def __init__(self,
                 km,
                 lead_goal_constraints,
                 follower_goal_constraints,
                 t_leader=TQPB,
                 t_follower=TQPB,
                 f_gen_lead_cvs=None,
                 f_gen_follower_cvs=None,
                 visualizer=None,
                 controls_blacklist=set(),
                 transition_overrides=None):
        lead_symbols = union(
            gm.free_symbols(c.expr) for c in lead_goal_constraints.values())
        follower_symbols = union(
            gm.free_symbols(c.expr)
            for c in follower_goal_constraints.values())
        self.lead_symbols = lead_symbols
        self.follower_symbols = follower_symbols

        self.lead_controlled_symbols = {
            s
            for s in union(
                gm.get_diff_symbols(c.expr)
                for c in lead_goal_constraints.values())
            if s not in controls_blacklist
        }
        # Only update the symbols that are unique to the follower
        self.follower_controlled_symbols = {
            s
            for s in union(
                gm.get_diff_symbols(c.expr)
                for c in follower_goal_constraints.values()) if
            s not in controls_blacklist and gm.IntSymbol(s) not in lead_symbols
        }

        f_gen_lead_cvs = self.gen_controlled_values if f_gen_lead_cvs is None else f_gen_lead_cvs
        lead_cvs, \
        lead_constraints = f_gen_lead_cvs(km,
                                          km.get_constraints_by_symbols(self.lead_controlled_symbols.union({gm.IntSymbol(s) for s in self.lead_controlled_symbols})),
                                          self.lead_controlled_symbols)

        f_gen_follower_cvs = self.gen_controlled_values if f_gen_follower_cvs is None else f_gen_follower_cvs
        follower_cvs, \
        follower_constraints = f_gen_follower_cvs(km,
                                                  km.get_constraints_by_symbols(self.follower_controlled_symbols.union({gm.IntSymbol(s) for s in self.follower_controlled_symbols})),
                                                  self.follower_controlled_symbols)

        if issubclass(t_leader, GQPB):
            lead_world = km.get_active_geometry(lead_symbols)
            self.lead_qp = t_leader(lead_world,
                                    lead_constraints,
                                    lead_goal_constraints,
                                    lead_cvs,
                                    visualizer=visualizer)
        else:
            self.lead_qp = t_leader(lead_constraints, lead_goal_constraints,
                                    lead_cvs)

        self.sym_dt = gm.Symbol('dT')
        self.lead_o_symbols, \
        self.lead_t_function, \
        self.lead_o_controls = generate_transition_function(self.sym_dt, lead_symbols, transition_overrides)

        self.follower_o_symbols, \
        self.follower_t_function, \
        self.follower_o_controls = generate_transition_function(self.sym_dt,
                                                                {gm.IntSymbol(s) for s in self.follower_controlled_symbols},
                                                                transition_overrides)

        self.follower_o_bounds = list(self.follower_controlled_symbols)
        follower_ctrl_bounds = [
            sum([[c.lower, c.upper]
                 for c in km.get_constraints_by_symbols({s}).values()], [])
            for s in self.follower_o_bounds
        ]

        max_bounds = max(len(row) for row in follower_ctrl_bounds)

        for s, row in zip(self.follower_o_bounds, follower_ctrl_bounds):
            row.extend([1e3] * (max_bounds - len(row)))
            print(f'{s}: {row}')

        follower_ctrl_bounds = gm.Matrix(follower_ctrl_bounds).T
        self.follower_ctrl_bounds_params = list(
            gm.free_symbols(follower_ctrl_bounds))
        self.follower_ctrl_bounds_f = gm.speed_up(
            follower_ctrl_bounds, self.follower_ctrl_bounds_params)

        self.follower_delta_map = {
            gm.IntSymbol(s): s
            for s in self.follower_controlled_symbols
        }

        if issubclass(t_follower, GQPB):
            follower_world = km.get_active_geometry(follower_symbols)
            self.follower_qp = t_follower(follower_world,
                                          follower_constraints,
                                          follower_goal_constraints,
                                          follower_cvs,
                                          visualizer=visualizer)
        else:
            self.follower_qp = t_follower(follower_constraints,
                                          follower_goal_constraints,
                                          follower_cvs)
    def __init__(self,
                 observations,
                 constraints,
                 Q=None,
                 transition_rules=None,
                 trim_threshold=None):
        """Sets up an EKF estimating the underlying state of a set of observations.
        
