def example_1d(): from ibvpy.api import FEDomain, FERefinementGrid, FEGrid, TStepper as TS, \ BCDofGroup, RTraceDomainListField from ibvpy.core.tloop import TLoop, TLine from ibvpy.mesh.xfe_subdomain import XFESubDomain from ibvpy.mats.mats1D.mats1D_elastic.mats1D_elastic import MATS1DElastic from ibvpy.fets.fets1D.fets1D2l import FETS1D2L from ibvpy.fets.fets1D.fets1D2l3u import FETS1D2L3U from ibvpy.fets.fets_ls.fets_crack import FETSCrack fets_eval = FETS1D2L( mats_eval = MATS1DElastic( E = 1. ) ) #, A=1.)) #xfets_eval = fets_eval # use the same element for the enrichment xfets_eval = FETSCrack( parent_fets = fets_eval ) # Discretization fe_domain = FEDomain() fe_level1 = FERefinementGrid( domain = fe_domain, fets_eval = fets_eval ) fe_grid1 = FEGrid( coord_max = ( 4., 0., 0. ), shape = ( 4, ), fets_eval = fets_eval, level = fe_level1 ) enr = True if enr: fe_xdomain = XFESubDomain( domain = fe_domain, fets_eval = xfets_eval, fe_grid_slice = fe_grid1[ '(X - 2) **2 - 0.5 ' ] ) fe_xdomain.deactivate_sliced_elems() print 'elem_dof_map', fe_xdomain.elem_dof_map fe_domain = FEDomain() fe_level1 = FERefinementGrid( domain = fe_domain, fets_eval = fets_eval ) fe_grid1 = FEGrid( coord_max = ( 4 * 3.14, 0., 0. ), shape = ( 8, ), fets_eval = fets_eval, level = fe_level1 ) enr = True if enr: fe_xdomain = XFESubDomain( domain = fe_domain, fets_eval = xfets_eval, fe_grid_slice = fe_grid1[ 'cos(X) - 0.5' ] ) fe_xdomain.deactivate_sliced_elems() print 'elem_dof_map2', fe_xdomain.elem_dof_map
def _get_elstmr_fe_level(self): return FERefinementGrid(name='elastomer patch', fets_eval=self.elstmr_fets, domain=self.fe_domain)
def _get_mid_zone_specmn_fe_level(self): return FERefinementGrid(name='mid zone specimen patch', fets_eval=self.specmn_fets, domain=self.fe_domain)
def example_2d(): from ibvpy.mats.mats2D.mats2D_elastic.mats2D_elastic import MATS2DElastic from ibvpy.fets.fets2D.fets2D4q import FETS2D4Q from ibvpy.fets.fets2D.fets2D4q8u import FETS2D4Q8U from ibvpy.fets.fets2D.fets2D4q9u import FETS2D4Q9U from ibvpy.fets.fets2D.fets2D9q import FETS2D9Q fets_eval = FETS2D4Q(mats_eval=MATS2DElastic(E=1., nu=0.)) xfets_eval = FETSBimaterial(parent_fets=fets_eval, int_order=3, mats_eval=MATS2DElastic(E=1., nu=0.), mats_eval2=MATS2DElastic(E=5., nu=0.)) # Discretization fe_domain = FEDomain() fe_level1 = FERefinementGrid(domain=fe_domain, fets_eval=fets_eval) fe_grid1 = FEGrid(coord_max=(3., 1., 0.), shape=(3, 1), fets_eval=fets_eval, level=fe_level1) fe_xdomain = XFESubDomain( domain=fe_domain, fets_eval=xfets_eval, #fe_grid_idx_slice = fe_grid1[1,0], fe_grid_slice=fe_grid1['X - 1.5']) ts = TS( dof_resultants=True, sdomain=fe_domain, bcond_list=[ BCDofGroup(var='u', value=1., dims=[0], get_dof_method=fe_grid1.get_right_dofs), BCDofGroup(var='u', value=0., dims=[1], get_dof_method=fe_grid1.get_right_dofs), BCDofGroup(var='u', value=0., dims=[0, 1], get_dof_method=fe_grid1.get_left_dofs), ], rtrace_list=[ # RTraceGraph(name = 'Fi,right over u_right (iteration)' , # var_y = 'F_int', idx_y = 0, # var_x = 'U_k', idx_x = 1), # RTraceDomainListField(name = 'Stress' , # var = 'sig_app', idx = 0, warp = True ), RTraceDomainListField(name='Displacement', var='u', idx=0, warp=True), RTraceDomainListField(name='Strain', var='eps', idx=0, warp=True), # RTraceDomainField(name = 'N0' , # var = 'N_mtx', idx = 0, # record_on = 'update') ]) # # # Add the time-loop control tloop = TLoop( tstepper=ts, # tolerance = 1e-4, KMAX = 4, # debug = True, RESETMAX = 2, tline=TLine(min=0.0, step=1., max=1.0)) #print "elements ",fe_xdomain.elements[0] fe_xdomain.deactivate_sliced_elems() print 'parent elems ', fe_xdomain.fe_grid_slice.elems print 'parent dofs ', fe_xdomain.fe_grid_slice.dofs print "dofmap ", fe_xdomain.elem_dof_map print "ls_values ", fe_xdomain.dots.dof_node_ls_values print 'intersection points ', fe_xdomain.fe_grid_slice.r_i print "triangles ", fe_xdomain.dots.rt_triangles print "vtk points ", fe_xdomain.dots.vtk_X print "vtk data ", fe_xdomain.dots.get_vtk_cell_data('blabla', 0, 0) print 'ip_triangles', fe_xdomain.dots.int_division print 'ip_coords', fe_xdomain.dots.ip_coords print 'ip_weigths', fe_xdomain.dots.ip_weights print 'ip_offset', fe_xdomain.dots.ip_offset print 'ip_X_coords', fe_xdomain.dots.ip_X print 'ip_ls', fe_xdomain.dots.ip_ls_values print 'vtk_ls', fe_xdomain.dots.vtk_ls_values print 'J_det ', fe_xdomain.dots.J_det_grid print tloop.eval() # #ts.setup() from ibvpy.plugins.ibvpy_app import IBVPyApp ibvpy_app = IBVPyApp(ibv_resource=ts) ibvpy_app.main()
def __demo__(): from ibvpy.api import \ TStepper as TS, RTraceGraph, RTraceDomainListField, TLoop, \ TLine, BCSlice, FEDomain, FERefinementGrid from ibvpy.mats.mats1D.mats1D_elastic.mats1D_elastic import MATS1DElastic fets_eval = FETS1D2L(mats_eval = MATS1DElastic(E = 10.)) from ibvpy.mesh.fe_grid import FEGrid fe_domain = FEDomain() r1 = FERefinementGrid(fets_eval = fets_eval, domain = fe_domain) r2 = FERefinementGrid(fets_eval = fets_eval, domain = fe_domain) # Discretization domain1 = FEGrid(coord_max = (3.,), shape = (3,), fets_eval = fets_eval, level = r1) domain2 = FEGrid(coord_min = (3.,), coord_max = (6.,), shape = (3,), fets_eval = fets_eval, level = r2) ts = TS(dof_resultants = True, sdomain = fe_domain, bcond_list = [BCSlice(var = 'u', dims = [0], value = 0, slice = domain1[0, 0]), BCSlice(var = 'u', dims = [0], value = 0, slice = domain1[-1, -1], link_slice = domain2[0, 0], link_coeffs = [1.]), BCSlice(var = 'f', dims = [0], value = 1, slice = domain2[-1, -1]) ], rtrace_list = [RTraceGraph(name = 'Fi,right over u_right (iteration)' , var_y = 'F_int', idx_y = 0, var_x = 'U_k', idx_x = 1), RTraceDomainListField(name = 'Stress' , var = 'sig_app', idx = 0), RTraceDomainListField(name = 'Displacement' , var = 'u', idx = 0, warp = True), RTraceDomainListField(name = 'N0' , var = 'N_mtx', idx = 0, record_on = 'update') ] ) # Add the time-loop control tloop = TLoop(tstepper = ts, tline = TLine(min = 0.0, step = 0.5, max = 1.0)) print '---- result ----' print tloop.eval() print ts.F_int print ts.rtrace_list[0].trace.ydata # Put the whole stuff into the simulation-framework to map the # individual pieces of definition into the user interface. # from ibvpy.plugins.ibvpy_app import IBVPyApp app = IBVPyApp(ibv_resource = tloop) app.main()
def example_2d(): from ibvpy.api import FEDomain, FERefinementGrid, FEGrid, TStepper as TS, \ BCDofGroup, RTraceDomainListField from ibvpy.core.tloop import TLoop, TLine from ibvpy.mesh.xfe_subdomain import XFESubDomain from ibvpy.mats.mats2D.mats2D_elastic.mats2D_elastic import MATS2DElastic from ibvpy.mats.mats2D import MATS2DPlastic from ibvpy.fets.fets2D.fets2D4q import FETS2D4Q from ibvpy.fets.fets2D import FETS2D9Q from ibvpy.fets.fets2D.fets2D4q8u import FETS2D4Q8U from ibvpy.fets.fets_ls.fets_crack import FETSCrack #fets_eval = FETS2D4Q( mats_eval = MATS2DPlastic( E = 1., nu = 0. ) ) fets_eval = FETS2D4Q8U(mats_eval=MATS2DPlastic(E=1., nu=0.)) xfets_eval = FETSCrack(parent_fets=fets_eval, int_order=5, tri_subdivision=1) # Discretization fe_domain = FEDomain() fe_level1 = FERefinementGrid(domain=fe_domain, fets_eval=fets_eval) fe_grid1 = FEGrid(coord_max=(1., 1.), shape=(8, 8), fets_eval=fets_eval, level=fe_level1) #ls_function = lambda X, Y: X - Y - 0.13 ls_function = lambda X, Y: (X - 0.52)**2 + (Y - 0.72)**2 - 0.51**2 bls_function = lambda X, Y: -((X - 0.5)**2 + (Y - 0.21)**2 - 0.28**2) bls_function2 = lambda X, Y: -((X - 0.5)**2 + (Y - 0.21)**2 - 0.38**2) # design deficits: # - How to define a level set spanned over several fe_grids # (i.e. it is defined over the hierarchy of FESubDomains) # - Patching of subdomains within the FEPatchedGrid (FERefinementGrid) # - What are the compatibility conditions? # - What is the difference between FEGridLeveSetSlice # and FELSDomain? # FELSDomain is associated with a DOTS - Slice is not. # FEGrid has a multidimensional array - elem_grid # it can be accessed through this index. # it is masked by the activity map. The activity map can # be defined using slices and level sets. # the elems array enumerates the elements using the activity map. # in this way, the specialization of grids is available implicitly. # fe_xdomain = FELSDomain( domain=fe_domain, fets_eval=xfets_eval, fe_grid=fe_grid1, ls_function=ls_function, bls_function=bls_function, ) fe_tip_xdomain = FELSDomain( domain=fe_domain, fets_eval=xfets_eval, fe_grid=fe_xdomain, ls_function=bls_function, ) # deactivation must be done only after the dof enumeration has been completed fe_xdomain.deactivate_intg_elems_in_parent() fe_tip_xdomain.deactivate_intg_elems_in_parent() fe_xdomain.bls_function = bls_function2 fe_tip_xdomain.ls_function = bls_function2 # deactivation must be done only after the dof enumeration has been