def einsum_batched_matrix_high_rank_vector_mul(module): module.einsum_batched_matrix_high_rank_vector_mul( tf_utils.ndarange([BATCH_DIM, 2, 6]), tf_utils.ndarange([BATCH_DIM, 5, 3, 6]))
def einsum_mul(module): module.einsum_mul(tf_utils.ndarange([VECTOR_DIM]), tf_utils.ndarange([VECTOR_DIM]))
def gather_axis0_scalar(module): indices = np.array(2, dtype=np.int32) params = tf_utils.ndarange([4, 8]) module.gather_axis0_scalar(params, indices)
def einsum_dynamic_rank_diag(module): module.einsum_dynamic_rank_diag( tf_utils.ndarange([BATCH_DIM, BATCH_DIM, LEFT_DIM, RIGHT_DIM]))
def einsum_identity(module): module.einsum_identity(tf_utils.ndarange([VECTOR_DIM]))
def einsum_dynamic_rank_split_heads(module): module.einsum_dynamic_rank_split_heads( tf_utils.ndarange([BATCH_DIM, BATCH_DIM, 8, 6]), tf_utils.ndarange([12, 6, 4]))
def einsum_dynamic_rank_identity(module): module.einsum_dynamic_rank_identity( tf_utils.ndarange([BATCH_DIM, LEFT_DIM, RIGHT_DIM]))
def slice_first_element_with_from_tensor_high_rank(module): module.slice_first_element_with_from_tensor_high_rank( tf_utils.ndarange([STATIC_SIZE, STATIC_SIZE]))
def downsample_nearest_neighbor(module): img = tf_utils.ndarange([1, 52, 37, 1], dtype=np.int32) module.downsample_nearest_neighbor(img)
def batched_feature_unpadded(module): i = tf_utils.ndarange([2, 4, 5, 2]) k = tf_utils.ndarange([2, 2, 2, 3]) module.conv2d_2452x2423_valid(i, k)
def batched_feature_padded_same_stride_2(module): i = tf_utils.ndarange([2, 4, 5, 2]) k = tf_utils.ndarange([2, 4, 2, 3]) module.conv2d_2452x2423_same_stride_2(i, k)
def batched_feature_padded_same_stride_1_output_1(module): i = tf_utils.ndarange([2, 4, 5, 4]) k = tf_utils.ndarange([2, 4, 4, 1]) module.conv2d_2453x2441_same_stride_1(i, k)
def gather_axis1_batch1(module): indices = np.array([[2], [3], [0], [1]], dtype=np.int32) params = tf_utils.ndarange([4, 7, 8, 2]) module.gather_axis1_batch1(params, indices)
def gather_axis1_batch0(module): indices = np.array([2, 3], dtype=np.int32) params = tf_utils.ndarange([4, 7, 8]) module.gather_axis1_batch0(params, indices)
def einsum_dynamic_dim_matmul(module): module.einsum_dynamic_dim_matmul( tf_utils.ndarange([LEFT_DIM, INNER_DIM]), tf_utils.ndarange([INNER_DIM, RIGHT_DIM]))
def upsample_nearest_neighbor(module): img = tf_utils.ndarange([1, 8, 7, 1], dtype=np.int32) module.upsample_nearest_neighbor(img)
def einsum_dynamic_dim_lhs_batch(module): module.einsum_dynamic_dim_lhs_batch( tf_utils.ndarange([BATCH_DIM, LEFT_DIM, INNER_DIM]), tf_utils.ndarange([INNER_DIM, RIGHT_DIM]))
def einsum_implicit_transpose(module): module.einsum_implicit_transpose(tf_utils.ndarange([LEFT_DIM, RIGHT_DIM]))
def einsum_dynamic_dim_identity(module): module.einsum_dynamic_dim_identity( tf_utils.ndarange([LEFT_DIM, RIGHT_DIM]))
def einsum_explicit_trace(module): module.einsum_explicit_trace(tf_utils.ndarange([LEFT_DIM, RIGHT_DIM]))
def einsum_dynamic_dim_transpose(module): module.einsum_dynamic_dim_transpose( tf_utils.ndarange([BATCH_DIM, LEFT_DIM, RIGHT_DIM]))
def einsum_diag(module): module.einsum_diag(tf_utils.ndarange([LEFT_DIM, RIGHT_DIM]))
def einsum_outer_product(module): module.einsum_outer_product(tf_utils.ndarange([VECTOR_DIM]), tf_utils.ndarange([VECTOR_DIM]))
def einsum_sum_axis_1(module): module.einsum_sum_axis_1(tf_utils.ndarange([LEFT_DIM, RIGHT_DIM]))
def einsum_sum(module): module.einsum_sum(tf_utils.ndarange([VECTOR_DIM]))
def einsum_broadcast_singleton_dimension(module): module.einsum_broadcast_singleton_dimension( tf_utils.ndarange([1, LEFT_DIM, INNER_DIM]), tf_utils.ndarange([BATCH_DIM, INNER_DIM, RIGHT_DIM]))
def einsum_explicit_inner_product(module): module.einsum_explicit_inner_product(tf_utils.ndarange([VECTOR_DIM]), tf_utils.ndarange([VECTOR_DIM]))
tf_test_utils.unit_test_specs_from_signatures( signature_shapes=BINARY_SIGNATURE_SHAPES, signature_dtypes=[tf.bool]), "maximum": tf_test_utils.unit_test_specs_from_signatures( signature_shapes=BINARY_SIGNATURE_SHAPES, signature_dtypes=[tf.float32, tf.int32]), "minimum": tf_test_utils.unit_test_specs_from_signatures( signature_shapes=BINARY_SIGNATURE_SHAPES, signature_dtypes=[tf.float32, tf.int32]), "mod": tf_test_utils.unit_test_specs_from_signatures( signature_shapes=BINARY_SIGNATURE_SHAPES, signature_dtypes=[tf.float32, tf.int32], input_generators={ "positive_ndarange": lambda *args: tf_utils.ndarange(*args) + 1 }), "multiply": tf_test_utils.unit_test_specs_from_signatures( signature_shapes=BINARY_SIGNATURE_SHAPES, signature_dtypes=[tf.float32, tf.int32, tf.complex64]), "multiply_no_nan": tf_test_utils.unit_test_specs_from_signatures( signature_shapes=BINARY_SIGNATURE_SHAPES, signature_dtypes=[tf.float32, tf.complex64]), "ndtri": tf_test_utils.unit_test_specs_from_signatures( signature_shapes=UNARY_SIGNATURE_SHAPES, signature_dtypes=[tf.float32]), "negative": tf_test_utils.unit_test_specs_from_signatures(