        Args:
            observations (dict): A dict of observations. Names are mapped to 
                                 any kind of symbolic expression/matrix
            constraints (dict): A dict of named constraints that govern the 
                                configuration space of the estimated quantities
            Q (matrix, optional): Process noise of the estimated quantities. 
                                  Note: Quantities are expected to be ordered alphabetically
            transition_rules (dict, optional): Maps symbols to their transition rule.
                                               Rules will be generated automatically, if not provided here.
        """
        state_vars = union([gm.free_symbols(o) for o in observations.values()])

        self.ordered_vars = [
            s for _, s in sorted((str(s), s) for s in state_vars)
        ]
        self.Q = Q if Q is not None else np.zeros(
            (len(self.ordered_vars), len(self.ordered_vars)))

        st_fn = {}
        for s in self.ordered_vars:
            st_fn[s] = gm.wrap_expr(s + gm.DiffSymbol(s) * EKFModel.DT_SYM)

        if transition_rules is not None:
            varset = set(self.ordered_vars).union(
                {gm.DiffSymbol(s)
                 for s in self.ordered_vars}).union({EKFModel.DT_SYM})
            for s, r in transition_rules.items():
                if s in st_fn:
                    if len(gm.free_symbols(r).difference(varset)) == 0:
                        st_fn[s] = gm.wrap_expr(r)
                    else:
                        print(
                            f'Dropping rule "{s}: {r}". Symbols missing from state: {gm.free_symbols(r).difference(varset)}'
                        )
        control_vars = union([gm.free_symbols(r) for r in st_fn.values()]) \
                        .difference(self.ordered_vars)            \
                        .difference({EKFModel.DT_SYM})
        self.ordered_controls = [
            s for _, s in sorted((str(s), s) for s in control_vars)
        ]

        # State as column vector n * 1
        temp_g_fn = gm.Matrix(
            [gm.extract_expr(st_fn[s]) for s in self.ordered_vars])
        self.g_fn = gm.speed_up(temp_g_fn, [EKFModel.DT_SYM] +
                                self.ordered_vars + self.ordered_controls)
        temp_g_prime_fn = gm.Matrix([[
            gm.extract_expr(st_fn[s][d]) if d in st_fn[s] else 0
            for d in self.ordered_controls
        ] for s in self.ordered_vars])
        self.g_prime_fn = gm.speed_up(temp_g_prime_fn,
                                      [EKFModel.DT_SYM] + self.ordered_vars +
                                      self.ordered_controls)

        self.obs_labels = []
        self.takers = []
        flat_obs = []
        for o_label, o in sorted(observations.items()):
            if gm.is_symbolic(o):
                if gm.is_matrix(o):
                    if type(o) == gm.GM:
                        components = zip(
                            sum([[(y, x) for x in range(o.shape[1])]
                                 for y in range(o.shape[0])], []), iter(o))
                    else:
                        components = zip(
                            sum([[(y, x) for x in range(o.shape[1])]
                                 for y in range(o.shape[0])], []),
                            o.T.elements())  # Casadi iterates vertically
                    indices = []
                    for coords, c in components:
                        if gm.is_symbolic(c):
                            self.obs_labels.append('{}_{}_{}'.format(
                                o_label, *coords))
                            flat_obs.append(gm.wrap_expr(c))
                            indices.append(coords[0] * o.shape[1] + coords[1])
                    if len(indices) > 0:
                        self.takers.append((o_label, indices))
                else:
                    self.obs_labels.append(o_label)
                    flat_obs.append(gm.wrap_expr(o))
                    self.takers.append((o_label, [0]))

        temp_h_fn = gm.Matrix([gm.extract_expr(o) for o in flat_obs])
        self.h_fn = gm.speed_up(temp_h_fn, self.ordered_vars)
        temp_h_prime_fn = gm.Matrix([[
            gm.extract_expr(o[d]) if d in o else 0
            for d in self.ordered_controls
        ] for o in flat_obs])
        self.h_prime_fn = gm.speed_up(temp_h_prime_fn, self.ordered_vars)

        state_constraints = {}
        for n, c in constraints.items():
            if gm.is_symbol(c.expr):
                s = gm.free_symbols(c.expr).pop()
                fs = gm.free_symbols(c.lower).union(gm.free_symbols(c.upper))
                if len(fs.difference({s})) == 0:
                    state_constraints[s] = (float(gm.subs(c.lower, {s: 0})),
                                            float(gm.subs(c.upper, {s: 0})))

