def test_walk_duration(self):
     node_profile = NodeProfileMultiObjective(dep_times=[10, 5], walk_to_target_duration=27, label_class=LabelTime)
     self.assertEqual(27, node_profile.get_walk_to_target_duration())
     pt2 = LabelTime(departure_time=10, arrival_time_target=35)
     pt1 = LabelTime(departure_time=5, arrival_time_target=35)
     node_profile.update([pt2])
     node_profile.update([pt1])
 def test_pareto_optimality_with_transfers_and_time(self):
     node_profile = NodeProfileMultiObjective(dep_times=[5, 6, 7])
     pt3 = LabelTimeWithBoardingsCount(departure_time=5, arrival_time_target=45, n_boardings=0, first_leg_is_walk=False)
     pt2 = LabelTimeWithBoardingsCount(departure_time=6, arrival_time_target=40, n_boardings=1, first_leg_is_walk=False)
     pt1 = LabelTimeWithBoardingsCount(departure_time=7, arrival_time_target=35, n_boardings=2, first_leg_is_walk=False)
     self.assertTrue(node_profile.update([pt1]))
     self.assertTrue(node_profile.update([pt2]))
     self.assertTrue(node_profile.update([pt3]))
     self.assertEqual(3, len(node_profile.get_labels_for_real_connections()))
    def test_evaluate(self):
        node_profile = NodeProfileMultiObjective(dep_times=[3, 1], label_class=LabelTime)

        node_profile.update([LabelTime(departure_time=3, arrival_time_target=4)])
        self.assertEquals(4, min_arrival_time_target(node_profile.evaluate(3)))

        node_profile.update([LabelTime(departure_time=1, arrival_time_target=1)])
        self.assertEquals(1, min_arrival_time_target(node_profile.evaluate(1)))
Ejemplo n.º 4
0
    def __initialize_node_profiles(self):
        self._stop_profiles = dict()
        for node in self._all_nodes:
            walk_duration_to_target = float('inf')
            closest_target = None
            if node in self._targets:
                walk_duration_to_target = 0
                closest_target = node
            else:
                for target in self._targets:
                    if self._walk_network.has_edge(target, node):
                        edge_data = self._walk_network.get_edge_data(
                            target, node)
                        walk_duration = int(edge_data["d_walk"] /
                                            float(self._walk_speed))
                        if walk_duration_to_target > walk_duration:
                            walk_duration_to_target = walk_duration
                            closest_target = target

            self._stop_profiles[node] = NodeProfileMultiObjective(
                dep_times=self.
                _stop_departure_times_with_pseudo_connections[node],
                label_class=self._label_class,
                walk_to_target_duration=walk_duration_to_target,
                transit_connection_dep_times=self._stop_departure_times[node],
                closest_target=closest_target,
                node_id=node)
 def test_finalize(self):
     node_profile = NodeProfileMultiObjective(label_class=LabelTimeWithBoardingsCount, dep_times=[10])
     own_label = LabelTimeWithBoardingsCount(departure_time=10, arrival_time_target=20, n_boardings=0, first_leg_is_walk=False)
     self.assertTrue(node_profile.update([own_label]))
     neighbor_label = LabelTimeWithBoardingsCount(departure_time=15, arrival_time_target=18, n_boardings=2, first_leg_is_walk=False)
     assert(len(node_profile.get_labels_for_real_connections()) == 1)
     node_profile.finalize([[neighbor_label]], [3])
     assert (len(node_profile.get_final_optimal_labels()) == 2)
     self.assertTrue(any(map(lambda el: el.departure_time == 12, node_profile.get_final_optimal_labels())))
 def test_pareto_optimality2(self):
     node_profile = NodeProfileMultiObjective(dep_times=[5, 10], label_class=LabelTime)
     pt2 = LabelTime(departure_time=10, arrival_time_target=35, last_leg_is_walk=False)
     node_profile.update([pt2])
     pt1 = LabelTime(departure_time=5, arrival_time_target=35, last_leg_is_walk=False)
     node_profile.update([pt1])
     self.assertEquals(len(node_profile.get_labels_for_real_connections()), 1)
Ejemplo n.º 7
0
def __compute_profile_stats_from_profiles(profile_data):
    """

