def test_finalize(self):
     node_profile = NodeProfileMultiObjective(label_class=LabelTimeWithBoardingsCount, dep_times=[10])
     own_label = LabelTimeWithBoardingsCount(departure_time=10, arrival_time_target=20, n_boardings=0, first_leg_is_walk=False)
     self.assertTrue(node_profile.update([own_label]))
     neighbor_label = LabelTimeWithBoardingsCount(departure_time=15, arrival_time_target=18, n_boardings=2, first_leg_is_walk=False)
     assert(len(node_profile.get_labels_for_real_connections()) == 1)
     node_profile.finalize([[neighbor_label]], [3])
     assert (len(node_profile.get_final_optimal_labels()) == 2)
     self.assertTrue(any(map(lambda el: el.departure_time == 12, node_profile.get_final_optimal_labels())))
 def test_pareto_optimality_with_transfers_only(self):
     LabelClass = LabelVehLegCount
     node_profile = NodeProfileMultiObjective(dep_times=[5, 6, 7], label_class=LabelClass)
     pt3 = LabelClass(departure_time=5, n_vehicle_legs=0, last_leg_is_walk=False)
     pt2 = LabelClass(departure_time=6, n_vehicle_legs=1, last_leg_is_walk=False)
     pt1 = LabelClass(departure_time=7, n_vehicle_legs=2, last_leg_is_walk=False)
     self.assertTrue(node_profile.update([pt1]))
     self.assertTrue(node_profile.update([pt2]))
     self.assertTrue(node_profile.update([pt3]))
     node_profile.finalize()
     self.assertEqual(1, len(node_profile.get_final_optimal_labels()))
 def _get_analyzer(self,
                   labels,
                   start_time,
                   end_time,
                   walk_to_target_duration=float('inf')):
     dep_times = list(set(map(lambda el: el.departure_time, labels)))
     p = NodeProfileMultiObjective(
         dep_times=dep_times,
         walk_to_target_duration=walk_to_target_duration,
         label_class=LabelTimeWithBoardingsCount)
     for label in labels:
         p.update([label])
     p.finalize()
     analyzer = NodeProfileAnalyzerTimeAndVehLegs.from_profile(
         p, start_time, end_time)
     return analyzer
Ejemplo n.º 4
0
def __compute_profile_stats_from_profiles(profile_data):
    """

    Parameters
    ----------
    profiles: dict
        mapping from stop_I -> MultiObjectiveNodeProfile

    Returns
    -------
    observable_name_to_data: dict
    """
    profile_summary_methods, profile_observable_names = NodeProfileAnalyzerTimeAndVehLegs.all_measures_and_names_as_lists(
    )
    profile_summary_data = [[] for _ in range(len(profile_observable_names))]

    observable_name_to_method = dict(
        zip(profile_observable_names, profile_summary_methods))
    observable_name_to_data = dict(
        zip(profile_observable_names, profile_summary_data))

    nodes = pandas.read_csv(HELSINKI_NODES_FNAME, sep=";")
    for stop_I in nodes['stop_I'].values:
        try:
            profile = profile_data[stop_I]
        except KeyError:
            profile = NodeProfileMultiObjective()
            profile.finalize()
        profile_analyzer = NodeProfileAnalyzerTimeAndVehLegs(
            profile, ANALYSIS_START_TIME_DEP, ANALYSIS_END_TIME_DEP)
        for observable_name in profile_observable_names:
            method = observable_name_to_method[observable_name]
            observable_value = method(profile_analyzer)
            if observable_value is None:
                print(observable_name, stop_I)
            _assert_results_are_positive_or_infs_or_nans(
                numpy.array([observable_value]))
            observable_name_to_data[observable_name].append(observable_value)
    return observable_name_to_data
def plot_transfer_profile():
    alphabetical_labels = list(labels_t_dep_dur_b)
    alphabetical_labels.sort(key=lambda el: el[-1])
    for label in alphabetical_labels:
        print(label[-1] + " & " + str(label[0]) + " & " +
              str(label[0] + label[1]) + " & " + str(label[1]) + " & " +
              str(label[2]) + " \\\\")

    labels = [
        LabelTimeWithBoardingsCount(departure_time=label[0],
                                    arrival_time_target=label[0] + label[1],
                                    n_boardings=label[2],
                                    first_leg_is_walk=False)
        for label in labels_t_dep_dur_b
    ]

    dep_times = list(set(map(lambda el: el.departure_time, labels)))
    p = NodeProfileMultiObjective(dep_times=dep_times,
                                  walk_to_target_duration=10,
                                  label_class=LabelTimeWithBoardingsCount)

    for label in labels:
        p.update([label])

    p.finalize()
    analyzer = NodeProfileAnalyzerTimeAndVehLegs(p, 0, 20)
    print(analyzer.mean_n_boardings_on_shortest_paths())

    journey_letters = [label[-1] for label in labels_t_dep_dur_b[::-1]]

    fig = plt.figure(figsize=(5.5, 3.5))
    ax1 = plt.subplot(gs[:, :4])
    fig = analyzer.plot_new_transfer_temporal_distance_profile(
        format_string="%S",
        duration_divider=1,
        default_lw=4,
        journey_letters=journey_letters,
        ax=ax1,
        ncol_legend=2,
        legend_font_size=9)

    ax1.set_xlabel("Departure time $t_{\\text{dep}}$ (min)")
    ax1.set_ylabel("Temporal distance $\\tau$ (min)")

    ax2 = plt.subplot(gs[:, 4:])
    ax2 = analyzer.plot_temporal_distance_pdf_horizontal(use_minutes=True,
                                                         duration_divider=1,
                                                         ax=ax2,
                                                         legend_font_size=9)

    ax2.set_ylabel("")

    ax1.set_ylim(0, 11.5)
    ax2.set_ylim(0, 11.5)
    ax2.set_xlim(0, 0.3)
    ax2.set_yticklabels(["" for _ in ax2.get_yticks()])
    ax2.set_xlabel("Probability density $P(\\tau)$")
    ax2.set_xticks([0.1, 0.2, 0.3])

    for _ax, letter in zip([ax1, ax2], "AB"):
        _ax.text(0.04,
                 0.98,
                 "\\textbf{" + letter + "}",
                 horizontalalignment="left",
                 verticalalignment="top",
                 transform=_ax.transAxes,
                 fontsize=15,
                 color="black")
    fig.savefig(settings.FIGS_DIRECTORY + "schematic_transfer_profile.pdf")
    plt.show()