def doc_classifcation():
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO)

    ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
    ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_doc_classification")

    ##########################
    ########## Settings
    ##########################
    set_all_seeds(seed=42)
    n_epochs = 1
    batch_size = 32
    evaluate_every = 100
    lang_model = "bert-base-german-cased"
    # or a local path:
    # lang_model = Path("../saved_models/farm-bert-base-cased")
    use_amp = None

    device, n_gpu = initialize_device_settings(use_cuda=True, use_amp=use_amp)

    # 1.Create a tokenizer
    tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=lang_model,
        do_lower_case=False)

    # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
    # Here we load GermEval 2018 Data.

    label_list = ["OTHER", "OFFENSE"]
    metric = "f1_macro"

    processor = TextClassificationProcessor(tokenizer=tokenizer,
                                            max_seq_len=128,
                                            data_dir=Path("../data/germeval18"),
                                            label_list=label_list,
                                            metric=metric,
                                            label_column_name="coarse_label"
                                            )

    # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a
    #    few descriptive statistics of our datasets
    data_silo = DataSilo(
        processor=processor,
        batch_size=batch_size)

    # 4. Create an AdaptiveModel
    # a) which consists of a pretrained language model as a basis
    language_model = LanguageModel.load(lang_model)
    # b) and a prediction head on top that is suited for our task => Text classification
    prediction_head = TextClassificationHead(
        class_weights=data_silo.calculate_class_weights(task_name="text_classification"),
        num_labels=len(label_list))

    model = AdaptiveModel(
        language_model=language_model,
        prediction_heads=[prediction_head],
        embeds_dropout_prob=0.1,
        lm_output_types=["per_sequence"],
        device=device)

    # 5. Create an optimizer
    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=3e-5,
        device=device,
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=n_epochs,
        use_amp=use_amp)

    # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
    trainer = Trainer(
        model=model,
        optimizer=optimizer,
        data_silo=data_silo,
        epochs=n_epochs,
        n_gpu=n_gpu,
        lr_schedule=lr_schedule,
        evaluate_every=evaluate_every,
        device=device)

    # 7. Let it grow
    trainer.train()

    # 8. Hooray! You have a model. Store it:
    save_dir = Path("saved_models/bert-german-doc-tutorial")
    model.save(save_dir)
    processor.save(save_dir)

    # 9. Load it & harvest your fruits (Inference)
    basic_texts = [
        {"text": "Schartau sagte dem Tagesspiegel, dass Fischer ein Idiot sei"},
        {"text": "Martin Müller spielt Handball in Berlin"},
    ]
    model = Inferencer.load(save_dir)
    result = model.inference_from_dicts(dicts=basic_texts)
    print(result)
Exemple #27
0
                      lm_output_types=["per_sequence_continuous"],
                      device=device)

# 5. Create an optimizer
optimizer, warmup_linear = initialize_optimizer(
    model=model,
    learning_rate=2e-5,
    warmup_proportion=0.1,
    n_batches=len(data_silo.loaders["train"]),
    n_epochs=n_epochs)

# 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time
trainer = Trainer(optimizer=optimizer,
                  data_silo=data_silo,
                  epochs=n_epochs,
                  n_gpu=n_gpu,
                  warmup_linear=warmup_linear,
                  evaluate_every=evaluate_every,
                  device=device)

# 7. Let it grow
model = trainer.train(model)

# 8. Hooray! You have a model. Store it:
save_dir = "saved_models/bert-doc-regression-tutorial"
model.save(save_dir)
processor.save(save_dir)

# 9. Load it & harvest your fruits (Inference)
#    Add your own text adapted to the dataset you provide
basic_texts = [
Exemple #28
0
def test_doc_regression(caplog):
    caplog.set_level(logging.CRITICAL)

