Example #1
0
 def test_jit(self, device, dtype):
     B, C, H, W = 2, 1, 32, 32
     patches = torch.ones(B, C, H, W, device=device, dtype=dtype)
     model = SOSNet().to(patches.device, patches.dtype).eval()
     model_jit = torch.jit.script(SOSNet().to(patches.device,
                                              patches.dtype).eval())
     assert_close(model(patches), model_jit(patches))
Example #2
0
 def test_gradcheck(self, device):
     patches = torch.rand(2, 1, 32, 32, device=device)
     patches = utils.tensor_to_gradcheck_var(patches)  # to var
     sosnet = SOSNet(pretrained=False).to(patches.device, patches.dtype)
     assert gradcheck(sosnet, (patches, ),
                      eps=1e-4,
                      atol=1e-4,
                      raise_exception=True)
Example #3
0
 def test_shape_batch(self, device):
     inp = torch.ones(16, 1, 32, 32, device=device)
     sosnet = SOSNet(pretrained=False).to(device)
     out = sosnet(inp)
     assert out.shape == (16, 128)
Example #4
0
 def test_shape(self, device):
     inp = torch.ones(1, 1, 32, 32, device=device)
     sosnet = SOSNet(pretrained=False).to(device)
     sosnet.eval()  # batchnorm with size 1 is not allowed in train mode
     out = sosnet(inp)
     assert out.shape == (1, 128)