def xtest_wrt_function_dirichlet_boundary(): mesh = UnitSquareMesh(10, 10) V = FunctionSpace(mesh, "CG", 1) u = TrialFunction(V) u_ = Function(V) v = TestFunction(V) class Up(SubDomain): def inside(self, x, on_boundary): return near(x[1], 1) class Down(SubDomain): def inside(self, x, on_boundary): return near(x[1], 0) class Left(SubDomain): def inside(self, x, on_boundary): return near(x[0], 0) class Right(SubDomain): def inside(self, x, on_boundary): return near(x[0], 1) left = Left() right = Right() up = Up() down = Down() boundary = MeshFunction("size_t", mesh, mesh.geometric_dimension() - 1) boundary.set_all(0) up.mark(boundary, 1) down.mark(boundary, 2) ds = Measure("ds", subdomain_data=boundary) bc_func = project(Expression("sin(x[1])", degree=1), V) bc1 = DirichletBC(V, bc_func, left) bc2 = DirichletBC(V, 2, right) bc = [bc1, bc2] g1 = Constant(2) g2 = Constant(1) f = Function(V) f.vector()[:] = 10 def J(bc): a = inner(grad(u), grad(v)) * dx L = inner(f, v) * dx + inner(g1, v) * ds(1) + inner(g2, v) * ds(2) solve(a == L, u_, [bc, bc2]) return assemble(u_**2 * dx) _test_adjoint_function_boundary(J, bc1, bc_func)
def test_solver_ident_zeros(): """ Test using ident zeros to restrict half of the domain """ from fenics_adjoint import (UnitSquareMesh, Function, assemble, solve, project, Expression, DirichletBC) mesh = UnitSquareMesh(10, 10) cf = MeshFunction("size_t", mesh, mesh.topology().dim(), 0) top_half().mark(cf, 1) ff = MeshFunction("size_t", mesh, mesh.topology().dim() - 1, 0) top_boundary().mark(ff, 1) dx = Measure("dx", domain=mesh, subdomain_data=cf) V = FunctionSpace(mesh, "CG", 1) u, v = TrialFunction(V), TestFunction(V) a = inner(grad(u), grad(v)) * dx(1) w = Function(V) with stop_annotating(): w.assign(project(Expression("x[0]", degree=1), V)) rhs = w**3 * v * dx(1) A = assemble(a, keep_diagonal=True) A.ident_zeros() b = assemble(rhs) bc = DirichletBC(V, Constant(1), ff, 1) bc.apply(A, b) uh = Function(V) solve(A, uh.vector(), b, "umfpack") J = assemble(inner(uh, uh) * dx(1)) Jhat = ReducedFunctional(J, Control(w)) with stop_annotating(): w1 = project(Expression("x[0]*x[1]", degree=2), V) results = taylor_to_dict(Jhat, w, w1) assert (min(results["R0"]["Rate"]) > 0.95) assert (min(results["R1"]["Rate"]) > 1.95) assert (min(results["R2"]["Rate"]) > 2.95)
def _test_wrt_function_dirichlet_boundary(): mesh = IntervalMesh(10, 0, 1) V = FunctionSpace(mesh, "Lagrange", 1) c = Constant(1) u = TrialFunction(V) u_ = Function(V) v = TestFunction(V) f = project(Expression("1", degree=1), V) bc = DirichletBC(V, f, "on_boundary") def J(bc): a = inner(grad(u), grad(v)) * dx L = c * v * dx solve(a == L, u_, bc) return assemble(u_**2 * dx) _test_adjoint_function_boundary(J, bc, f)
A = fenics.FunctionSpace(mesh, "CG", 1) # control function space U_h = fenics.VectorElement("CG", mesh.ufl_cell(), 2) P_h = fenics.FiniteElement("CG", mesh.ufl_cell(), 1) W = fenics.FunctionSpace(mesh, U_h * P_h) # mixed Taylor-Hood function space # Define the boundary condition on velocity (x, y) = ufl.SpatialCoordinate(mesh) l = 1.0 / 6.0 # noqa: E741 gbar = 1.0 cond1 = ufl.And(ufl.gt(y, (1.0 / 4 - l / 2)), ufl.lt(y, (1.0 / 4 + l / 2))) val1 = gbar * (1 - (2 * (y - 0.25) / l) ** 2) cond2 = ufl.And(ufl.gt(y, (3.0 / 4 - l / 2)), ufl.lt(y, (3.0 / 4 + l / 2))) val2 = gbar * (1 - (2 * (y - 0.75) / l) ** 2) inflow_outflow = ufl.conditional(cond1, val1, ufl.conditional(cond2, val2, 0)) inflow_outflow_bc = fenics_adjoint.project(inflow_outflow, W.sub(0).sub(0).collapse()) solve_templates = (fenics_adjoint.Function(A),) assemble_templates = (fenics_adjoint.Function(W), fenics_adjoint.Function(A)) @build_jax_fem_eval(solve_templates) def forward(rho): """Solve the forward problem for a given fluid distribution rho(x).""" w = fenics_adjoint.Function(W) (u, p) = fenics.split(w) (v, q) = fenics.TestFunctions(W) inner, grad, dx, div = ufl.inner, ufl.grad, ufl.dx, ufl.div F = ( alpha(rho) * inner(u, v) * dx