Ejemplo n.º 1
0
    def example_1d():
        from ibvpy.api import FEDomain, FERefinementGrid, FEGrid, TStepper as TS, \
            BCDofGroup, RTraceDomainListField
        from ibvpy.core.tloop import TLoop, TLine
        from ibvpy.mesh.xfe_subdomain import XFESubDomain
        from ibvpy.mats.mats1D.mats1D_elastic.mats1D_elastic import MATS1DElastic
        from ibvpy.fets.fets1D.fets1D2l import FETS1D2L
        from ibvpy.fets.fets1D.fets1D2l3u import FETS1D2L3U
        from ibvpy.fets.fets_ls.fets_crack import FETSCrack
        fets_eval = FETS1D2L( mats_eval = MATS1DElastic( E = 1. ) ) #, A=1.))
        #xfets_eval = fets_eval # use the same element for the enrichment
        xfets_eval = FETSCrack( parent_fets = fets_eval )
        # Discretization

        fe_domain = FEDomain()
        fe_level1 = FERefinementGrid( domain = fe_domain, fets_eval = fets_eval )
        fe_grid1 = FEGrid( coord_max = ( 4., 0., 0. ),
                           shape = ( 4, ),
                           fets_eval = fets_eval,
                           level = fe_level1 )


        enr = True
        if enr:
            fe_xdomain = XFESubDomain( domain = fe_domain,
                                       fets_eval = xfets_eval,
                                       fe_grid_slice = fe_grid1[  '(X - 2) **2 - 0.5 ' ] )
            fe_xdomain.deactivate_sliced_elems()

        print 'elem_dof_map', fe_xdomain.elem_dof_map

        fe_domain = FEDomain()
        fe_level1 = FERefinementGrid( domain = fe_domain, fets_eval = fets_eval )
        fe_grid1 = FEGrid( coord_max = ( 4 * 3.14, 0., 0. ),
                           shape = ( 8, ),
                           fets_eval = fets_eval,
                           level = fe_level1 )


        enr = True
        if enr:
            fe_xdomain = XFESubDomain( domain = fe_domain,
                                       fets_eval = xfets_eval,
                                       fe_grid_slice = fe_grid1[  'cos(X) - 0.5' ] )
            fe_xdomain.deactivate_sliced_elems()

        print 'elem_dof_map2', fe_xdomain.elem_dof_map
Ejemplo n.º 2
0
 def _get_elstmr_fe_level(self):
     return FERefinementGrid(name='elastomer patch',
                             fets_eval=self.elstmr_fets,
                             domain=self.fe_domain)
Ejemplo n.º 3
0
 def _get_mid_zone_specmn_fe_level(self):
     return FERefinementGrid(name='mid zone specimen patch',
                             fets_eval=self.specmn_fets,
                             domain=self.fe_domain)
Ejemplo n.º 4
0
    def example_2d():
        from ibvpy.mats.mats2D.mats2D_elastic.mats2D_elastic import MATS2DElastic
        from ibvpy.fets.fets2D.fets2D4q import FETS2D4Q
        from ibvpy.fets.fets2D.fets2D4q8u import FETS2D4Q8U
        from ibvpy.fets.fets2D.fets2D4q9u import FETS2D4Q9U
        from ibvpy.fets.fets2D.fets2D9q import FETS2D9Q
        fets_eval = FETS2D4Q(mats_eval=MATS2DElastic(E=1., nu=0.))
        xfets_eval = FETSBimaterial(parent_fets=fets_eval,
                                    int_order=3,
                                    mats_eval=MATS2DElastic(E=1., nu=0.),
                                    mats_eval2=MATS2DElastic(E=5., nu=0.))

