def estimation(self, y1, y2): """ Estimate symmetric Bregman distance. Parameters ---------- y1 : (number of samples1, dimension)-ndarray One row of y1 corresponds to one sample. y2 : (number of samples2, dimension)-ndarray One row of y2 corresponds to one sample. Returns ------- d : float Estimated symmetric Bregman distance. References ---------- Nikolai Leonenko, Luc Pronzato, and Vippal Savani. A class of Renyi information estimators for multidimensional densities. Annals of Statistics, 36(5):2153-2182, 2008. Imre Csiszar. Generalized projections for non-negative functions. Acta Mathematica Hungarica, 68:161-185, 1995. Lev M. Bregman. The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7:200-217, 1967. Examples -------- d = co.estimation(y1,y2) """ # verification: self.verification_equal_d_subspaces(y1, y2) i_alpha_y1 = estimate_i_alpha(y1, self) i_alpha_y2 = estimate_i_alpha(y2, self) d_temp3_y1y2 = estimate_d_temp3(y1, y2, self) d_temp3_y2y1 = estimate_d_temp3(y2, y1, self) d = (i_alpha_y1 + i_alpha_y2 - d_temp3_y1y2 - d_temp3_y2y1) /\ (self.alpha - 1) return d
def estimation(self, y): """ Estimate Tsallis entropy. Parameters ---------- y : (number of samples, dimension)-ndarray One row of y corresponds to one sample. Returns ------- h : float Estimated Tsallis entropy. References ---------- Nikolai Leonenko, Luc Pronzato, and Vippal Savani. A class of Renyi information estimators for multidimensional densities. Annals of Statistics, 36(5):2153-2182, 2008. Examples -------- h = co.estimation(y) """ i_alpha = estimate_i_alpha(y, self) h = (1 - i_alpha) / (self.alpha - 1) return h
def estimation(self, y): """ Estimate Renyi entropy. Parameters ---------- y : (number of samples, dimension)-ndarray One row of y corresponds to one sample. Returns ------- h : float Estimated Renyi entropy. References ---------- Nikolai Leonenko, Luc Pronzato, and Vippal Savani. A class of Renyi information estimators for multidimensional densities. Annals of Statistics, 36(5):2153-2182, 2008. Joseph E. Yukich. Probability Theory of Classical Euclidean Optimization Problems, Lecture Notes in Mathematics, 1998, vol. 1675. Examples -------- h = co.estimation(y) """ i_alpha = estimate_i_alpha(y, self) h = log(i_alpha) / (1 - self.alpha) return h
def estimation(self, y): """ Estimate Sharma-Mittal entropy. Parameters ---------- y : (number of samples, dimension)-ndarray One row of y corresponds to one sample. Returns ------- h : float Estimated Sharma-Mittal entropy. References ---------- Nikolai Leonenko, Luc Pronzato, and Vippal Savani. A class of Renyi information estimators for multidimensional densities. Annals of Statistics, 36(5):2153-2182, 2008. (i_alpha estimation) Joseph E. Yukich. Probability Theory of Classical Euclidean Optimization Problems, Lecture Notes in Mathematics, 1998, vol. 1675. (i_alpha estimation) Ethem Akturk, Baris Bagci, and Ramazan Sever. Is Sharma-Mittal entropy really a step beyond Tsallis and Renyi entropies? Technical report, 2007. http://arxiv.org/abs/cond-mat/0703277. (Sharma-Mittal entropy) Bhudev D. Sharma and Dharam P. Mittal. New nonadditive measures of inaccuracy. Journal of Mathematical Sciences, 10:122-133, 1975. (Sharma-Mittal entropy) Examples -------- h = co.estimation(y) """ i_alpha = estimate_i_alpha(y, self) h = (i_alpha**((1 - self.beta) / (1 - self.alpha)) - 1) / (1 - self.beta) return h