Ejemplo n.º 1
0
def regularization_using_grid_search (alphas, counts, class_counts, allkeys, tr_outfile='nb.alpha.tr.txt', dv_outfile='nb.alpha.dv.txt'):
    tr_accs = []
    dv_accs = []
    # Choose your alphas here
    weights_nb_alphas = dict()
    for alpha in alphas:
        weights_nb_alphas[alpha] = learnNBWeights(counts, class_counts, allkeys, alpha)
        confusion = evalClassifier(weights_nb_alphas[alpha],tr_outfile,TRAINKEY)
        tr_accs.append(scorer.accuracy(confusion))
        confusion = evalClassifier(weights_nb_alphas[alpha],dv_outfile,DEVKEY)
        dv_accs.append(scorer.accuracy(confusion))
    return weights_nb_alphas, tr_accs, dv_accs
Ejemplo n.º 2
0
def regularization_using_grid_search(alphas, netas, N_its,inst_generator, outfile, devkey, learning_rate=1e-4, regularizer=1e-2, tr_outfile='logreg.alpha.tr.txt', dv_outfile='logreg.alpha.dv.txt'):
    tr_accs = []
    dv_accs = []
    # Choose your alphas here
    weights_log_reg_alphas = dict()
    for alpha in alphas:
        for neta in netas:
            weights_log_reg_alphas[(alpha, neta)] = trainLRbySGD(N_its,inst_generator, outfile, devkey, learning_rate=neta, regularizer=alpha)
            confusion = evalClassifier(weights_log_reg_alphas[(alpha, neta)],tr_outfile,TRAINKEY)
            tr_accs.append(scorer.accuracy(confusion))
            confusion = evalClassifier(weights_log_reg_alphas[(alpha, neta)],dv_outfile,DEVKEY)
            dv_accs.append(scorer.accuracy(confusion))
    return weights_log_reg_alphas, tr_accs, dv_accs
Ejemplo n.º 3
0
def test_wlc_dev_almost_there_accuracy ():
    global weights_wlc
    global WLC_FILE
    mat = evalClassifier (weights_wlc, WLC_FILE, DEVKEY)
    actual = scorer.accuracy(mat)
    expected = 0.40
    ok_ (expected <= actual, msg="UNEQUAL Expected:%f, Actual:%f" %(expected,actual))
def test_custom_str_perceptron():
    # w,tr_acc,dv_acc = str_perceptron.trainAvgStructPerceptron(10,tr_all,features.yourHMMFeatures,alltags)
    # confusion = tagger_base.evalTagger(lambda words,alltags : viterbi.viterbiTagger(words,features.yourHMMFeatures,w,alltags)[0],'custom_str_classifier')
    confusion = scorer.getConfusion(DEV_FILE, 'str_avg_perceptron_custom.response')
    expected_acc = 0.810
    actual_acc = scorer.accuracy(confusion)
    ok_ (expected_acc < actual_acc, msg="NOT_IN_RANGE Expected:%f, Actual:%f" %(expected_acc, actual_acc))    
Ejemplo n.º 5
0
def trainAvgStructPerceptron(N_its,inst_generator,featfunc,tagset):
    """
    :param N_its: number of iterations
    :param inst_generator: A generator of (words,tags) tuples
    :param tagger: A function from (words, weights) to tags
    :param features: A function from (words, tags) to a dict of features and weights
    """