        # Discretization

        fe_domain = FEDomain()
        fe_level1 = FERefinementGrid(domain=fe_domain, fets_eval=fets_eval)
        fe_grid1 = FEGrid(coord_max=(3., 1., 0.),
                          shape=(3, 1),
                          fets_eval=fets_eval,
                          level=fe_level1)

        fe_xdomain = XFESubDomain(
            domain=fe_domain,
            fets_eval=xfets_eval,
            #fe_grid_idx_slice = fe_grid1[1,0],
            fe_grid_slice=fe_grid1['X   - 1.5'])

        ts = TS(
            dof_resultants=True,
            sdomain=fe_domain,
            bcond_list=[
                BCDofGroup(var='u',
                           value=1.,
                           dims=[0],
                           get_dof_method=fe_grid1.get_right_dofs),
                BCDofGroup(var='u',
                           value=0.,
                           dims=[1],
                           get_dof_method=fe_grid1.get_right_dofs),
                BCDofGroup(var='u',
                           value=0.,
                           dims=[0, 1],
                           get_dof_method=fe_grid1.get_left_dofs),
            ],
            rtrace_list=[
                #                                 RTraceGraph(name = 'Fi,right over u_right (iteration)' ,
                #                                       var_y = 'F_int', idx_y = 0,
                #                                       var_x = 'U_k', idx_x = 1),
                #                            RTraceDomainListField(name = 'Stress' ,
                #                                 var = 'sig_app', idx = 0, warp = True ),
                RTraceDomainListField(name='Displacement',
                                      var='u',
                                      idx=0,
                                      warp=True),
                RTraceDomainListField(name='Strain',
                                      var='eps',
                                      idx=0,
                                      warp=True),
                #                                     RTraceDomainField(name = 'N0' ,
                #                                                  var = 'N_mtx', idx = 0,
                #                                                  record_on = 'update')
            ])
        #
        #        # Add the time-loop control
        tloop = TLoop(
            tstepper=ts,
            #                       tolerance = 1e-4, KMAX = 4,
            #                       debug = True, RESETMAX = 2,
            tline=TLine(min=0.0, step=1., max=1.0))

        #print "elements ",fe_xdomain.elements[0]
        fe_xdomain.deactivate_sliced_elems()
        print 'parent elems ', fe_xdomain.fe_grid_slice.elems
        print 'parent dofs ', fe_xdomain.fe_grid_slice.dofs
        print "dofmap ", fe_xdomain.elem_dof_map
        print "ls_values ", fe_xdomain.dots.dof_node_ls_values
        print 'intersection points ', fe_xdomain.fe_grid_slice.r_i
        print "triangles ", fe_xdomain.dots.rt_triangles
        print "vtk points ", fe_xdomain.dots.vtk_X
        print "vtk data ", fe_xdomain.dots.get_vtk_cell_data('blabla', 0, 0)
        print 'ip_triangles', fe_xdomain.dots.int_division
        print 'ip_coords', fe_xdomain.dots.ip_coords
        print 'ip_weigths', fe_xdomain.dots.ip_weights
        print 'ip_offset', fe_xdomain.dots.ip_offset
        print 'ip_X_coords', fe_xdomain.dots.ip_X
        print 'ip_ls', fe_xdomain.dots.ip_ls_values
        print 'vtk_ls', fe_xdomain.dots.vtk_ls_values
        print 'J_det ', fe_xdomain.dots.J_det_grid

        print tloop.eval()
        #        #ts.setup()
        from ibvpy.plugins.ibvpy_app import IBVPyApp
        ibvpy_app = IBVPyApp(ibv_resource=ts)
        ibvpy_app.main()
Ejemplo n.º 5
0
def __demo__():
    from ibvpy.api import \
        TStepper as TS, RTraceGraph, RTraceDomainListField, TLoop, \
        TLine, BCSlice, FEDomain, FERefinementGrid
    from ibvpy.mats.mats1D.mats1D_elastic.mats1D_elastic import MATS1DElastic

    fets_eval = FETS1D2L(mats_eval = MATS1DElastic(E = 10.))
    from ibvpy.mesh.fe_grid import FEGrid

    fe_domain = FEDomain()
    