        self.state_bounds = np.array([
            state_constraints[s]
            if s in state_constraints else [-np.pi, np.pi]
            for s in self.ordered_vars
        ])
        self.R = None  # np.zeros((len(self.obs_labels), len(self.obs_labels)))
        self.trim_threshold = trim_threshold
def main(create_figure=False,
         vis_mode=False,
         log_csv=True,
         min_n_dof=1,
         samples=300,
         n_observations=25,
         noise_lin=0.2,
         noise_ang=30,
         noise_steps=5):

    wait_duration = rospy.Duration(0.1)

    vis = ROSBPBVisualizer('ekf_vis', 'world') if vis_mode != 'none' else None
    km = GeometryModel()

    with open(res_pkg_path('package://iai_kitchen/urdf_obj/IAI_kitchen.urdf'),
              'r') as urdf_file:
        urdf_kitchen_str = urdf_file.read()
        kitchen_model = urdf_filler(
            URDF.from_xml_string(hacky_urdf_parser_fix(urdf_kitchen_str)))
        load_urdf(km, Path('kitchen'), kitchen_model)

    km.clean_structure()
    km.dispatch_events()

    kitchen = km.get_data('kitchen')

    tracking_pools = []
    for name, link in kitchen.links.items():
        symbols = gm.free_symbols(link.pose)
        if len(symbols) == 0:
            continue

        for x in range(len(tracking_pools)):
            syms, l = tracking_pools[x]
            if len(symbols.intersection(syms)
                   ) != 0:  # BAD ALGORITHM, DOES NOT CORRECTLY IDENTIFY SETS
                tracking_pools[x] = (syms.union(symbols),
                                     l + [(name, link.pose)])
                break
        else:
            tracking_pools.append((symbols, [(name, link.pose)]))

    # tracking_pools = [tracking_pools[7]]
    # print('Identified {} tracking pools:\n{}'.format(len(tracking_pools), tracking_pools))

    all_ekfs = [
        EKFModel(dict(poses), km.get_constraints_by_symbols(symbols))
        for symbols, poses in tracking_pools
    ]  # np.eye(len(symbols)) * 0.001
    print('Created {} EKF models'.format(len(all_ekfs)))
    print('\n'.join(str(e) for e in all_ekfs))

    # Sanity constraint
    min_n_dof = min(min_n_dof, len(all_ekfs))

    iteration_times = []

    for u in range(min_n_dof, len(all_ekfs) + 1):
        if rospy.is_shutdown():
            break

        ekfs = all_ekfs[:u]

        observed_poses = {}
        for ekf in ekfs:
            for link_name, _ in ekf.takers:
                observed_poses[link_name] = kitchen.links[link_name].pose
        names, poses = zip(*sorted(observed_poses.items()))

        state_symbols = union([gm.free_symbols(p) for p in poses])
        ordered_state_vars = [
            s for _, s in sorted((str(s), s) for s in state_symbols)
        ]

        state_constraints = {}
        for n, c in km.get_constraints_by_symbols(state_symbols).items():
            if gm.is_symbol(c.expr):
                s = gm.free_symbols(c.expr).pop()
                fs = gm.free_symbols(c.lower).union(gm.free_symbols(c.upper))
                if len(fs.difference({s})) == 0:
                    state_constraints[s] = (float(gm.subs(c.lower, {s: 0})),
                                            float(gm.subs(c.upper, {s: 0})))

        state_bounds = np.array([
            state_constraints[s]
            if s in state_constraints else [-np.pi * 0.5, np.pi * 0.5]
            for s in ordered_state_vars
        ])

        state_fn = gm.speed_up(gm.vstack(*poses), ordered_state_vars)
        subworld = km.get_active_geometry(state_symbols)

        # Generate observation noise
        print('Generating R matrices...')
        n_cov_obs = 400
        full_log = []

        dof_iters = []

        # EXPERIMENT
        for lin_std, ang_std in [(noise_lin, noise_ang * (np.pi / 180.0))]:
            # zip(np.linspace(0, noise_lin, noise_steps),
            #     np.linspace(0, noise_ang * (np.pi / 180.0), noise_steps)):
            if rospy.is_shutdown():
                break
            # INITIALIZE SENSOR MODEL
            training_obs = []
            state = np.random.uniform(state_bounds.T[0], state_bounds.T[1])
            observations = state_fn.call2(state)

            for _ in range(n_cov_obs):
                noisy_obs = {}
                for x, noise in enumerate([
                        t.dot(r) for t, r in zip(
                            random_normal_translation(len(poses), 0, lin_std),
                            random_rot_normal(len(poses), 0, ang_std))
                ]):
                    noisy_obs[names[x]] = observations[x * 4:x * 4 +
                                                       4, :4].dot(noise)
                training_obs.append(noisy_obs)

            for ekf in ekfs:
                ekf.generate_R(training_obs)
                # ekf.set_R(np.eye(len(ekf.ordered_vars)) * 0.1)