    Parameters
    ----------
    profiles: dict
        mapping from stop_I -> MultiObjectiveNodeProfile

    Returns
    -------
    observable_name_to_data: dict
    """
    profile_summary_methods, profile_observable_names = NodeProfileAnalyzerTimeAndVehLegs.all_measures_and_names_as_lists(
    )
    profile_summary_data = [[] for _ in range(len(profile_observable_names))]

    observable_name_to_method = dict(
        zip(profile_observable_names, profile_summary_methods))
    observable_name_to_data = dict(
        zip(profile_observable_names, profile_summary_data))

    nodes = pandas.read_csv(HELSINKI_NODES_FNAME, sep=";")
    for stop_I in nodes['stop_I'].values:
        try:
            profile = profile_data[stop_I]
        except KeyError:
            profile = NodeProfileMultiObjective()
            profile.finalize()
        profile_analyzer = NodeProfileAnalyzerTimeAndVehLegs(
            profile, ANALYSIS_START_TIME_DEP, ANALYSIS_END_TIME_DEP)
        for observable_name in profile_observable_names:
            method = observable_name_to_method[observable_name]
            observable_value = method(profile_analyzer)
            if observable_value is None:
                print(observable_name, stop_I)
            _assert_results_are_positive_or_infs_or_nans(
                numpy.array([observable_value]))
            observable_name_to_data[observable_name].append(observable_value)
    return observable_name_to_data
 def test_pareto_optimality_with_transfers_only(self):
     LabelClass = LabelVehLegCount
     node_profile = NodeProfileMultiObjective(dep_times=[5, 6, 7], label_class=LabelClass)
     pt3 = LabelClass(departure_time=5, n_vehicle_legs=0, last_leg_is_walk=False)
     pt2 = LabelClass(departure_time=6, n_vehicle_legs=1, last_leg_is_walk=False)
     pt1 = LabelClass(departure_time=7, n_vehicle_legs=2, last_leg_is_walk=False)
     self.assertTrue(node_profile.update([pt1]))
     self.assertTrue(node_profile.update([pt2]))
     self.assertTrue(node_profile.update([pt3]))
     node_profile.finalize()
     self.assertEqual(1, len(node_profile.get_final_optimal_labels()))
 def _get_analyzer(self,
                   labels,
                   start_time,
                   end_time,
                   walk_to_target_duration=float('inf')):
     dep_times = list(set(map(lambda el: el.departure_time, labels)))
     p = NodeProfileMultiObjective(
         dep_times=dep_times,
         walk_to_target_duration=walk_to_target_duration,
         label_class=LabelTimeWithBoardingsCount)
     for label in labels:
         p.update([label])
     p.finalize()
     analyzer = NodeProfileAnalyzerTimeAndVehLegs.from_profile(
         p, start_time, end_time)
     return analyzer
    def test_dep_time_skipped_in_update(self):
        label3 = LabelTimeWithBoardingsCount(departure_time=30, arrival_time_target=20, n_boardings=0,
                                             first_leg_is_walk=False)
        label2 = LabelTimeWithBoardingsCount(departure_time=20, arrival_time_target=20, n_boardings=0,
                                             first_leg_is_walk=False)
        label1 = LabelTimeWithBoardingsCount(departure_time=10, arrival_time_target=20, n_boardings=0,
                                             first_leg_is_walk=False)

        # This should work ok
        node_profile = NodeProfileMultiObjective(label_class=LabelTimeWithBoardingsCount, dep_times=[10, 20, 30])
        node_profile.update([label3])
        node_profile.update([label2])
        node_profile.update([label2])
        node_profile.update([label1])