    r1 = FERefinementGrid(fets_eval = fets_eval,
                          domain = fe_domain)
    r2 = FERefinementGrid(fets_eval = fets_eval,
                          domain = fe_domain)
    # Discretization
    domain1 = FEGrid(coord_max = (3.,),
                     shape = (3,),
                     fets_eval = fets_eval,
                     level = r1)

    domain2 = FEGrid(coord_min = (3.,),
                     coord_max = (6.,),
                     shape = (3,),
                     fets_eval = fets_eval,
                     level = r2)

    ts = TS(dof_resultants = True,
            sdomain = fe_domain,
            bcond_list = [BCSlice(var = 'u', dims = [0], value = 0, slice = domain1[0, 0]),
                          BCSlice(var = 'u', dims = [0], value = 0, slice = domain1[-1, -1],
                                  link_slice = domain2[0, 0], link_coeffs = [1.]),
                          BCSlice(var = 'f', dims = [0], value = 1, slice = domain2[-1, -1])
                          ],
            rtrace_list = [RTraceGraph(name = 'Fi,right over u_right (iteration)' ,
                                        var_y = 'F_int', idx_y = 0,
                                        var_x = 'U_k', idx_x = 1),
                           RTraceDomainListField(name = 'Stress' ,
                                                 var = 'sig_app', idx = 0),
                           RTraceDomainListField(name = 'Displacement' ,
                                                 var = 'u', idx = 0,
                                                 warp = True),
                           RTraceDomainListField(name = 'N0' ,
                                                 var = 'N_mtx', idx = 0,
                                                 record_on = 'update')
                           ]
            )

    # Add the time-loop control
    tloop = TLoop(tstepper = ts,
                  tline = TLine(min = 0.0, step = 0.5, max = 1.0))

    print '---- result ----'
    print tloop.eval()
    print ts.F_int
    print ts.rtrace_list[0].trace.ydata

    # Put the whole stuff into the simulation-framework to map the
    # individual pieces of definition into the user interface.
    #
    from ibvpy.plugins.ibvpy_app import IBVPyApp
    app = IBVPyApp(ibv_resource = tloop)
    app.main()
Ejemplo n.º 6
0
    def example_2d():
        from ibvpy.api import FEDomain, FERefinementGrid, FEGrid, TStepper as TS, \
            BCDofGroup, RTraceDomainListField
        from ibvpy.core.tloop import TLoop, TLine
        from ibvpy.mesh.xfe_subdomain import XFESubDomain
        from ibvpy.mats.mats2D.mats2D_elastic.mats2D_elastic import MATS2DElastic
        from ibvpy.mats.mats2D import MATS2DPlastic
        from ibvpy.fets.fets2D.fets2D4q import FETS2D4Q
        from ibvpy.fets.fets2D import FETS2D9Q
        from ibvpy.fets.fets2D.fets2D4q8u import FETS2D4Q8U
        from ibvpy.fets.fets_ls.fets_crack import FETSCrack
        #fets_eval = FETS2D4Q( mats_eval = MATS2DPlastic( E = 1., nu = 0. ) )
        fets_eval = FETS2D4Q8U(mats_eval=MATS2DPlastic(E=1., nu=0.))
        xfets_eval = FETSCrack(parent_fets=fets_eval,
                               int_order=5,
                               tri_subdivision=1)

        # Discretization

        fe_domain = FEDomain()
        fe_level1 = FERefinementGrid(domain=fe_domain, fets_eval=fets_eval)
        fe_grid1 = FEGrid(coord_max=(1., 1.),
                          shape=(8, 8),
                          fets_eval=fets_eval,
                          level=fe_level1)

        #ls_function = lambda X, Y: X - Y - 0.13
        ls_function = lambda X, Y: (X - 0.52)**2 + (Y - 0.72)**2 - 0.51**2
        bls_function = lambda X, Y: -((X - 0.5)**2 + (Y - 0.21)**2 - 0.28**2)
        bls_function2 = lambda X, Y: -((X - 0.5)**2 + (Y - 0.21)**2 - 0.38**2)

        # design deficits:
        # - How to define a level set spanned over several fe_grids
        #   (i.e. it is defined over the hierarchy of FESubDomains)
        # - Patching of subdomains within the FEPatchedGrid (FERefinementGrid)
        # - What are the compatibility conditions?
        # - What is the difference between FEGridLeveSetSlice
        #   and FELSDomain?
        #   FELSDomain is associated with a DOTS - Slice is not.