            # Generate figure
            gridsize = (4, samples)
            plot_size = (4, 4)
            fig = plt.figure(figsize=(gridsize[1] * plot_size[0], gridsize[0] *
                                      plot_size[1])) if create_figure else None

            gt_states = []
            states = [[] for x in range(samples)]
            variances = [[] for x in range(samples)]
            e_obs = [[] for x in range(samples)]

            print('Starting iterations')
            for k in tqdm(range(samples)):
                if rospy.is_shutdown():
                    break

                state = np.random.uniform(state_bounds.T[0], state_bounds.T[1])
                gt_states.append(state)
                observations = state_fn.call2(state).copy()
                gt_obs_d = {
                    n: observations[x * 4:x * 4 + 4, :4]
                    for x, n in enumerate(names)
                }
                subworld.update_world(dict(zip(ordered_state_vars, state)))

                if vis_mode == 'iter' or vis_mode == 'io':
                    vis.begin_draw_cycle('gt', 'noise', 'estimate', 't_n',
                                         't0')
                    vis.draw_world('gt', subworld, g=0, b=0)
                    vis.render('gt')

                estimates = []
                for ekf in ekfs:
                    particle = ekf.spawn_particle()
                    estimates.append(particle)

                initial_state = dict(
                    sum([[(s, v) for s, v in zip(ekf.ordered_vars, e.state)]
                         for e, ekf in zip(estimates, ekfs)], []))
                initial_state = np.array(
                    [initial_state[s] for s in ordered_state_vars])
                if initial_state.min() < state_bounds.T[0].min(
                ) or initial_state.max() > state_bounds.T[1].max():
                    raise Exception(
                        'Estimate initialization is out of bounds: {}'.format(
                            np.vstack([initial_state, state_bounds.T]).T))
                initial_delta = state - initial_state

                for y in range(n_observations):
                    # Add noise to observations
                    noisy_obs = {}
                    for x, noise in enumerate([
                            t.dot(r) for t, r in zip(
                                random_normal_translation(
                                    len(poses), 0, lin_std),
                                random_rot_normal(len(poses), 0, ang_std))
                    ]):
                        noisy_obs[names[x]] = observations[x * 4:x * 4 +
                                                           4, :4].dot(noise)

                    if vis_mode in {'iter', 'iter-trail'} or (vis_mode == 'io'
                                                              and y == 0):
                        for n, t in noisy_obs.items():
                            subworld.named_objects[Path(
                                ('kitchen', 'links', n))].np_transform = t
                        if vis_mode != 'iter-trail':
                            vis.begin_draw_cycle('noise')
                        vis.draw_world('noise', subworld, r=0, g=0, a=0.1)
                        vis.render('noise')

                    start_time = time()
                    for estimate, ekf in zip(estimates, ekfs):
                        if y > 0:
                            control = np.zeros(len(ekf.ordered_controls))
                            estimate.state, estimate.cov = ekf.predict(
                                estimate.state.flatten(), estimate.cov,
                                control)
                            obs_vector = ekf.gen_obs_vector(noisy_obs)
                            estimate.state, estimate.cov = ekf.update(
                                estimate.state, estimate.cov,
                                ekf.gen_obs_vector(noisy_obs))

                            if vis_mode in {'iter', 'iter-trail'}:
                                subworld.update_world({
                                    s: v
                                    for s, v in zip(ekf.ordered_vars,
                                                    estimate.state)
                                })
                        else:
                            obs_vector = ekf.gen_obs_vector(noisy_obs)

                            for _ in range(1):
                                h_prime = ekf.h_prime_fn.call2(estimate.state)
                                obs_delta = obs_vector.reshape(
                                    (len(obs_vector), 1)) - ekf.h_fn.call2(
                                        estimate.state)
                                estimate.state += (h_prime.T.dot(obs_delta) *
                                                   0.1).reshape(
                                                       estimate.state.shape)