        # This should fail due to dep time 20 missing in between
        with self.assertRaises(AssertionError):
            node_profile = NodeProfileMultiObjective(label_class=LabelTimeWithBoardingsCount, dep_times=[10, 20, 30])
            node_profile.update([label3])
            node_profile.update([label1])

        # This should fail due to dep time 30 not being the first to deal with
        with self.assertRaises(AssertionError):
            node_profile = NodeProfileMultiObjective(label_class=LabelTimeWithBoardingsCount, dep_times=[10, 20, 30])
            node_profile.update([label2])
 def test_same_dep_times_fail_in_init(self):
     with self.assertRaises(AssertionError):
         node_profile = NodeProfileMultiObjective(label_class=LabelTimeWithBoardingsCount, dep_times=[10, 10, 20, 20])
 def test_identity_profile(self):
     identity_profile = NodeProfileMultiObjective(dep_times=[10])
     identity_profile.update([LabelTimeWithBoardingsCount(10, 10, 0, True)])
     self.assertEqual(10, min_arrival_time_target(identity_profile.evaluate(10, first_leg_can_be_walk=True)))
def plot_transfer_profile():
    alphabetical_labels = list(labels_t_dep_dur_b)
    alphabetical_labels.sort(key=lambda el: el[-1])
    for label in alphabetical_labels:
        print(label[-1] + " & " + str(label[0]) + " & " +
              str(label[0] + label[1]) + " & " + str(label[1]) + " & " +
              str(label[2]) + " \\\\")

    labels = [
        LabelTimeWithBoardingsCount(departure_time=label[0],
                                    arrival_time_target=label[0] + label[1],
                                    n_boardings=label[2],
                                    first_leg_is_walk=False)
        for label in labels_t_dep_dur_b
    ]

    dep_times = list(set(map(lambda el: el.departure_time, labels)))
    p = NodeProfileMultiObjective(dep_times=dep_times,
                                  walk_to_target_duration=10,
                                  label_class=LabelTimeWithBoardingsCount)

    for label in labels:
        p.update([label])

    p.finalize()
    analyzer = NodeProfileAnalyzerTimeAndVehLegs(p, 0, 20)
    print(analyzer.mean_n_boardings_on_shortest_paths())

    journey_letters = [label[-1] for label in labels_t_dep_dur_b[::-1]]

    fig = plt.figure(figsize=(5.5, 3.5))
    ax1 = plt.subplot(gs[:, :4])
    fig = analyzer.plot_new_transfer_temporal_distance_profile(
        format_string="%S",
        duration_divider=1,
        default_lw=4,
        journey_letters=journey_letters,
        ax=ax1,
        ncol_legend=2,
        legend_font_size=9)

    ax1.set_xlabel("Departure time $t_{\\text{dep}}$ (min)")
    ax1.set_ylabel("Temporal distance $\\tau$ (min)")

    ax2 = plt.subplot(gs[:, 4:])
    ax2 = analyzer.plot_temporal_distance_pdf_horizontal(use_minutes=True,
                                                         duration_divider=1,
                                                         ax=ax2,
                                                         legend_font_size=9)

    ax2.set_ylabel("")

    ax1.set_ylim(0, 11.5)
    ax2.set_ylim(0, 11.5)
    ax2.set_xlim(0, 0.3)
    ax2.set_yticklabels(["" for _ in ax2.get_yticks()])
    ax2.set_xlabel("Probability density $P(\\tau)$")
    ax2.set_xticks([0.1, 0.2, 0.3])

    for _ax, letter in zip([ax1, ax2], "AB"):
        _ax.text(0.04,
                 0.98,
                 "\\textbf{" + letter + "}",
                 horizontalalignment="left",
                 verticalalignment="top",
                 transform=_ax.transAxes,
                 fontsize=15,
                 color="black")
    fig.savefig(settings.FIGS_DIRECTORY + "schematic_transfer_profile.pdf")
    plt.show()