        # FEGrid has a multidimensional array - elem_grid
        # it can be accessed through this index.
        # it is masked by the activity map. The activity map can
        # be defined using slices and level sets.
        # the elems array enumerates the elements using the activity map.
        # in this way, the specialization of grids is available implicitly.
        #
        fe_xdomain = FELSDomain(
            domain=fe_domain,
            fets_eval=xfets_eval,
            fe_grid=fe_grid1,
            ls_function=ls_function,
            bls_function=bls_function,
        )

        fe_tip_xdomain = FELSDomain(
            domain=fe_domain,
            fets_eval=xfets_eval,
            fe_grid=fe_xdomain,
            ls_function=bls_function,
        )

        # deactivation must be done only after the dof enumeration has been completed
        fe_xdomain.deactivate_intg_elems_in_parent()
        fe_tip_xdomain.deactivate_intg_elems_in_parent()

        fe_xdomain.bls_function = bls_function2
        fe_tip_xdomain.ls_function = bls_function2

        # deactivation must be done only after the dof enumeration has been completed
        fe_xdomain.deactivate_intg_elems_in_parent()
        fe_tip_xdomain.deactivate_intg_elems_in_parent()

        #
        # General procedure:
        # 1) define the level sets with the boundaries
        # 2) use the bls to identify the tips of the level set
        # 3) use independent level sets to introduce indpendently junctions.
        #
        # get the extended dofs of the bls_elems and constrain it
        #
        cdofs = fe_tip_xdomain.elem_xdof_map.flatten()
        bc_list = [BCDof(var='u', dof=dof, value=0.0) for dof in cdofs]

        # construct the time stepper

        ts = TS(
            dof_resultants=True,
            sdomain=fe_domain,
            bcond_list=[
                BCSlice(
                    var='u', value=-0.1, dims=[1], slice=fe_grid1[:, 0, :, 0]),
                BCSlice(
                    var='u', value=0., dims=[0], slice=fe_grid1[:, 0, :, 0]),
                BCSlice(var='u',
                        value=0.,
                        dims=[0, 1],
                        slice=fe_grid1[:, -1, :, -1])
            ] + bc_list,
            rtrace_list=[
                #                                 RTDofGraph(name = 'Fi,right over u_right (iteration)' ,
                #                                       var_y = 'F_int', idx_y = 0,
                #                                       var_x = 'U_k', idx_x = 1),
                RTraceDomainListField(name='Stress',
                                      var='sig_app',
                                      idx=0,
                                      warp=True),
                RTraceDomainListField(name='Displacement',
                                      var='u',
                                      idx=0,
                                      warp=True),
                #                                     RTraceDomainField(name = 'N0' ,
                #                                                  var = 'N_mtx', idx = 0,
                #                                                  record_on = 'update')
            ])
        #

        do = 'print'

        if do == 'print':

            p = 'state'

            if p == 'grids':
                print('fe_xdomain.ls mask')
                print(fe_xdomain.ls_mask)
                print('fe_xdomain.idx mask')
                print(fe_xdomain.idx_mask)
                print('fe_xdomain.intg mask')
                print(fe_xdomain.intg_mask)
                print('fe_xdomain.xelems_mask')
                print(fe_xdomain.xelems_mask)
                print('fe_xdomain.xelems_grid_ix')
                print(fe_xdomain.xelems_grid_ix)
                print('fe_xdomain.ls_elem_grid')
                print(fe_xdomain.ls_elem_grid)
                print('fe_xdomain.ls_ielem_grid')
                print(fe_xdomain.ls_ielem_grid)
                print('fe_xdomain.intg_elem_grid')
                print(fe_xdomain.intg_elem_grid)

