def img_verification_task(self, split='DevTrain', dtype='uint8'): lpaths, rpaths, labels = self.raw_verification_task(split) limgs = larray.lmap( utils.image.ImgLoader(shape=(250, 250, 3), dtype=dtype), lpaths) rimgs = larray.lmap( utils.image.ImgLoader(shape=(250, 250, 3), dtype=dtype), rpaths) return limgs, rimgs, labels
def img_verification_task(self, split=None, dtype='uint8', resplit=None, seed=0): """ use resplit to generate a resplitting of the view data e.g. resplit='train_0' to get the training portion of the 0th split seed initializes random number generator for resplitting generation. default seed=0 generates standard "canonical" splits. """ assert resplit is None or split is None if resplit is not None: lpaths, rpaths, labels = self.raw_verification_task_resplit(resplit, seed=seed) else: if split is None: split = 'DevTrain' lpaths, rpaths, labels = self.raw_verification_task(split) limgs = larray.lmap( utils.image.ImgLoader(shape=self.img_shape, dtype=dtype), lpaths) rimgs = larray.lmap( utils.image.ImgLoader(shape=self.img_shape, dtype=dtype), rpaths) return limgs, rimgs, labels
def img_verification_task_from_raw(self, lpaths, rpaths, labels, dtype='uint8'): limgs = larray.lmap( utils.image.ImgLoader(shape=self.img_shape, dtype=dtype), lpaths) rimgs = larray.lmap( utils.image.ImgLoader(shape=self.img_shape, dtype=dtype), rpaths) return limgs, rimgs, labels
def main_show(cls): # Usage one of: # <driver> people # <driver> pairs from utils.glviewer import glumpy_viewer, command, glumpy import larray # print 'ARGV', sys.argv try: task = sys.argv[2] except IndexError: print >> sys.stderr, "Usage one of" print >> sys.stderr, " <driver> lfw.<imgset> people" print >> sys.stderr, " <driver> lfw.<imgset> pairs" print >> sys.stderr, " <driver> lfw.<imgset> pairs_train" print >> sys.stderr, " <driver> lfw.<imgset> pairs_test" print >> sys.stderr, " <driver> lfw.<imgset> pairs_10folds" return 1 if task == "people": self = cls() image_paths = [self.image_path(m) for m in self.meta] names = np.asarray([m["name"] for m in self.meta]) glumpy_viewer(img_array=larray.lmap(utils.image.load_rgb_f32, image_paths), arrays_to_print=[names]) elif task == "pairs" or sys.argv[2] == "pairs_train": raise NotImplementedError() elif task == "pairs_test": raise NotImplementedError() elif task == "pairs_10folds": fold_num = int(sys.argv[3]) raise NotImplementedError() if 0: left_imgs = img_load(lpaths, slice_, color, resize) right_imgs = img_load(rpaths, slice_, color, resize) pairs = larray.lzip(left_imgs, right_imgs)
def main_show(cls): # Usage one of: # <driver> people # <driver> pairs from utils.glviewer import glumpy_viewer try: task = sys.argv[2] except IndexError: print >> sys.stderr, "Usage one of" print >> sys.stderr, " <driver> lfw.<imgset> people" print >> sys.stderr, " <driver> lfw.<imgset> pairs" print >> sys.stderr, " <driver> lfw.<imgset> pairs_train" print >> sys.stderr, " <driver> lfw.<imgset> pairs_test" print >> sys.stderr, " <driver> lfw.<imgset> pairs_10folds" return 1 if task == 'people': self = cls() image_paths = [self.image_path(m) for m in self.meta] names = np.asarray([m['name'] for m in self.meta]) glumpy_viewer( img_array=larray.lmap( utils.image.load_rgb_f32, image_paths), arrays_to_print=[names]) elif task == 'pairs' or sys.argv[2] == 'pairs_train': raise NotImplementedError() elif task == 'pairs_test': raise NotImplementedError() elif task == 'pairs_10folds': raise NotImplementedError()
def img_classification_task(self, dtype='uint8', split=None): img_paths, labels, inds = self.raw_classification_task(split=split) imgs = larray.lmap(ImgLoader(shape=(100, 100, 3), dtype=dtype, mode='RGB'), img_paths) return imgs, labels
def main_show(cls): # Usage one of: # <driver> people # <driver> pairs from utils.glviewer import glumpy_viewer try: task = sys.argv[2] except IndexError: print >> sys.stderr, "Usage one of" print >> sys.stderr, " <driver> lfw.<imgset> people" print >> sys.stderr, " <driver> lfw.<imgset> pairs" print >> sys.stderr, " <driver> lfw.<imgset> pairs_train" print >> sys.stderr, " <driver> lfw.<imgset> pairs_test" print >> sys.stderr, " <driver> lfw.<imgset> pairs_10folds" return 1 if task == 'people': self = cls() image_paths = [self.image_path(m) for m in self.meta] names = np.asarray([m['name'] for m in self.meta]) glumpy_viewer(img_array=larray.lmap(utils.image.load_rgb_f32, image_paths), arrays_to_print=[names]) elif task == 'pairs' or sys.argv[2] == 'pairs_train': raise NotImplementedError() elif task == 'pairs_test': raise NotImplementedError() elif task == 'pairs_10folds': raise NotImplementedError()
def main_show(): """compatibility with bin/datasets-show""" from utils.glviewer import glumpy_viewer import larray pf = PubFig83() names = [m['name'] for m in pf.meta] paths = [pf.image_path(m) for m in pf.meta] glumpy_viewer(img_array=larray.lmap(utils.image.ImgLoader(), paths), arrays_to_print=[names])
def main_show(): """compatibility with bin/datasets-show""" from utils.glviewer import glumpy_viewer import larray pf = PubFig83() names = [m['name'] for m in pf.meta] paths = [pf.image_path(m) for m in pf.meta] glumpy_viewer( img_array=larray.lmap(utils.image.ImgLoader(), paths), arrays_to_print=[names])
def img_recognition_task(self, dtype="uint8"): img_paths, labels = self.raw_recognition_task() imgs = larray.lmap(utils.image.ImgLoader(shape=(250, 250, 3), dtype=dtype), img_paths) return imgs, labels
def img_classification_task(self, dtype="uint8", split=None): img_paths, labels = self.raw_classification_task(split=split) imgs = larray.lmap(ImgLoader(ndim=2, shape=(400, 400), dtype=dtype, mode="L"), img_paths) return imgs, labels
def img_classification_task(self, dtype='uint8', split=None): img_paths, labels = self.raw_classification_task(split=split) imgs = larray.lmap(ImgLoader(ndim=3, dtype=dtype, mode='RGB'), img_paths) return imgs, labels
def img_classification_task(self, dtype='uint8'): img_paths, labels = self.raw_classification_task() imgs = larray.lmap( utils.image.ImgLoader(shape=self.img_shape, dtype=dtype), img_paths) return imgs, labels
def img_recognition_task(self, dtype='uint8'): img_paths, labels = self.raw_recognition_task() imgs = larray.lmap( utils.image.ImgLoader(shape=(250, 250, 3), dtype=dtype), img_paths) return imgs, labels