    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=False)
    n_epochs = 1
    batch_size = 1
    evaluate_every = 2
    lang_model = "bert-base-cased"

    tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model,
                               do_lower_case=False)

    processor = RegressionProcessor(tokenizer=tokenizer,
                                    max_seq_len=8,
                                    data_dir=Path("samples/doc_regr"),
                                    train_filename="train-sample.tsv",
                                    dev_filename="test-sample.tsv",
                                    test_filename=None,
                                    label_column_name="label")

    data_silo = DataSilo(processor=processor, batch_size=batch_size)

    language_model = LanguageModel.load(lang_model)
    prediction_head = RegressionHead()
    model = AdaptiveModel(language_model=language_model,
                          prediction_heads=[prediction_head],
                          embeds_dropout_prob=0.1,
                          lm_output_types=["per_sequence_continuous"],
                          device=device)

    model, optimizer, lr_schedule = initialize_optimizer(
        model=model,
        learning_rate=2e-5,
        #optimizer_opts={'name': 'AdamW', 'lr': 2E-05},
        n_batches=len(data_silo.loaders["train"]),
        n_epochs=1,
        device=device,
        schedule_opts={
            'name': 'CosineWarmup',
            'warmup_proportion': 0.1
        })

    trainer = Trainer(model=model,
                      optimizer=optimizer,
                      data_silo=data_silo,
                      epochs=n_epochs,
                      n_gpu=n_gpu,
                      lr_schedule=lr_schedule,
                      evaluate_every=evaluate_every,
                      device=device)

    trainer.train()

    save_dir = Path("testsave/doc_regr")
    model.save(save_dir)
    processor.save(save_dir)

    basic_texts = [
        {
            "text":
            "The dress is just fabulous and it totally fits my size. The fabric is of great quality and the seams are really well hidden. I am super happy with this purchase and I am looking forward to trying some more from the same brand."
        },
        {
            "text":
            "it just did not fit right. The top is very thin showing everything."
        },
    ]

    model = Inferencer.load(save_dir)
    result = model.inference_from_dicts(dicts=basic_texts)
    assert isinstance(result[0]["predictions"][0]["pred"], np.float32)
Exemple #29
0
    def train(self,
              data_dir: str,
              train_filename: str,
              dev_filename: str = None,
              test_filename: str = None,
              batch_size: int = 2,
              embed_title: bool = True,
              num_hard_negatives: int = 1,
              num_negatives: int = 0,
              n_epochs: int = 3,
              evaluate_every: int = 1000,
              n_gpu: int = 1,
              learning_rate: float = 1e-5,
              epsilon: float = 1e-08,
              weight_decay: float = 0.0,
              num_warmup_steps: int = 100,
              grad_acc_steps: int = 1,
              optimizer_name: str = "TransformersAdamW",
              optimizer_correct_bias: bool = True,
              save_dir: str = "../saved_models/dpr-tutorial",
              query_encoder_save_dir: str = "lm1",
              passage_encoder_save_dir: str = "lm2"):
        """
        train a DensePassageRetrieval model
        :param data_dir: Directory where training file, dev file and test file are present
        :param train_filename: training filename
        :param dev_filename: development set filename, file to be used by model in eval step of training
        :param test_filename: test set filename, file to be used by model in test step after training
        :param batch_size: total number of samples in 1 batch of data
        :param embed_title: whether to concatenate passage title with each passage. The default setting in official DPR embeds passage title with the corresponding passage
        :param num_hard_negatives: number of hard negative passages(passages which are very similar(high score by BM25) to query but do not contain the answer
        :param num_negatives: number of negative passages(any random passage from dataset which do not contain answer to query)
        :param n_epochs: number of epochs to train the model on
        :param evaluate_every: number of training steps after evaluation is run
        :param n_gpu: number of gpus to train on
        :param learning_rate: learning rate of optimizer
        :param epsilon: epsilon parameter of optimizer
        :param weight_decay: weight decay parameter of optimizer
        :param grad_acc_steps: number of steps to accumulate gradient over before back-propagation is done
        :param optimizer_name: what optimizer to use (default: TransformersAdamW)
        :param num_warmup_steps: number of warmup steps
        :param optimizer_correct_bias: Whether to correct bias in optimizer
        :param save_dir: directory where models are saved
        :param query_encoder_save_dir: directory inside save_dir where query_encoder model files are saved
        :param passage_encoder_save_dir: directory inside save_dir where passage_encoder model files are saved
        """

