def estimation(self, y1, y2):
     """ Estimate symmetric Bregman distance.
     
     Parameters
     ----------
     y1 : (number of samples1, dimension)-ndarray
          One row of y1 corresponds to one sample.
     y2 : (number of samples2, dimension)-ndarray
          One row of y2 corresponds to one sample.
 
     Returns
     -------
     d : float
         Estimated symmetric Bregman distance.
         
     References
     ----------        
     Nikolai Leonenko, Luc Pronzato, and Vippal Savani. A class of
     Renyi information estimators for multidimensional densities.
     Annals of Statistics, 36(5):2153-2182, 2008.
     
     Imre Csiszar. Generalized projections for non-negative functions.
     Acta Mathematica Hungarica, 68:161-185, 1995.
     
     Lev M. Bregman. The relaxation method of finding the common points
     of convex sets and its application to the solution of problems in
     convex programming. USSR Computational Mathematics and
     Mathematical Physics, 7:200-217, 1967.
     
     Examples
     --------
     d = co.estimation(y1,y2)  
         
     """    
     
     # verification:
     self.verification_equal_d_subspaces(y1, y2)
     
     i_alpha_y1 = estimate_i_alpha(y1, self)
     i_alpha_y2 = estimate_i_alpha(y2, self)
     
     d_temp3_y1y2 = estimate_d_temp3(y1, y2, self)
     d_temp3_y2y1 = estimate_d_temp3(y2, y1, self)
     
     d = (i_alpha_y1 + i_alpha_y2 - d_temp3_y1y2 - d_temp3_y2y1) /\
         (self.alpha - 1)
          
     return d
Ejemplo n.º 2
0
    def estimation(self, y):
        """ Estimate Tsallis entropy.
        
        Parameters
        ----------
        y : (number of samples, dimension)-ndarray
            One row of y corresponds to one sample.
    
        Returns
        -------
        h : float
            Estimated Tsallis entropy.
            
        References
        ----------
        Nikolai Leonenko, Luc Pronzato, and Vippal Savani. A class of
        Renyi information estimators for multidimensional densities.
        Annals of Statistics, 36(5):2153-2182, 2008.
        
        Examples
        --------
        h = co.estimation(y)  
        
        """

        i_alpha = estimate_i_alpha(y, self)
        h = (1 - i_alpha) / (self.alpha - 1)

        return h
Ejemplo n.º 3
0
    def estimation(self, y):
        """ Estimate Renyi entropy.
        
        Parameters
        ----------
        y : (number of samples, dimension)-ndarray
            One row of y corresponds to one sample.
    
        Returns
        -------
        h : float
            Estimated Renyi entropy.
            
        References
        ----------
        Nikolai Leonenko, Luc Pronzato, and Vippal Savani. A class of
        Renyi information estimators for multidimensional densities.
        Annals of Statistics, 36(5):2153-2182, 2008.
        
        Joseph E. Yukich. Probability Theory of Classical Euclidean 
        Optimization Problems, Lecture Notes in Mathematics, 1998, vol.
        1675.
        
        Examples
        --------
        h = co.estimation(y)

        """

        i_alpha = estimate_i_alpha(y, self)
        h = log(i_alpha) / (1 - self.alpha)

        return h
Ejemplo n.º 4
0
    def estimation(self, y):
        """ Estimate Sharma-Mittal entropy.
        
        Parameters
        ----------
        y : (number of samples, dimension)-ndarray
            One row of y corresponds to one sample.
    
        Returns
        -------
        h : float
            Estimated Sharma-Mittal entropy.
            
        References
        ----------
        Nikolai Leonenko, Luc Pronzato, and Vippal Savani. A class of
        Renyi information estimators for multidimensional densities.
        Annals of Statistics, 36(5):2153-2182, 2008. (i_alpha estimation)
        
        Joseph E. Yukich. Probability Theory of Classical Euclidean 
        Optimization Problems, Lecture Notes in Mathematics, 1998, vol.
        1675. (i_alpha estimation)
        
        Ethem Akturk, Baris Bagci, and Ramazan Sever. Is Sharma-Mittal
        entropy really a step beyond Tsallis and Renyi entropies?
        Technical report, 2007. http://arxiv.org/abs/cond-mat/0703277.
        (Sharma-Mittal entropy)
        
        Bhudev D. Sharma and Dharam P. Mittal. New nonadditive measures of 
        inaccuracy. Journal of Mathematical Sciences, 10:122-133, 1975. 
        (Sharma-Mittal entropy)
        
        Examples
        --------
        h = co.estimation(y)  
        
        """

        i_alpha = estimate_i_alpha(y, self)
        h = (i_alpha**((1 - self.beta) /
                       (1 - self.alpha)) - 1) / (1 - self.beta)

        return h