                print('fe_tip_xdomain.ls_mask`')
                print(fe_tip_xdomain.ls_mask)
                print('fe_tip_xdomain.intg_mask`')
                print(fe_tip_xdomain.intg_mask)
                print('fe_tip_xdomain.idx_mask`')
                print(fe_tip_xdomain.idx_mask)
                print('fe_tip_xdomain.xelems_mask')
                print(fe_tip_xdomain.xelems_mask)
                print('fe_tip_xdomain.xelems_grid_ix')
                print(fe_tip_xdomain.xelems_grid_ix)
                print('fe_tip_xdomain.ls_elem_grid')
                print(fe_tip_xdomain.ls_elem_grid)
                print('fe_tip_xdomain.ls_ielems_grid')
                print(fe_tip_xdomain.ls_ielem_grid)
                print('fe_tip_xdomain.intg_elem_grid')
                print(fe_tip_xdomain.intg_elem_grid)

            if p == 'maps':

                print('fe_xdomain.elem_dof_map')
                print(fe_xdomain.elem_dof_map)
                print('fe_tip_xdomain.elem_dof_map')
                print(fe_tip_xdomain.elem_dof_map)

                print('fe_xdomain.elems')
                print(fe_xdomain.elems)
                print('fe_tip_xdomain.elems')
                print(fe_tip_xdomain.elems)

                print('fe_xdomain.elem_X_map')
                print(fe_xdomain.elem_X_map)
                print('fe_tip_xdomain.elem_X_map')
                print(fe_tip_xdomain.elem_X_map)

            if p == 'fields':

                print("ls_values ", fe_xdomain.dots.dof_node_ls_values)
                print("tip ls_values ", fe_tip_xdomain.dots.dof_node_ls_values)

                print('intersection points ', fe_xdomain.ls_intersection_r)
                print('tip intersection points ',
                      fe_tip_xdomain.ls_intersection_r)

                print("triangles ", fe_xdomain.dots.rt_triangles)
                print("vtk points ", fe_xdomain.dots.vtk_X)
                print("vtk data ",
                      fe_xdomain.dots.get_vtk_cell_data('blabla', 0, 0))

                print('ip_triangles', fe_xdomain.dots.int_division)
                print('ip_coords', fe_xdomain.dots.ip_coords)
                print('ip_weigths', fe_xdomain.dots.ip_weights)
                print('ip_offset', fe_xdomain.dots.ip_offset)
                print('ip_X_coords', fe_xdomain.dots.ip_X)
                print('ip_ls', fe_xdomain.dots.ip_ls_values)
                print('vtk_ls', fe_xdomain.dots.vtk_ls_values)
                print('J_det ', fe_xdomain.dots.J_det_grid)

            if p == 'state':

                # Add the time-loop control
                print('STATE: initial')

                print('fe_xdomain.dots.state_elem grid')
                print(fe_xdomain.dots.state_start_elem_grid)
                print('fe_tip_xdomain.dots.state_elem grid')
                print(fe_tip_xdomain.dots.state_start_elem_grid)
                print('fe_xdomain.dots.state_end_elem grid')
                print(fe_xdomain.dots.state_end_elem_grid)
                print('fe_tip_xdomain.dots.state_end_elem grid')
                print(fe_tip_xdomain.dots.state_end_elem_grid)

                fe_xdomain.dots.state_array[:] = 25.5
                print('state_array 25', fe_xdomain.dots.state_array)
                fe_tip_xdomain.dots.state_array[:] = 58

                bls_function3 = lambda X, Y: -((X - 0.5)**2 +
                                               (Y - 0.21)**2 - 0.58**2)

                fe_xdomain.bls_function = bls_function3
                fe_tip_xdomain.ls_function = bls_function3

                print('STATE: changed')

