def test_jit(self, device, dtype): B, C, H, W = 2, 1, 32, 32 patches = torch.ones(B, C, H, W, device=device, dtype=dtype) model = SOSNet().to(patches.device, patches.dtype).eval() model_jit = torch.jit.script(SOSNet().to(patches.device, patches.dtype).eval()) assert_close(model(patches), model_jit(patches))
def test_gradcheck(self, device): patches = torch.rand(2, 1, 32, 32, device=device) patches = utils.tensor_to_gradcheck_var(patches) # to var sosnet = SOSNet(pretrained=False).to(patches.device, patches.dtype) assert gradcheck(sosnet, (patches, ), eps=1e-4, atol=1e-4, raise_exception=True)
def test_shape_batch(self, device): inp = torch.ones(16, 1, 32, 32, device=device) sosnet = SOSNet(pretrained=False).to(device) out = sosnet(inp) assert out.shape == (16, 128)
def test_shape(self, device): inp = torch.ones(1, 1, 32, 32, device=device) sosnet = SOSNet(pretrained=False).to(device) sosnet.eval() # batchnorm with size 1 is not allowed in train mode out = sosnet(inp) assert out.shape == (1, 128)