completed fe_xdomain.deactivate_intg_elems_in_parent() fe_tip_xdomain.deactivate_intg_elems_in_parent() # # General procedure: # 1) define the level sets with the boundaries # 2) use the bls to identify the tips of the level set # 3) use independent level sets to introduce indpendently junctions. # # get the extended dofs of the bls_elems and constrain it # cdofs = fe_tip_xdomain.elem_xdof_map.flatten() bc_list = [BCDof(var='u', dof=dof, value=0.0) for dof in cdofs] # construct the time stepper ts = TS( dof_resultants=True, sdomain=fe_domain, bcond_list=[ BCSlice( var='u', value=-0.1, dims=[1], slice=fe_grid1[:, 0, :, 0]), BCSlice( var='u', value=0., dims=[0], slice=fe_grid1[:, 0, :, 0]), BCSlice(var='u', value=0., dims=[0, 1], slice=fe_grid1[:, -1, :, -1]) ] + bc_list, rtrace_list=[ # RTDofGraph(name = 'Fi,right over u_right (iteration)' , # var_y = 'F_int', idx_y = 0, # var_x = 'U_k', idx_x = 1), RTraceDomainListField(name='Stress', var='sig_app', idx=0, warp=True), RTraceDomainListField(name='Displacement', var='u', idx=0, warp=True), # RTraceDomainField(name = 'N0' , # var = 'N_mtx', idx = 0, # record_on = 'update') ]) # do = 'print' if do == 'print': p = 'state' if p == 'grids': print('fe_xdomain.ls mask') print(fe_xdomain.ls_mask) print('fe_xdomain.idx mask') print(fe_xdomain.idx_mask) print('fe_xdomain.intg mask') print(fe_xdomain.intg_mask) print('fe_xdomain.xelems_mask') print(fe_xdomain.xelems_mask) print('fe_xdomain.xelems_grid_ix') print(fe_xdomain.xelems_grid_ix) print('fe_xdomain.ls_elem_grid') print(fe_xdomain.ls_elem_grid) print('fe_xdomain.ls_ielem_grid') print(fe_xdomain.ls_ielem_grid) print('fe_xdomain.intg_elem_grid') print(fe_xdomain.intg_elem_grid) print('fe_tip_xdomain.ls_mask`') print(fe_tip_xdomain.ls_mask) print('fe_tip_xdomain.intg_mask`') print(fe_tip_xdomain.intg_mask) print('fe_tip_xdomain.idx_mask`') print(fe_tip_xdomain.idx_mask) print('fe_tip_xdomain.xelems_mask') print(fe_tip_xdomain.xelems_mask) print('fe_tip_xdomain.xelems_grid_ix') print(fe_tip_xdomain.xelems_grid_ix) print('fe_tip_xdomain.ls_elem_grid') print(fe_tip_xdomain.ls_elem_grid) print('fe_tip_xdomain.ls_ielems_grid') print(fe_tip_xdomain.ls_ielem_grid) print('fe_tip_xdomain.intg_elem_grid') print(fe_tip_xdomain.intg_elem_grid) if p == 'maps': print('fe_xdomain.elem_dof_map') print(fe_xdomain.elem_dof_map) print('fe_tip_xdomain.elem_dof_map') print(fe_tip_xdomain.elem_dof_map) print('fe_xdomain.elems') print(fe_xdomain.elems) print('fe_tip_xdomain.elems') print(fe_tip_xdomain.elems) print('fe_xdomain.elem_X_map') print(fe_xdomain.elem_X_map) print('fe_tip_xdomain.elem_X_map') print(fe_tip_xdomain.elem_X_map) if p == 'fields': print("ls_values ", fe_xdomain.dots.dof_node_ls_values) print("tip ls_values ", fe_tip_xdomain.dots.dof_node_ls_values) print('intersection points ', fe_xdomain.ls_intersection_r) print('tip intersection points ', fe_tip_xdomain.ls_intersection_r) print("triangles ", fe_xdomain.dots.rt_triangles) print("vtk points ", fe_xdomain.dots.vtk_X) print("vtk data ", fe_xdomain.dots.get_vtk_cell_data('blabla', 0, 0)) print('ip_triangles', fe_xdomain.dots.int_division) print('ip_coords', fe_xdomain.dots.ip_coords) print('ip_weigths', fe_xdomain.dots.ip_weights) print('ip_offset', fe_xdomain.dots.ip_offset) print('ip_X_coords', fe_xdomain.dots.ip_X) print('ip_ls', fe_xdomain.dots.ip_ls_values) print('vtk_ls', fe_xdomain.dots.vtk_ls_values) print('J_det ', fe_xdomain.dots.J_det_grid) if p == 'state': # Add the time-loop control print('STATE: initial') print('fe_xdomain.dots.state_elem grid') print(fe_xdomain.dots.state_start_elem_grid) print('fe_tip_xdomain.dots.state_elem grid') print(fe_tip_xdomain.dots.state_start_elem_grid) print('fe_xdomain.dots.state_end_elem grid') print(fe_xdomain.dots.state_end_elem_grid) print('fe_tip_xdomain.dots.state_end_elem grid') print(fe_tip_xdomain.dots.state_end_elem_grid) fe_xdomain.dots.state_array[:] = 25.5 print('state_array 25', fe_xdomain.dots.state_array) fe_tip_xdomain.dots.state_array[:] = 58 bls_function3 = lambda X, Y: -((X - 0.5)**2 + (Y - 0.21)**2 - 0.58**2) fe_xdomain.bls_function = bls_function3 fe_tip_xdomain.ls_function = bls_function3 print('STATE: changed') print('fe_xdomain.dots.state_elem grid') print(fe_xdomain.dots.state_start_elem_grid) print('fe_tip_xdomain.dots.state_elem grid') print(fe_tip_xdomain.dots.state_start_elem_grid) print('fe_xdomain.dots.state_end_elem grid') print(fe_xdomain.dots.state_end_elem_grid) print('fe_tip_xdomain.dots.state_end_elem grid') print(fe_tip_xdomain.dots.state_end_elem_grid) print('state_array 25', fe_xdomain.dots.state_array.shape) print('state_array 25', fe_xdomain.dots.state_array[570:]) print('state_array 58', fe_tip_xdomain.dots.state_array.shape) elif do == 'ui': tloop = TLoop(tstepper=ts, debug=False, tolerance=1e-4, KMAX=3, RESETMAX=0, tline=TLine(min=0.0, step=1, max=1.0)) tloop.eval() from ibvpy.plugins.ibvpy_app import IBVPyApp ibvpy_app = IBVPyApp(ibv_resource=ts) ibvpy_app.main()
def example_1d(): fets_eval = FETS1D2L3U(mats_eval=MATS1DElastic(E=20.)) xfets_eval = FETSCrack(parent_fets=fets_eval, int_order=2) # Discretization fe_domain = FEDomain() fe_level1 = FERefinementGrid(domain=fe_domain, fets_eval=fets_eval) fe_grid1 = FEGrid(coord_max=(2., 0., 0.), shape=(2, ), fets_eval=fets_eval, level=fe_level1) enr = True if enr: fe_xdomain = XFESubDomain( domain=fe_domain, fets_eval=xfets_eval, #fe_grid_idx_slice = fe_grid1[1,0], fe_grid_slice=fe_grid1['X - .75']) fe_xdomain.deactivate_sliced_elems() ts = TS( dof_resultants=True, sdomain=fe_domain, bcond_list=[ BCSlice(var='u', value=-1. / 2., dims=[0], slice=fe_grid1[0, 0]), BCSlice(var='u', value=0., dims=[0], slice=fe_grid1[-1, -1]), ], rtrace_list=[ # RTDofGraph(name = 'Fi,right over u_right (iteration)' , # var_y = 'F_int', idx_y = 0, # var_x = 'U_k', idx_x = 