Ejemplo n.º 1
0
 def einsum_batched_matrix_high_rank_vector_mul(module):
   module.einsum_batched_matrix_high_rank_vector_mul(
       tf_utils.ndarange([BATCH_DIM, 2, 6]),
       tf_utils.ndarange([BATCH_DIM, 5, 3, 6]))
Ejemplo n.º 2
0
 def einsum_mul(module):
     module.einsum_mul(tf_utils.ndarange([VECTOR_DIM]),
                       tf_utils.ndarange([VECTOR_DIM]))
Ejemplo n.º 3
0
 def gather_axis0_scalar(module):
     indices = np.array(2, dtype=np.int32)
     params = tf_utils.ndarange([4, 8])
     module.gather_axis0_scalar(params, indices)
Ejemplo n.º 4
0
 def einsum_dynamic_rank_diag(module):
     module.einsum_dynamic_rank_diag(
         tf_utils.ndarange([BATCH_DIM, BATCH_DIM, LEFT_DIM, RIGHT_DIM]))
Ejemplo n.º 5
0
 def einsum_identity(module):
     module.einsum_identity(tf_utils.ndarange([VECTOR_DIM]))
Ejemplo n.º 6
0
 def einsum_dynamic_rank_split_heads(module):
     module.einsum_dynamic_rank_split_heads(
         tf_utils.ndarange([BATCH_DIM, BATCH_DIM, 8, 6]),
         tf_utils.ndarange([12, 6, 4]))
Ejemplo n.º 7
0
 def einsum_dynamic_rank_identity(module):
     module.einsum_dynamic_rank_identity(
         tf_utils.ndarange([BATCH_DIM, LEFT_DIM, RIGHT_DIM]))
Ejemplo n.º 8
0
 def slice_first_element_with_from_tensor_high_rank(module):
     module.slice_first_element_with_from_tensor_high_rank(
         tf_utils.ndarange([STATIC_SIZE, STATIC_SIZE]))
Ejemplo n.º 9
0
 def downsample_nearest_neighbor(module):
     img = tf_utils.ndarange([1, 52, 37, 1], dtype=np.int32)
     module.downsample_nearest_neighbor(img)
Ejemplo n.º 10
0
 def batched_feature_unpadded(module):
     i = tf_utils.ndarange([2, 4, 5, 2])
     k = tf_utils.ndarange([2, 2, 2, 3])
     module.conv2d_2452x2423_valid(i, k)
Ejemplo n.º 11
0
 def batched_feature_padded_same_stride_2(module):
     i = tf_utils.ndarange([2, 4, 5, 2])
     k = tf_utils.ndarange([2, 4, 2, 3])
     module.conv2d_2452x2423_same_stride_2(i, k)
Ejemplo n.º 12
0
 def batched_feature_padded_same_stride_1_output_1(module):
     i = tf_utils.ndarange([2, 4, 5, 4])
     k = tf_utils.ndarange([2, 4, 4, 1])
     module.conv2d_2453x2441_same_stride_1(i, k)
Ejemplo n.º 13
0
 def gather_axis1_batch1(module):
     indices = np.array([[2], [3], [0], [1]], dtype=np.int32)
     params = tf_utils.ndarange([4, 7, 8, 2])
     module.gather_axis1_batch1(params, indices)
Ejemplo n.º 14
0
 def gather_axis1_batch0(module):
     indices = np.array([2, 3], dtype=np.int32)
     params = tf_utils.ndarange([4, 7, 8])
     module.gather_axis1_batch0(params, indices)
Ejemplo n.º 15
0
 def einsum_dynamic_dim_matmul(module):
     module.einsum_dynamic_dim_matmul(
         tf_utils.ndarange([LEFT_DIM, INNER_DIM]),
         tf_utils.ndarange([INNER_DIM, RIGHT_DIM]))
Ejemplo n.º 16
0
 def upsample_nearest_neighbor(module):
     img = tf_utils.ndarange([1, 8, 7, 1], dtype=np.int32)
     module.upsample_nearest_neighbor(img)
Ejemplo n.º 17
0
 def einsum_dynamic_dim_lhs_batch(module):