                            if vis_mode in {'iter', 'io'}:
                                subworld.update_world({
                                    s: v
                                    for s, v in zip(ekf.ordered_vars,
                                                    estimate.state)
                                })

                    if vis_mode != 'none' and y == 0:
                        vis.draw_world('t0', subworld, b=0, a=1)
                        vis.render('t0')
                    elif vis_mode in {'iter', 'iter-trail'}:
                        if vis_mode != 'iter-trail':
                            vis.begin_draw_cycle('t_n')
                        vis.draw_world('t_n', subworld, b=0, a=1)
                        vis.render('t_n')

                    if log_csv or fig is not None:
                        e_state_d = dict(
                            sum([[(s, v)
                                  for s, v in zip(ekf.ordered_vars, e.state)]
                                 for e, ekf in zip(estimates, ekfs)], []))
                        covs = dict(
                            sum([[(s, v) for s, v in zip(
                                ekf.ordered_vars, np.sqrt(np.trace(e.cov)))]
                                 for e, ekf in zip(estimates, ekfs)], []))
                        e_state = np.hstack([
                            e_state_d[s] for s in ordered_state_vars
                        ]).reshape((len(e_state_d), ))

                        if log_csv:
                            full_log.append(
                                np.hstack(
                                    ([lin_std,
                                      ang_std], state, e_state.flatten(),
                                     np.array([
                                         covs[s] for s in ordered_state_vars
                                     ]))))

                        if fig is not None:
                            e_obs[k].append(
                                np.array([
                                    np.abs(
                                        ekf.gen_obs_vector(gt_obs_d) -
                                        ekf.h_fn.call2(e.state)).max()
                                    for e, ekf in zip(estimates, ekfs)
                                ]))
                            states[k].append(e_state)
                            variances[k].append(
                                np.array([covs[s]
                                          for s in ordered_state_vars]))
                else:
                    if vis_mode == 'io':
                        for estimate, ekf in zip(estimates, ekfs):
                            subworld.update_world({
                                s: v
                                for s, v in zip(ekf.ordered_vars,
                                                estimate.state)
                            })

                        vis.draw_world('t_n', subworld, r=0, b=0, a=1)
                        vis.render('t_n')

                    dof_iters.append(time() - start_time)

            if fig is not None:
                axes = [
                    plt.subplot2grid(gridsize, (y, 0), colspan=1, rowspan=1)
                    for y in range(gridsize[0])
                ]
                axes = np.array(
                    sum([[
                        plt.subplot2grid(gridsize, (y, x),
                                         colspan=1,
                                         rowspan=1,
                                         sharey=axes[y])
                        for y in range(gridsize[0])
                    ] for x in range(1, gridsize[1])], axes)).reshape(
                        (gridsize[1], gridsize[0]))

                for x, (gt_s, state, variance, obs_delta,
                        (ax_s, ax_d, ax_o, ax_v)) in enumerate(
                            zip(gt_states, states, variances, e_obs, axes)):

                    for y in gt_s:
                        ax_s.axhline(y, xmin=0.97, xmax=1.02)

                    ax_s.set_title('State; Sample: {}'.format(x))
                    ax_d.set_title('Delta from GT; Sample: {}'.format(x))
                    ax_o.set_title('Max Delta in Obs; Sample: {}'.format(x))
                    ax_v.set_title('Standard Deviation; Sample: {}'.format(x))
                    ax_s.plot(state)
                    ax_d.plot(gt_s - np.vstack(state))
                    ax_o.plot(obs_delta)
                    ax_v.plot(variance)
                    ax_s.grid(True)
                    ax_d.grid(True)
                    ax_o.grid(True)
                    ax_v.grid(True)

                fig.tight_layout()
                plt.savefig(
                    res_pkg_path(
                        'package://kineverse_experiment_world/test/ekf_object_tracker_{}_{}.png'
                        .format(lin_std, ang_std)))

        iteration_times.append(dof_iters)

        if log_csv:
            df = pd.DataFrame(
                columns=['lin_std', 'ang_std'] +
                ['gt_{}'.format(x) for x in range(len(state_symbols))] +
                ['ft_{}'.format(x) for x in range(len(state_symbols))] +
                ['var_{}'.format(x) for x in range(len(state_symbols))],
                data=full_log)
            df.to_csv(res_pkg_path(
                'package://kineverse_experiment_world/test/ekf_object_tracker.csv'
            ),
                      index=False)

    df = pd.DataFrame(
        columns=[str(x) for x in range(1,
                                       len(iteration_times) + 1)],
        data=np.vstack(iteration_times).T)
    df.to_csv(res_pkg_path(
        'package://kineverse_experiment_world/test/ekf_object_tracker_performance.csv'
    ),
              index=False)
Ejemplo n.º 4
0
 def get_controls(self):
     return union([e.command_vars for e in self.estimators])
    def __init__(self, km, observations, transition_rules=None, max_iterations=20, num_samples=7):
        """Sets up an EKF estimating the underlying state of a set of observations.
        