    tr_acc = [None]*N_its
    dv_acc = [None]*N_its
    T = 0
    weights = defaultdict(float)
    wsum = defaultdict(float)
    avg_weights = defaultdict(float)
    for i in xrange(N_its):
        # your code here
        weights, wsum, tr_acc_i, num_instances = oneItAvgStructPerceptron(inst_generator, featfunc, weights, wsum, tagset, T)
        # note that I call evalTagger to produce the dev set results
        T += num_instances
        for w in wsum:
            avg_weights[w] = weights[w] - wsum[w] / float(T)
        confusion = evalTagger(lambda words,tags : viterbiTagger(words,featfunc,avg_weights,tags)[0],'sp.txt')
        dv_acc[i] = scorer.accuracy(confusion)
        tr_acc[i] = tr_acc_i#1. - tr_err/float(sum([len(s) for s,t in inst_generator]))
        print i,'dev:',dv_acc[i],'train:',tr_acc[i]
    return avg_weights, tr_acc, dv_acc
Ejemplo n.º 6
0
def trainAvgPerceptron(N_its,inst_generator,featfunc,tagset):
    """
    :param N_its: number of iterations
    :param inst_generator: generate words,tags pairs
    :param featfunc: feature function
    :param tagset: set of all possible tags
    :returns average weights, training accuracy, dev accuracy
    """
    tr_acc = [None]*N_its
    dv_acc = [None]*N_its
    T = 0
    weights = defaultdict(float)
    wsum = defaultdict(float)
    avg_weights = defaultdict(float)
    for i in xrange(N_its):
        # your code here
        weights, wsum, tr_acc_i, num_instances = oneItAvgPerceptron(inst_generator, featfunc, weights, wsum, tagset, T)
        T += num_instances
        for w in wsum:
            avg_weights[w] = weights[w] - wsum[w] / float(T) 
        confusion = evalTagger(lambda words, alltags: classifierTagger(words,featfunc,avg_weights,tagset),'perc')
        dv_acc[i] = scorer.accuracy(confusion)
        tr_acc[i] = tr_acc_i
        print i,'dev:',dv_acc[i],'train:',tr_acc[i]
    return avg_weights, tr_acc, dv_acc
Ejemplo n.º 7
0
def trainAvgStructPerceptron(N_its, inst_generator, featfunc, tagset):
    """
    :param N_its: number of iterations
    :param inst_generator: A generator of (words,tags) tuples
    :param tagger: A function from (words, weights) to tags
    :param features: A function from (words, tags) to a dict of features and weights
    """

    tr_acc = [None] * N_its
    dv_acc = [None] * N_its
    T = 0
    weights = defaultdict(float)
    wsum = defaultdict(float)
    avg_weights = defaultdict(float)
    for i in xrange(N_its):
        # your code here
        weights, wsum, tr_acc_i, num_instances = oneItAvgStructPerceptron(
            inst_generator, featfunc, weights, wsum, tagset, T)
        # note that I call evalTagger to produce the dev set results
        T += num_instances
        for w in wsum:
            avg_weights[w] = weights[w] - wsum[w] / float(T)
        confusion = evalTagger(
            lambda words, tags: viterbiTagger(words, featfunc, avg_weights,
                                              tags)[0], 'sp.txt')
        dv_acc[i] = scorer.accuracy(confusion)
        tr_acc[
            i] = tr_acc_i  #1. - tr_err/float(sum([len(s) for s,t in inst_generator]))
        print i, 'dev:', dv_acc[i], 'train:', tr_acc[i]
    return avg_weights, tr_acc, dv_acc
Ejemplo n.º 8
0
def trainLRbySGD(N_its,inst_generator, outfile, devkey, learning_rate=1e-4, regularizer=1e-2):
    weights = defaultdict(float)
    dv_acc = [None]*N_its
    tr_acc = [None]*N_its

    # this block is all to take care of regularization
    ratereg = learning_rate * regularizer
    def regularize(base_feats,t):
        for base_feat in base_feats:
            for label in ALL_LABELS:
                weights[(label,base_feat)] *= (1 - ratereg) ** (t-last_update[base_feat])
            last_update[base_feat] = t

    for it in xrange(N_its):
        tr_err = 0
        last_update = defaultdict(int) # reset, since we regularize at the end of every iteration
        for i,(inst,true_label) in enumerate(inst_generator):
            # apply "just-in-time" regularization to the weights for features in this instance
            regularize(inst,i)
            # compute likelihood gradient from this instance
            probs = computeLabelProbs(inst,weights,ALL_LABELS)
            if true_label != argmax(probs): tr_err += 1
            # your code for updating the weights goes here