                print('fe_xdomain.dots.state_elem grid')
                print(fe_xdomain.dots.state_start_elem_grid)
                print('fe_tip_xdomain.dots.state_elem grid')
                print(fe_tip_xdomain.dots.state_start_elem_grid)
                print('fe_xdomain.dots.state_end_elem grid')
                print(fe_xdomain.dots.state_end_elem_grid)
                print('fe_tip_xdomain.dots.state_end_elem grid')
                print(fe_tip_xdomain.dots.state_end_elem_grid)

                print('state_array 25', fe_xdomain.dots.state_array.shape)
                print('state_array 25', fe_xdomain.dots.state_array[570:])
                print('state_array 58', fe_tip_xdomain.dots.state_array.shape)

        elif do == 'ui':

            tloop = TLoop(tstepper=ts,
                          debug=False,
                          tolerance=1e-4,
                          KMAX=3,
                          RESETMAX=0,
                          tline=TLine(min=0.0, step=1, max=1.0))

            tloop.eval()
            from ibvpy.plugins.ibvpy_app import IBVPyApp
            ibvpy_app = IBVPyApp(ibv_resource=ts)
            ibvpy_app.main()
Ejemplo n.º 7
0
    def example_1d():
        fets_eval = FETS1D2L3U(mats_eval=MATS1DElastic(E=20.))
        xfets_eval = FETSCrack(parent_fets=fets_eval, int_order=2)

        # Discretization

        fe_domain = FEDomain()
        fe_level1 = FERefinementGrid(domain=fe_domain, fets_eval=fets_eval)
        fe_grid1 = FEGrid(coord_max=(2., 0., 0.),
                          shape=(2, ),
                          fets_eval=fets_eval,
                          level=fe_level1)

        enr = True
        if enr:
            fe_xdomain = XFESubDomain(
                domain=fe_domain,
                fets_eval=xfets_eval,
                #fe_grid_idx_slice = fe_grid1[1,0],
                fe_grid_slice=fe_grid1['X  - .75'])
            fe_xdomain.deactivate_sliced_elems()

        ts = TS(
            dof_resultants=True,
            sdomain=fe_domain,
            bcond_list=[
                BCSlice(var='u',
                        value=-1. / 2.,
                        dims=[0],
                        slice=fe_grid1[0, 0]),
                BCSlice(var='u', value=0., dims=[0], slice=fe_grid1[-1, -1]),
            ],
            rtrace_list=[
                #                                 RTDofGraph(name = 'Fi,right over u_right (iteration)' ,
                #                                       var_y = 'F_int', idx_y = 0,
                #                                       var_x = 'U_k', idx_x = 1),
                RTraceDomainListField(name='Stress',
                                      var='eps',
                                      idx=0,
                                      warp=True),
                RTraceDomainListField(name='Displacement',
                                      var='u',
                                      idx=0,
                                      warp=True),
                #                                     RTraceDomainField(name = 'N0' ,
                #                                                  var = 'N_mtx', idx = 0,
                #                                                  record_on = 'update')
            ])
        #
        #        # Add the time-loop control
        tloop = TLoop(tstepper=ts,
                      debug=True,
                      tolerance=1e-4,
                      RESETMAX=0,
                      tline=TLine(min=0.0, step=1, max=1.0))

        #print "elements ",fe_xdomain.elements[0]
        if enr:
            print('parent elems ', fe_xdomain.fe_grid_slice.elems)
            print('parent dofs ', fe_xdomain.fe_grid_slice.dofs)
            print("dofmap ", fe_xdomain.elem_dof_map)
            print("ls_values ", fe_xdomain.dots.dof_node_ls_values)
            print('intersection points ', fe_xdomain.fe_grid_slice.r_i)  #
            print("triangles ", fe_xdomain.dots.int_division)
            print('ip_coords', fe_xdomain.dots.ip_coords)
            print('ip_weigths', fe_xdomain.dots.ip_weights)
            print('ip_offset ', fe_xdomain.dots.ip_offset)
            print('ip_X_coords', fe_xdomain.dots.ip_X)
            print('ip_ls', fe_xdomain.dots.ip_ls_values)
            print('vtk_X ', fe_xdomain.dots.vtk_X)
            print('vtk triangles ', fe_xdomain.dots.rt_triangles)
            print("vtk data ",
                  fe_xdomain.dots.get_vtk_cell_data('blabla', 0, 0))
            print('vtk_ls', fe_xdomain.dots.vtk_ls_values)
            print('J_det ', fe_xdomain.dots.J_det_grid)