        Args:
            km (ArticulationModel): Articulation model to query for constraints
            observations (dict): A dict of observations. Names are mapped to 
                                 any kind of symbolic expression/matrix
            transition_rules (dict, optional): Maps symbols to their transition rule.
                                               Rules will be generated automatically, if not provided here.
        """
        state_vars = union([gm.free_symbols(o) for o in observations.values()])

        self.num_samples = num_samples

        self.ordered_vars,  \
        self.transition_fn, \
        self.transition_args = generate_transition_function(QPStateModel.DT_SYM, 
                                                            state_vars, 
                                                            transition_rules)
        self.command_vars = {s for s in self.transition_args 
                                if s not in state_vars and str(s) != str(QPStateModel.DT_SYM)}

        obs_constraints = {}
        obs_switch_vars = {}

        # State as column vector n * 1
        self.switch_vars = {}
        self._obs_state  = {}
        self.obs_vars  = {}
        self.takers = {}
        flat_obs    = []
        for o_label, o in sorted(observations.items()):
            if gm.is_symbolic(o):
                obs_switch_var = gm.Symbol(f'{o_label}_observed')
                self.switch_vars[o_label] = obs_switch_var
                if o_label not in obs_constraints:
                    obs_constraints[o_label] = {}
                if o_label not in self.obs_vars:
                    self.obs_vars[o_label] = []

                if gm.is_matrix(o):
                    if type(o) == gm.GM:
                        components = zip(sum([[(y, x) for x in range(o.shape[1])] 
                                                      for y in range(o.shape[0])], []), iter(o))
                    else:
                        components = zip(sum([[(y, x) for x in range(o.shape[1])] 
                                                      for y in range(o.shape[0])], []), o.T.elements()) # Casadi iterates vertically
                    indices = []
                    for coords, c in components:
                        if gm.is_symbolic(c):
                            obs_symbol = gm.Symbol('{}_{}_{}'.format(o_label, *coords))
                            obs_error  = gm.abs(obs_symbol - c)
                            constraint = SC(-obs_error - (1 - obs_switch_var) * 1e3,
                                            -obs_error + (1 - obs_switch_var) * 1e3, 1, obs_error)
                            obs_constraints[o_label][f'{o_label}:{Path(obs_symbol)}'] = constraint
                            self.obs_vars[o_label].append(obs_symbol)
                            indices.append(coords[0] * o.shape[1] + coords[1])

                    if len(indices) > 0:
                        self.takers[o_label] = indices
                else:
                    obs_symbol = gm.Symbol(f'{o_label}_value')
                    obs_error  = gm.abs(obs_symbol - c)
                    constraint = SC(-obs_error - obs_switch_var * 1e9, 
                                    -obs_error + obs_switch_var * 1e9, 1, obs_error)
                    obs_constraints[o_label][f'{o_label}:{Path(obs_symbol)}'] = constraint

                    self.obs_vars[o_label].append(obs_symbol)
                    self.takers[o_label] = [0]

        state_constraints = km.get_constraints_by_symbols(state_vars)

        cvs, hard_constraints = generate_controlled_values(state_constraints, 
                                                           {gm.DiffSymbol(s) for s in state_vars 
                                                                             if gm.get_symbol_type(s) != gm.TYPE_UNKNOWN})
        flat_obs_constraints = dict(sum([list(oc.items()) for oc in obs_constraints.values()], []))

        self.qp = TQPB(hard_constraints, flat_obs_constraints, cvs)

        st_bound_vars, st_bounds, st_unbounded = static_var_bounds(km, state_vars)
        self._state = {s: 0 for s in st_unbounded} # np.random.uniform(-1.0, 1.0) for s in st_unbounded}

        for vb, (lb, ub) in zip(st_bound_vars, st_bounds):
            self._state[vb] = np.random.uniform(lb, ub)

        self._state_buffer = []
        self._state.update({s: 0 for s in self.transition_args})
        self._obs_state = {s: 0 for s in sum(self.obs_vars.values(), [])}
        self._obs_count = 0
        self._stamp_last_integration = None
        self._max_iterations = 10
        self._current_error  = 1e9