        # regularize all features at the end of each iteration
        regularize([base_feature for label,base_feature in weights.keys()],i)
        
        dv_acc[it] = scorer.accuracy(evalClassifier(weights, outfile, devkey))
        tr_acc[it] = 1. - tr_err/float(i)
        print it,'dev:',dv_acc[it],'train:',tr_acc[it]
    return weights,tr_acc,dv_acc
def test_custom_feat_avg_perceptron():
    # w, tr_acc, dv_acc =  avg_perceptron.trainAvgPerceptron(10,tr_all,features.yourFeatures,alltags)
    # confusion = tagger_base.evalTagger(lambda words,alltags : tagger_base.classifierTagger(words,features.yourFeatures,w,alltags),'classifier')
    confusion = scorer.getConfusion(constants.DEV_FILE, 'avg_perceptron_custom.response')
    expected_acc = 0.810
    actual_acc = scorer.accuracy(confusion)
    ok_ (expected_acc < actual_acc, msg="NOT_IN_RANGE Expected:%f, Actual:%f" %(expected_acc, actual_acc))
Ejemplo n.º 10
0
def test_wlc_dev_exact_accuracy():
    global weights_wlc
    global WLC_FILE
    mat = evalClassifier(weights_wlc, WLC_FILE, DEVKEY)
    actual = scorer.accuracy(mat)
    expected = 0.4467
    assert_almost_equals(expected, actual, places=4, msg="UNEQUAL Expected:%f, Actual:%f" % (expected, actual))
Ejemplo n.º 11
0
def test_mcc_dev_accuracy ():
    global weights_mcc
    global MCC_FILE
    mat = evalClassifier (weights_mcc, MCC_FILE, DEVKEY)
    actual = scorer.accuracy(mat)
    expected = 0.3756
    assert_almost_equals (expected, actual, places=4, msg="UNEQUAL Expected:%f, Actual:%f" %(expected,actual))
Ejemplo n.º 12
0
def test_wlc_dev_exact_accuracy ():
    global weights_wlc
    global WLC_FILE
    mat = evalClassifier (weights_wlc, WLC_FILE, DEVKEY)
    actual = scorer.accuracy(mat)
    expected = 0.4467
    assert_almost_equals (expected, actual, places=4, msg="UNEQUAL Expected:%f, Actual:%f" %(expected,actual))
Ejemplo n.º 13
0
def test_get_most_common_tag():
    expected = 0.63
    weights = most_common.get_most_common_weights(TRAIN_FILE)
    confusion = tagger_base.evalTagger(tagger_base.makeClassifierTagger(weights),'mcc')
    actual = scorer.accuracy(confusion)
    
    ok_(expected < actual, msg="NOT_IN_RANGE Expected:%f, Actual:%f" %(expected, actual))
def test_str_perceptron():
    # w,tr_acc,dv_acc = str_perceptron.trainAvgStructPerceptron(10,tr_all,features.wordTransFeatures,alltags)
    # confusion = tagger_base.evalTagger(lambda words,alltags : viterbi.viterbiTagger(words,features.wordTransFeatures,w,alltags)[0],'str_classifier')
    confusion = scorer.getConfusion(DEV_FILE, 'str_avg_perceptron.response')
    expected_acc = 0.749
    actual_acc = scorer.accuracy(confusion)
    ok_(expected_acc < actual_acc,
        msg="NOT_IN_RANGE Expected:%f, Actual:%f" % (expected_acc, actual_acc))
Ejemplo n.º 15
0
def test_hmm_weights_accuracy():
    confusion = tagger_base.evalTagger(
        lambda words, alltags: viterbi.viterbiTagger(
            words, viterbi.hmm_feats, hmm_weights, alltags)[0], 'hmm')
    actual = scorer.accuracy(confusion)
    expected = 0.74
    ok_(expected < actual,
        msg="NOT_IN_RANGE Expected:%f, Actual:%f" % (expected, actual))
Ejemplo n.º 16
0
def test_get_most_common_tag():
    expected = 0.63
    weights = most_common.get_most_common_weights(TRAIN_FILE)
    confusion = tagger_base.evalTagger(
        tagger_base.makeClassifierTagger(weights), 'mcc')
    actual = scorer.accuracy(confusion)