1), RTraceDomainListField(name='Stress', var='eps', idx=0, warp=True), RTraceDomainListField(name='Displacement', var='u', idx=0, warp=True), # RTraceDomainField(name = 'N0' , # var = 'N_mtx', idx = 0, # record_on = 'update') ]) # # # Add the time-loop control tloop = TLoop(tstepper=ts, debug=True, tolerance=1e-4, RESETMAX=0, tline=TLine(min=0.0, step=1, max=1.0)) #print "elements ",fe_xdomain.elements[0] if enr: print('parent elems ', fe_xdomain.fe_grid_slice.elems) print('parent dofs ', fe_xdomain.fe_grid_slice.dofs) print("dofmap ", fe_xdomain.elem_dof_map) print("ls_values ", fe_xdomain.dots.dof_node_ls_values) print('intersection points ', fe_xdomain.fe_grid_slice.r_i) # print("triangles ", fe_xdomain.dots.int_division) print('ip_coords', fe_xdomain.dots.ip_coords) print('ip_weigths', fe_xdomain.dots.ip_weights) print('ip_offset ', fe_xdomain.dots.ip_offset) print('ip_X_coords', fe_xdomain.dots.ip_X) print('ip_ls', fe_xdomain.dots.ip_ls_values) print('vtk_X ', fe_xdomain.dots.vtk_X) print('vtk triangles ', fe_xdomain.dots.rt_triangles) print("vtk data ", fe_xdomain.dots.get_vtk_cell_data('blabla', 0, 0)) print('vtk_ls', fe_xdomain.dots.vtk_ls_values) print('J_det ', fe_xdomain.dots.J_det_grid) tloop.eval() from ibvpy.plugins.ibvpy_app import IBVPyApp ibvpy_app = IBVPyApp(ibv_resource=ts) ibvpy_app.main()
from ibvpy.api import FEDomain, FERefinementGrid, FEGrid, TStepper as TS, \ BCDofGroup, BCDof, RTraceDomainListField from ibvpy.core.tloop import TLoop, TLine from ibvpy.mesh.xfe_subdomain import XFESubDomain from ibvpy.mats.mats2D.mats2D_elastic.mats2D_elastic import MATS2DElastic from ibvpy.fets.fets2D.fets2D4q import FETS2D4Q from ibvpy.fets.fets2D.fets2D4q8u import FETS2D4Q8U from ibvpy.fets.fets2D.fets2D4q9u import FETS2D4Q9U from ibvpy.fets.fets2D.fets2D9q import FETS2D9Q fets_eval = FETS2D4Q(mats_eval=MATS2DElastic(E=1., nu=0.)) xfets_eval = FETSCrack(parent_fets=fets_eval, int_order=5) # Discretization fe_domain = FEDomain() fe_level1 = FERefinementGrid(domain=fe_domain, fets_eval=fets_eval) fe_grid1 = FEGrid(coord_max=(1., 1., 0.), shape=(1, 1), rt_tol=0.1, fets_eval=fets_eval, level=fe_level1) # fe_grid1.deactivate( (1,0) ) # fe_grid1.deactivate( (1,1) ) fe_xdomain = XFESubDomain( domain=fe_domain, fets_eval=xfets_eval, # fe_grid_idx_slice = fe_grid1[1,0], fe_grid_slice=fe_grid1['X - 0.5 -0.1*Y']) ts = TS(
def _get_friction_fe_level(self): return FERefinementGrid(name='friction level', fets_eval=self.friction_fets, domain=self.fe_domain)
def _get_buttstrap_clamp_fe_level(self): return FERefinementGrid(name='buttstrap clamp level', fets_eval=self.buttstrap_fets, domain=self.fe_domain)
def _get_specimen_cl_fe_level(self): return FERefinementGrid(name='specimen clamped level', fets_eval=self.specimen_fets, domain=self.fe_domain)