        tloop.eval()

        from ibvpy.plugins.ibvpy_app import IBVPyApp
        ibvpy_app = IBVPyApp(ibv_resource=ts)
        ibvpy_app.main()
Ejemplo n.º 8
0
    from ibvpy.api import FEDomain, FERefinementGrid, FEGrid, TStepper as TS, \
        BCDofGroup, BCDof, RTraceDomainListField
    from ibvpy.core.tloop import TLoop, TLine
    from ibvpy.mesh.xfe_subdomain import XFESubDomain
    from ibvpy.mats.mats2D.mats2D_elastic.mats2D_elastic import MATS2DElastic
    from ibvpy.fets.fets2D.fets2D4q import FETS2D4Q
    from ibvpy.fets.fets2D.fets2D4q8u import FETS2D4Q8U
    from ibvpy.fets.fets2D.fets2D4q9u import FETS2D4Q9U
    from ibvpy.fets.fets2D.fets2D9q import FETS2D9Q
    fets_eval = FETS2D4Q(mats_eval=MATS2DElastic(E=1., nu=0.))
    xfets_eval = FETSCrack(parent_fets=fets_eval, int_order=5)

    # Discretization

    fe_domain = FEDomain()
    fe_level1 = FERefinementGrid(domain=fe_domain, fets_eval=fets_eval)
    fe_grid1 = FEGrid(coord_max=(1., 1., 0.),
                      shape=(1, 1),
                      rt_tol=0.1,
                      fets_eval=fets_eval,
                      level=fe_level1)
    #        fe_grid1.deactivate( (1,0) )
    #        fe_grid1.deactivate( (1,1) )

    fe_xdomain = XFESubDomain(
        domain=fe_domain,
        fets_eval=xfets_eval,
        # fe_grid_idx_slice = fe_grid1[1,0],
        fe_grid_slice=fe_grid1['X  -  0.5  -0.1*Y'])

    ts = TS(
Ejemplo n.º 9
0
 def _get_friction_fe_level(self):
     return FERefinementGrid(name='friction level',
                             fets_eval=self.friction_fets,
                             domain=self.fe_domain)
Ejemplo n.º 10
0
 def _get_buttstrap_clamp_fe_level(self):
     return FERefinementGrid(name='buttstrap clamp level',
                             fets_eval=self.buttstrap_fets,
                             domain=self.fe_domain)
Ejemplo n.º 11
0
 def _get_specimen_cl_fe_level(self):
     return FERefinementGrid(name='specimen clamped level',
                             fets_eval=self.specimen_fets,
                             domain=self.fe_domain)
Ejemplo n.º 12
0
def __demo__():
    from ibvpy.api import \
        TStepper as TS, RTraceDomainListField, TLoop, \
        TLine, BCSlice, FEDomain, FERefinementGrid, FEGrid
    from ibvpy.mats.mats2D.mats2D_elastic.mats2D_elastic import MATS2DElastic

    fets_eval = FETS2D4Q8U(mats_eval=MATS2DElastic())

    fe_domain = FEDomain()

    r1 = FERefinementGrid(fets_eval=fets_eval, domain=fe_domain)
    r2 = FERefinementGrid(fets_eval=fets_eval, domain=fe_domain)
    # Discretization
    domain1 = FEGrid(coord_max=(3., 3.),
                     shape=(10, 4),
                     fets_eval=fets_eval,
                     level=r1)