    ok_(expected < actual,
        msg="NOT_IN_RANGE Expected:%f, Actual:%f" % (expected, actual))
Ejemplo n.º 17
0
def test_mcc_tagger_accuracy():
    global tagger_mc, all_tags
        
    expected = 0.811124

    confusion = tagger_base.eval_tagger(tagger_mc,'most-common.preds',all_tags=all_tags)
    actual = scorer.accuracy(confusion)
    
    ok_(expected < actual, msg="NOT_IN_RANGE Expected:%f, Actual:%f" %(expected, actual))
Ejemplo n.º 18
0
def test_avg_perceptron():
    # w, tr_acc, dv_acc =  avg_perceptron.trainAvgPerceptron(10,tr_all,features.wordCharFeatures,alltags)
    # confusion = tagger_base.evalTagger(lambda words,alltags : tagger_base.classifierTagger(words,features.wordCharFeatures,w,alltags),'classifier')
    confusion = scorer.getConfusion(constants.DEV_FILE,
                                    'avg_perceptron.response')
    expected_acc = 0.740
    actual_acc = scorer.accuracy(confusion)
    ok_(expected_acc < actual_acc,
        msg="NOT_IN_RANGE Expected:%f, Actual:%f" % (expected_acc, actual_acc))
Ejemplo n.º 19
0
def test_wlc_dev_exact_accuracy ():
    global weights_wlc
    global WLC_FILE
    mat = evalClassifier (weights_wlc, WLC_FILE, DEVKEY)
    actual = scorer.accuracy(mat)
    expected_lower = 0.4440
    expected_higher = 0.4470
    ok = (actual >=expected_lower) and (actual <= expected_higher)
    ok_(ok, msg="NOT IN RANGE Expected:%f,%f, Actual:%f" %(expected_lower,expected_higher,actual))
Ejemplo n.º 20
0
def test_classifier_tagger():
    expected = 0.136844287788
    noun_weights = most_common.get_noun_weights()
    noun_tagger = tagger_base.makeClassifierTagger(noun_weights)
    
    confusion = tagger_base.evalTagger(noun_tagger,'nouns')
    actual  = scorer.accuracy(confusion)

    assert_almost_equals(expected, actual,places=3, msg="UNEQUAL Expected:%s, Actual:%s" %(expected, actual))
Ejemplo n.º 21
0
def test_nb2_tagger_is_good():
    global theta_nb_fixed
    
    tagger = tagger_base.make_classifier_tagger(theta_nb_fixed)
    confusion = tagger_base.eval_tagger(tagger,'nb2')
    dev_acc = scorer.accuracy(confusion)

    expected_acc = 0.84
    
    ok_(expected_acc < dev_acc, msg="NOT_IN_RANGE Expected:%f, Actual:%f" %(expected_acc, dev_acc))
def test_model_crf_nr_dev_accuracies():
    confusion = scorer.get_confusion(DEV_FILE, '../bilstm-dev-en.preds')
    acc = scorer.accuracy(confusion)
    print("Acc: " + str(acc))
    # ok_(acc > .86, "Accuracy Obt: " + str(acc))

    confusion = scorer.get_confusion(DEV_FILE, '../bilstm_crf-dev-en.preds')
    acc = scorer.accuracy(confusion)
    print("Acc: " + str(acc))
    # ok_(acc > .86, "Accuracy Obt: " + str(acc))

    confusion = scorer.get_confusion(NR_DEV_FILE, '../bilstm_crf-dev-nr.preds')
    acc = scorer.accuracy(confusion)
    print("Acc: " + str(acc))
    # ok_(acc > .86, "Accuracy Obt: " + str(acc))