def __demo__(): from ibvpy.api import \ TStepper as TS, RTraceDomainListField, TLoop, \ TLine, BCSlice, FEDomain, FERefinementGrid, FEGrid from ibvpy.mats.mats2D.mats2D_elastic.mats2D_elastic import MATS2DElastic fets_eval = FETS2D4Q8U(mats_eval=MATS2DElastic()) fe_domain = FEDomain() r1 = FERefinementGrid(fets_eval=fets_eval, domain=fe_domain) r2 = FERefinementGrid(fets_eval=fets_eval, domain=fe_domain) # Discretization domain1 = FEGrid(coord_max=(3., 3.), shape=(10, 4), fets_eval=fets_eval, level=r1) domain2 = FEGrid(coord_min=(3., 0.), coord_max=(6., 3), shape=(10, 4), fets_eval=fets_eval, level=r2) ts = TS( dof_resultants=True, sdomain=[domain1, domain2], # fe_domain, bcond_list=[ # Fix the left edge of domain1 BCSlice(var='u', dims=[0, 1], value=0, slice=domain1[0, :, 0, :]), # Link the right edge of domain1 with the left edge of domain2 # # note that following arrays must have the same lengths: # slice and link_slice # dims, link_dims and link_coeffs must have the same lengths # VAR-1: # linking along the complete line between 'domain1' and 'domain2' # all nodes along the y-axis # (used linking of more nodes at once in 'BCSlice') # BCSlice(var='u', dims=[0, 1], value=0.0, slice=domain1[-1, :, -1, :], link_slice=domain2[0, :, 0, :], link_dims=[0, 1], link_coeffs=[1., 1.]), # VAR-2: # linking along individual points between 'domain1' and 'domain2' # (used linking of single nodes in 'BCSlice') # # BCSlice(var='u', dims=[0, 1], value=0.0, # slice=domain1[-1, -1, -1, -1], # link_slice=domain2[0, -1, 0, -1], # link_dims=[0, 1], # link_coeffs=[1., 1.]), # BCSlice(var='u', dims=[0, 1], value=0.0, # slice=domain1[-1, 0, -1, 0], # link_slice=domain2[0, 0, 0, 0], # link_dims=[0, 1], # link_coeffs=[1., 1.]), # Load the right edge of domain2 BCSlice(var='f', dims=[0], value=1, slice=domain2[-1, :, -1, :]) ], rtrace_list=[ RTraceDomainListField(name='Stress', var='sig_app', idx=0), RTraceDomainListField(name='Displacement', var='u', idx=0, warp=True), ]) # Add the time-loop control tloop = TLoop(tstepper=ts, debug=False, tline=TLine(min=0.0, step=1.0, max=1.0)) print '---- result ----' print tloop.eval() # Put the whole stuff into the simulation-framework to map the # individual pieces of definition into the user interface. # from ibvpy.plugins.ibvpy_app import IBVPyApp app = IBVPyApp(ibv_resource=tloop) app.main()
from ibvpy.tmodel.mats2D.mats2D_elastic.mats2D_elastic import MATS2DElastic from ibvpy.api import FEDomain, FEGrid, FERefinementGrid, TStepper as TS from ibvpy.fets.fets2D.fets2D4q import FETS2D4Q if __name__ == '__main__': fets_eval_4u = FETS2D4Q(mats_eval=MATS2DElastic()) fe_domain = FEDomain() fe_rgrid1 = FERefinementGrid(name='fe_rgrid1', fets_eval=fets_eval_4u, domain=fe_domain) fe_grid1 = FEGrid(name='fe_grid1', coord_max=(2., 6., 0.), shape=(1, 3), fets_eval=fets_eval_4u, level=fe_rgrid1) fe_grid2 = FEGrid(name='fe_grid2', coord_min=(2., 6, 0.), coord_max=(10, 15, 0.), shape=(3, 2), fets_eval=fets_eval_4u, level=fe_rgrid1) print(fe_grid2[1, 0].elems) fe_grid2.deactivate((1, 0)) print('activation map')