    domain2 = FEGrid(coord_min=(3., 0.),
                     coord_max=(6., 3),
                     shape=(10, 4),
                     fets_eval=fets_eval,
                     level=r2)

    ts = TS(
        dof_resultants=True,
        sdomain=[domain1, domain2],  # fe_domain,
        bcond_list=[
            # Fix the left edge of domain1
            BCSlice(var='u', dims=[0, 1], value=0, slice=domain1[0, :, 0, :]),
            # Link the right edge of domain1 with the left edge of domain2
            #
            # note that following arrays must have the same lengths:
            # slice and link_slice
            # dims, link_dims and link_coeffs must have the same lengths

            # VAR-1:
            # linking along the complete line between 'domain1' and 'domain2'
            # all nodes along the y-axis
            # (used linking of more nodes at once in 'BCSlice')
            #
            BCSlice(var='u',
                    dims=[0, 1],
                    value=0.0,
                    slice=domain1[-1, :, -1, :],
                    link_slice=domain2[0, :, 0, :],
                    link_dims=[0, 1],
                    link_coeffs=[1., 1.]),

            # VAR-2:
            # linking along individual points between 'domain1' and 'domain2'
            # (used linking of single nodes in 'BCSlice')
            #
            #                          BCSlice(var='u', dims=[0, 1], value=0.0,
            #                                  slice=domain1[-1, -1, -1, -1],
            #                                  link_slice=domain2[0, -1, 0, -1],
            #                                  link_dims=[0, 1],
            #                                  link_coeffs=[1., 1.]),
            #                          BCSlice(var='u', dims=[0, 1], value=0.0,
            #                                  slice=domain1[-1, 0, -1, 0],
            #                                  link_slice=domain2[0, 0, 0, 0],
            #                                  link_dims=[0, 1],
            #                                  link_coeffs=[1., 1.]),

            # Load the right edge of domain2
            BCSlice(var='f', dims=[0], value=1, slice=domain2[-1, :, -1, :])
        ],
        rtrace_list=[
            RTraceDomainListField(name='Stress', var='sig_app', idx=0),
            RTraceDomainListField(name='Displacement',
                                  var='u',
                                  idx=0,
                                  warp=True),
        ])

    # Add the time-loop control
    tloop = TLoop(tstepper=ts,
                  debug=False,
                  tline=TLine(min=0.0, step=1.0, max=1.0))

    print '---- result ----'
    print tloop.eval()

    # Put the whole stuff into the simulation-framework to map the
    # individual pieces of definition into the user interface.
    #
    from ibvpy.plugins.ibvpy_app import IBVPyApp
    app = IBVPyApp(ibv_resource=tloop)
    app.main()
Ejemplo n.º 13
0
from ibvpy.tmodel.mats2D.mats2D_elastic.mats2D_elastic import MATS2DElastic
from ibvpy.api import FEDomain, FEGrid, FERefinementGrid, TStepper as TS
from ibvpy.fets.fets2D.fets2D4q import FETS2D4Q

if __name__ == '__main__':

    fets_eval_4u = FETS2D4Q(mats_eval=MATS2DElastic())

    fe_domain = FEDomain()

    fe_rgrid1 = FERefinementGrid(name='fe_rgrid1',
                                 fets_eval=fets_eval_4u,
                                 domain=fe_domain)

    fe_grid1 = FEGrid(name='fe_grid1',
                      coord_max=(2., 6., 0.),
                      shape=(1, 3),
                      fets_eval=fets_eval_4u,
                      level=fe_rgrid1)

    fe_grid2 = FEGrid(name='fe_grid2',
                      coord_min=(2., 6, 0.),
                      coord_max=(10, 15, 0.),
                      shape=(3, 2),
                      fets_eval=fets_eval_4u,
                      level=fe_rgrid1)

    print(fe_grid2[1, 0].elems)

    fe_grid2.deactivate((1, 0))
    print('activation map')