    confusion = scorer.get_confusion(NR_DEV_FILE, '../bilstm-dev-nr.preds')
    acc = scorer.accuracy(confusion)
    print("Acc: " + str(acc))
Ejemplo n.º 23
0
def eval_tagging_model(testfile,tagger_func,features,weights,all_tags,output_file=None):
    tagger = lambda words, all_tags : tagger_func(words,
                                                  features,
                                                  weights,
                                                  all_tags)[0]
    confusion = eval_tagger(tagger,
                            output_file,
                            testfile=testfile,
                            all_tags=all_tags)
    return scorer.accuracy(confusion)
Ejemplo n.º 24
0
def test_nb2_tagger_is_good():
    global theta_nb_fixed

    tagger = tagger_base.make_classifier_tagger(theta_nb_fixed)
    confusion = tagger_base.eval_tagger(tagger, 'nb2')
    dev_acc = scorer.accuracy(confusion)

    expected_acc = 0.84

    ok_(expected_acc < dev_acc,
        msg="NOT_IN_RANGE Expected:%f, Actual:%f" % (expected_acc, dev_acc))
def test_str_perceptron_small():
    w, tr_acc, dv_acc = str_perceptron.trainAvgStructPerceptron(
        5, tr_all[:50], features.wordTransFeatures, alltags)
    confusion = tagger_base.evalTagger(
        lambda words, alltags: viterbi.viterbiTagger(
            words, features.wordTransFeatures, w, alltags)[0],
        'str_classifier_small')
    expected_acc = 0.506
    actual_acc = scorer.accuracy(confusion)
    ok_(expected_acc < actual_acc,
        msg="NOT_IN_RANGE Expected:%f, Actual:%f" % (expected_acc, actual_acc))
Ejemplo n.º 26
0
def test_classifier_tagger():
    global all_tags
    
    expected = 0.1668919993637665

    noun_weights = most_common.get_noun_weights()
    noun_tagger = tagger_base.make_classifier_tagger(noun_weights)

    confusion = tagger_base.eval_tagger(noun_tagger,'all_nouns.preds',all_tags=all_tags)
    actual  = scorer.accuracy(confusion)

    assert_almost_equals(expected, actual,places=3, msg="UNEQUAL Expected:%s, Actual:%s" %(expected, actual))
def test_classifier():
    global all_tags
    
    expected = 0.1527613022274944

    noun_weights = most_common.get_noun_weights()
    noun_tagger = tagger_base.make_classifier_tagger(noun_weights)

    confusion = tagger_base.eval_tagger(noun_tagger,'all_nouns.preds',all_tags=all_tags)
    actual  = scorer.accuracy(confusion)

    assert_almost_equal(expected, actual,places=3, msg="UNEQUAL Expected:%s, Actual:%s" %(expected, actual))
Ejemplo n.º 28
0
def test_classifier_tagger():
    expected = 0.136844287788
    noun_weights = most_common.get_noun_weights()
    noun_tagger = tagger_base.makeClassifierTagger(noun_weights)

    confusion = tagger_base.evalTagger(noun_tagger, 'nouns')
    actual = scorer.accuracy(confusion)

    assert_almost_equals(expected,
                         actual,
                         places=3,
                         msg="UNEQUAL Expected:%s, Actual:%s" %
                         (expected, actual))
def test_basic_classifer():
    test_weights = defaultdict(float)
    test_tags = ['N','V','V','N']
    for i in range(len(sent)):
        for feat in features.wordFeatures(sent,test_tags[i],'X',i):
            test_weights[feat] = 1
        for feat in features.wordFeatures(sent,'X','X',i):
            test_weights[feat] = 1
    expected = test_tags
    actual = tagger_base.classifierTagger(sent,features.wordFeatures,test_weights,alltags)
    eq_ (expected, actual, msg="UNEQUAL Expected:%s, Actual:%s" %(expected, actual) )

    expected_acc = 0.139539705577
    confusion = tagger_base.evalTagger(lambda words,alltags : tagger_base.classifierTagger(words,features.wordFeatures,test_weights,alltags),'test')
    actual_acc =scorer.accuracy(confusion)
    assert_almost_equals(expected_acc ,actual_acc,places = 3)
Ejemplo n.º 30
0
def trainLRbyAdaGrad(N_its,inst_generator, outfile, devkey, learning_rate=1e-4, regularizer=1e-2):
    weights = defaultdict(float)
    dv_acc = [None]*N_its
    tr_acc = [None]*N_its