        self.embed_title = embed_title
        self.processor = TextSimilarityProcessor(
            tokenizer=self.query_tokenizer,
            passage_tokenizer=self.passage_tokenizer,
            max_seq_len_passage=self.max_seq_len_passage,
            max_seq_len_query=self.max_seq_len_query,
            label_list=["hard_negative", "positive"],
            metric="text_similarity_metric",
            data_dir=data_dir,
            train_filename=train_filename,
            dev_filename=dev_filename,
            test_filename=test_filename,
            embed_title=self.embed_title,
            num_hard_negatives=num_hard_negatives,
            num_negatives=num_negatives)

        self.model.connect_heads_with_processor(self.processor.tasks,
                                                require_labels=True)

        data_silo = DataSilo(processor=self.processor,
                             batch_size=batch_size,
                             distributed=False)

        # 5. Create an optimizer
        self.model, optimizer, lr_schedule = initialize_optimizer(
            model=self.model,
            learning_rate=learning_rate,
            optimizer_opts={
                "name": optimizer_name,
                "correct_bias": optimizer_correct_bias,
                "weight_decay": weight_decay,
                "eps": epsilon
            },
            schedule_opts={
                "name": "LinearWarmup",
                "num_warmup_steps": num_warmup_steps
            },
            n_batches=len(data_silo.loaders["train"]),
            n_epochs=n_epochs,
            grad_acc_steps=grad_acc_steps,
            device=self.device)

        # 6. Feed everything to the Trainer, which keeps care of growing our model and evaluates it from time to time
        trainer = Trainer(
            model=self.model,
            optimizer=optimizer,
            data_silo=data_silo,
            epochs=n_epochs,
            n_gpu=n_gpu,
            lr_schedule=lr_schedule,
            evaluate_every=evaluate_every,
            device=self.device,
        )

        # 7. Let it grow! Watch the tracked metrics live on the public mlflow server: https://public-mlflow.deepset.ai
        trainer.train()

        self.model.save(Path(save_dir),
                        lm1_name=query_encoder_save_dir,
                        lm2_name=passage_encoder_save_dir)
        self.processor.save(Path(save_dir))
Exemple #30
0
def test_doc_classification(caplog):
    caplog.set_level(logging.CRITICAL)

    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=False)
    n_epochs = 1
    batch_size = 8
    evaluate_every = 30
    lang_model = "bert-base-german-cased"

    tokenizer = BertTokenizer.from_pretrained(
        pretrained_model_name_or_path=lang_model, do_lower_case=False)

    processor = GermEval18CoarseProcessor(tokenizer=tokenizer,
                                          max_seq_len=64,
                                          data_dir="samples/doc_class",
                                          train_filename="train-sample.tsv",
                                          test_filename=None)

    data_silo = DataSilo(processor=processor, batch_size=batch_size)

    language_model = Bert.load(lang_model)
    prediction_head = TextClassificationHead(
        layer_dims=[768, len(processor.label_list)])
    model = AdaptiveModel(language_model=language_model,
                          prediction_heads=[prediction_head],
                          embeds_dropout_prob=0.1,
                          lm_output_types=["per_sequence"],
                          device=device)

    optimizer, warmup_linear = initialize_optimizer(
        model=model,
        learning_rate=2e-5,
        warmup_proportion=0.1,
        n_examples=data_silo.n_samples("train"),
        batch_size=batch_size,
        n_epochs=1)

    trainer = Trainer(optimizer=optimizer,
                      data_silo=data_silo,
                      epochs=n_epochs,
                      n_gpu=n_gpu,
                      warmup_linear=warmup_linear,
                      evaluate_every=evaluate_every,
                      device=device)

    model = trainer.train(model)

    save_dir = "testsave/doc_class"
    model.save(save_dir)
    processor.save(save_dir)

    basic_texts = [
        {
            "text":
            "Schartau sagte dem Tagesspiegel, dass Fischer ein Idiot sei"
        },
        {
            "text": "Martin Müller spielt Handball in Berlin"
        },
    ]
    model = Inferencer.load(save_dir)
    result = model.run_inference(dicts=basic_texts)
    assert result[0]["predictions"][0]["label"] == "OTHER"
    assert abs(result[0]["predictions"][0]["probability"] -
               0.5358161) <= 0.0001