     module.einsum_dynamic_dim_lhs_batch(
         tf_utils.ndarange([BATCH_DIM, LEFT_DIM, INNER_DIM]),
         tf_utils.ndarange([INNER_DIM, RIGHT_DIM]))
Ejemplo n.º 18
0
 def einsum_implicit_transpose(module):
   module.einsum_implicit_transpose(tf_utils.ndarange([LEFT_DIM, RIGHT_DIM]))
Ejemplo n.º 19
0
 def einsum_dynamic_dim_identity(module):
     module.einsum_dynamic_dim_identity(
         tf_utils.ndarange([LEFT_DIM, RIGHT_DIM]))
Ejemplo n.º 20
0
 def einsum_explicit_trace(module):
   module.einsum_explicit_trace(tf_utils.ndarange([LEFT_DIM, RIGHT_DIM]))
Ejemplo n.º 21
0
 def einsum_dynamic_dim_transpose(module):
     module.einsum_dynamic_dim_transpose(
         tf_utils.ndarange([BATCH_DIM, LEFT_DIM, RIGHT_DIM]))
Ejemplo n.º 22
0
 def einsum_diag(module):
   module.einsum_diag(tf_utils.ndarange([LEFT_DIM, RIGHT_DIM]))
Ejemplo n.º 23
0
 def einsum_outer_product(module):
     module.einsum_outer_product(tf_utils.ndarange([VECTOR_DIM]),
                                 tf_utils.ndarange([VECTOR_DIM]))
Ejemplo n.º 24
0
 def einsum_sum_axis_1(module):
   module.einsum_sum_axis_1(tf_utils.ndarange([LEFT_DIM, RIGHT_DIM]))
Ejemplo n.º 25
0
 def einsum_sum(module):
     module.einsum_sum(tf_utils.ndarange([VECTOR_DIM]))
Ejemplo n.º 26
0
 def einsum_broadcast_singleton_dimension(module):
   module.einsum_broadcast_singleton_dimension(
       tf_utils.ndarange([1, LEFT_DIM, INNER_DIM]),
       tf_utils.ndarange([BATCH_DIM, INNER_DIM, RIGHT_DIM]))
Ejemplo n.º 27
0
 def einsum_explicit_inner_product(module):
     module.einsum_explicit_inner_product(tf_utils.ndarange([VECTOR_DIM]),
                                          tf_utils.ndarange([VECTOR_DIM]))
Ejemplo n.º 28
0
 tf_test_utils.unit_test_specs_from_signatures(
     signature_shapes=BINARY_SIGNATURE_SHAPES, signature_dtypes=[tf.bool]),
 "maximum":
 tf_test_utils.unit_test_specs_from_signatures(
     signature_shapes=BINARY_SIGNATURE_SHAPES,
     signature_dtypes=[tf.float32, tf.int32]),
 "minimum":
 tf_test_utils.unit_test_specs_from_signatures(
     signature_shapes=BINARY_SIGNATURE_SHAPES,
     signature_dtypes=[tf.float32, tf.int32]),
 "mod":
 tf_test_utils.unit_test_specs_from_signatures(
     signature_shapes=BINARY_SIGNATURE_SHAPES,
     signature_dtypes=[tf.float32, tf.int32],
     input_generators={
         "positive_ndarange": lambda *args: tf_utils.ndarange(*args) + 1
     }),
 "multiply":
 tf_test_utils.unit_test_specs_from_signatures(
     signature_shapes=BINARY_SIGNATURE_SHAPES,
     signature_dtypes=[tf.float32, tf.int32, tf.complex64]),
 "multiply_no_nan":
 tf_test_utils.unit_test_specs_from_signatures(
     signature_shapes=BINARY_SIGNATURE_SHAPES,
     signature_dtypes=[tf.float32, tf.complex64]),
 "ndtri":
 tf_test_utils.unit_test_specs_from_signatures(
     signature_shapes=UNARY_SIGNATURE_SHAPES,
     signature_dtypes=[tf.float32]),
 "negative":
 tf_test_utils.unit_test_specs_from_signatures(