    running_value = defaultdict(float)

    num_inst = len(inst_generator)
    # this block is all to take care of regularization
    ratereg = learning_rate * regularizer
    def regularize(base_feats, t):
        for base_feat in base_feats:
            for label in ALL_LABELS:
                weights[(label, base_feat)] *= (1 - ratereg) ** (t-last_update[base_feat])
            last_update[base_feat] = t

    for it in xrange(N_its):
        tr_err = 0
        last_update = defaultdict(int) # reset, since we regularize at the end of every iteration
        for i, (inst, true_label) in enumerate(inst_generator):
            # apply "just-in-time" regularization to the weights for features in this instance
            regularize(inst, i)
            # compute likelihood gradient from this instance
            probs = computeLabelProbs(inst, weights, ALL_LABELS)

            label_pred = argmax(probs)
            if true_label != label_pred:tr_err += 1

            for word, value in inst.items():
                weights[(true_label, word)] += num_inst * learning_rate * value / running_value.get((true_label, word), 1)
                for label in ALL_LABELS:
                    weights[(label, word)] -= num_inst * probs[label] * learning_rate * value / running_value.get((label, word), 1)
                running_value[(true_label, word)] = value**2

        # regularize all features at the end of each iteration
        regularize([base_feature for label,base_feature in weights.keys()], i)

        dv_acc[it] = scorer.accuracy(evalClassifier(weights, outfile, devkey))
        tr_acc[it] = 1. - tr_err/float(i)
        print it,'dev:',dv_acc[it],'train:',tr_acc[it]
    return weights,tr_acc,dv_acc
Ejemplo n.º 31
0
def test_basic_classifer():
    test_weights = defaultdict(float)
    test_tags = ['N', 'V', 'V', 'N']
    for i in range(len(sent)):
        for feat in features.wordFeatures(sent, test_tags[i], 'X', i):
            test_weights[feat] = 1
        for feat in features.wordFeatures(sent, 'X', 'X', i):
            test_weights[feat] = 1
    expected = test_tags
    actual = tagger_base.classifierTagger(sent, features.wordFeatures,
                                          test_weights, alltags)
    eq_(expected,
        actual,
        msg="UNEQUAL Expected:%s, Actual:%s" % (expected, actual))

    expected_acc = 0.139539705577
    confusion = tagger_base.evalTagger(
        lambda words, alltags: tagger_base.classifierTagger(
            words, features.wordFeatures, test_weights, alltags), 'test')
    actual_acc = scorer.accuracy(confusion)
    assert_almost_equals(expected_acc, actual_acc, places=3)
def test_bakeoff_acc_d3_4_ja_beat_the_prof():
    acc = scorer.accuracy(
        scorer.get_confusion(JA_TEST_FILE, 'sp-best-te.ja.preds'))
    assert_greater(acc, .879926)
def test_bakeoff_acc_d3_4_en_half_credit():
    acc = scorer.accuracy(scorer.get_confusion(DEV_FILE,'sp-best.preds'))
    assert_greater(acc,.885) 
def test_bakeoff_acc_d3_4_en_beat_the_prof():
    acc = scorer.accuracy(scorer.get_confusion(TEST_FILE, 'sp-best-te.preds'))
    assert_greater(acc,
                   .88735)  # same as with the classification-based tagger!
def test_bakeoff_acc_d3_4_ja_full_credit():
    acc = scorer.accuracy(scorer.get_confusion(JA_DEV_FILE,
                                               'sp-best.ja.preds'))
    assert_greater(acc, .91)
Ejemplo n.º 36
0
def test_nr_hmm_dev_accuracy():
    confusion = scorer.get_confusion(NR_DEV_FILE,'hmm-dev-nr.preds')
    acc = scorer.accuracy(confusion)
    ok_(acc > .861)
def test_bakeoff_acc_d3_4_en_half_credit():
    acc = scorer.accuracy(scorer.get_confusion(DEV_FILE, 'sp-best.preds'))
    assert_greater(acc, .885)
def test_bakeoff_acc_d2_6_ja_beat_the_prof():
    acc = scorer.accuracy(
        scorer.get_confusion(JA_TEST_FILE, 'avp-words-best-te.ja.preds'))
    assert_greater(acc, .87882)
def test_bakeoff_acc_d3_4_ja_beat_the_prof():
    acc = scorer.accuracy(scorer.get_confusion(JA_TEST_FILE,'sp-best-te.ja.preds'))
    assert_greater(acc,.879926) 
def test_bakeoff_acc_d3_4_en_beat_the_prof():
    acc = scorer.accuracy(scorer.get_confusion(TEST_FILE,'sp-best-te.preds'))
    assert_greater(acc,.88735) # same as with the classification-based tagger!
Ejemplo n.º 41
0
def test_bilstm_test_accuracy():
    confusion = scorer.get_confusion(DEV_FILE,'bilstm-te-en.preds')
    acc = scorer.accuracy(confusion)
    ok_(acc > .83) #change the no's
def test_neighbor_acc_d2_5_ja():
    confusion = scorer.get_confusion(JA_DEV_FILE,
                                     'avp-words-neighbor.ja.preds')
    acc = scorer.accuracy(confusion)
    assert_greater(acc, .792)  # should be .802
Ejemplo n.º 43
0
def test_hmm_dev_accuracy():
    confusion = scorer.get_confusion(DEV_FILE,'hmm-dev-en.preds')
    acc = scorer.accuracy(confusion)
    ok_(acc > .840)
Ejemplo n.º 44
0
def test_nr_hmm_test_accuracy():
    confusion = scorer.get_confusion(NR_TEST_FILE,'hmm-te-nr.preds')
    acc = scorer.accuracy(confusion)
    ok_(acc > .853)
def test_hmm_feat_acc_d3_3_ja():
    confusion = scorer.get_confusion(JA_DEV_FILE,'sp-hmm.ja.preds')
    acc = scorer.accuracy(confusion)
    assert_greater(acc,.797) # should be .807
def test_hmm_feat_acc_d3_3_en():
    confusion = scorer.get_confusion(DEV_FILE, 'sp-hmm.preds')
    acc = scorer.accuracy(confusion)
    assert_greater(acc, .862)  # should be .872
def test_bakeoff_acc_d3_4_ja_full_credit():
    acc = scorer.accuracy(scorer.get_confusion(JA_DEV_FILE,'sp-best.ja.preds'))
    assert_greater(acc,.91) 
def test_hmm_feat_acc_d3_3_ja():
    confusion = scorer.get_confusion(JA_DEV_FILE, 'sp-hmm.ja.preds')
    acc = scorer.accuracy(confusion)
    assert_greater(acc, .797)  # should be .807
def test_bakeoff_acc_d2_6_en_half_credit():
    acc = scorer.accuracy(
        scorer.get_confusion(DEV_FILE, 'avp-words-best.preds'))
    assert_greater(acc, .87)
Ejemplo n.º 50
0
def test_hmm_test_accuracy():
    confusion = scorer.get_confusion(TEST_FILE,'hmm-te-en.preds')
    acc = scorer.accuracy(confusion)
    ok_(acc > .840)
def test_bakeoff_acc_d2_6_ja_full_credit():
    acc = scorer.accuracy(
        scorer.get_confusion(JA_DEV_FILE, 'avp-words-best.ja.preds'))
    assert_greater(acc, .90)
Ejemplo n.º 52
0
def test_hmm_weights_accuracy():
    confusion = tagger_base.evalTagger(lambda words, alltags : viterbi.viterbiTagger(words,viterbi.hmm_feats,hmm_weights,alltags)[0],'hmm')
    actual =  scorer.accuracy(confusion)
    expected = 0.74
    ok_ (expected < actual, msg="NOT_IN_RANGE Expected:%f, Actual:%f" %(expected, actual))