Ejemplo n.º 1
0
    def __init__(self,expnum=None,ccdname=None,ccdwcs=None):
        """Initialize the class with either the exposure number *and* CCD name, or
        directly with the WCS of the CCD of interest.

        """
        self.ps1dir = os.getenv('PS1CAT_DIR')
        self.nside = 32
        if ccdwcs is None:
            from legacypipe.common import Decals, DecamImage
            decals = Decals()
            ccd = decals.find_ccds(expnum=expnum,ccdname=ccdname)[0]
            im = DecamImage(decals,ccd)
            self.ccdwcs = im.get_wcs()
        else:
            self.ccdwcs = ccdwcs
Ejemplo n.º 2
0
    def __init__(self,expnum=None,ccdname=None,ccdwcs=None):
        """Initialize the class with either the exposure number *and* CCD name, or
        directly with the WCS of the CCD of interest.

        """
        self.ps1dir = os.getenv('PS1CAT_DIR')
        if self.ps1dir is None:
            raise ValueError('You must have the PS1CAT_DIR environment variable set to point to Pan-STARRS1 catalogs')
        self.nside = 32
        if ccdwcs is None:
            from legacypipe.common import Decals
            decals = Decals()
            ccd = decals.find_ccds(expnum=expnum,ccdname=ccdname)[0]
            im = decals.get_image_object(ccd)
            self.ccdwcs = im.get_wcs()
        else:
            self.ccdwcs = ccdwcs
Ejemplo n.º 3
0
    def __init__(self, expnum=None, ccdname=None, ccdwcs=None):
        """Initialize the class with either the exposure number *and* CCD name, or
        directly with the WCS of the CCD of interest.

        """
        self.ps1dir = os.getenv('PS1CAT_DIR')
        if self.ps1dir is None:
            raise ValueError(
                'You must have the PS1CAT_DIR environment variable set to point to Pan-STARRS1 catalogs'
            )
        self.nside = 32
        if ccdwcs is None:
            from legacypipe.common import Decals
            decals = Decals()
            ccd = decals.find_ccds(expnum=expnum, ccdname=ccdname)[0]
            im = decals.get_image_object(ccd)
            self.ccdwcs = im.get_wcs()
        else:
            self.ccdwcs = ccdwcs
Ejemplo n.º 4
0
from astrometry.util.plotutils import *

from legacyanalysis.ps1cat import ps1cat
from legacypipe.common import Decals

from tractor import Image, PointSource, PixPos, NanoMaggies, Tractor

ps = PlotSequence('rewcs')

expnum, ccdname = 431109, 'N14'
cat = ps1cat(expnum=expnum, ccdname=ccdname)
stars = cat.get_stars()
print len(stars), 'stars'

decals = Decals()
ccd = decals.find_ccds(expnum=expnum,ccdname=ccdname)[0]
im = decals.get_image_object(ccd)
wcs = im.get_wcs()
tim = im.get_tractor_image(pixPsf=True, splinesky=True)

margin = 15
ok,stars.xx,stars.yy = wcs.radec2pixelxy(stars.ra, stars.dec) 
stars.xx -= 1.
stars.yy -= 1.
W,H = wcs.get_width(), wcs.get_height()
stars.ix = np.round(stars.xx).astype(int)
stars.iy = np.round(stars.yy).astype(int)
stars.cut((stars.ix >= margin) * (stars.ix < (W-margin)) *
          (stars.iy >= margin) * (stars.iy < (H-margin)))

plt.clf()
Ejemplo n.º 5
0
def psf_residuals(expnum,
                  ccdname,
                  stampsize=35,
                  nstar=30,
                  magrange=(13, 17),
                  verbose=0,
                  splinesky=False):

    # Set the debugging level.
    if verbose == 0:
        lvl = logging.INFO
    else:
        lvl = logging.DEBUG
    logging.basicConfig(level=lvl, format='%(message)s', stream=sys.stdout)

    pngprefix = 'qapsf-{}-{}'.format(expnum, ccdname)

    # Gather all the info we need about this CCD.
    decals = Decals()
    ccd = decals.find_ccds(expnum=expnum, ccdname=ccdname)[0]
    band = ccd.filter
    ps1band = dict(g=0, r=1, i=2, z=3, Y=4)
    print('Band {}'.format(band))

    #scales = dict(g=0.0066, r=0.01, z=0.025)
    #vmin, vmax = np.arcsinh(-1), np.arcsinh(100)
    #print(scales[band])

    im = decals.get_image_object(ccd)
    iminfo = im.get_image_info()
    H, W = iminfo['dims']

    wcs = im.get_wcs()

    # Choose a uniformly selected subset of PS1 stars on this CCD.
    ps1 = ps1cat(ccdwcs=wcs)
    cat = ps1.get_stars(band=band, magrange=magrange)

    rand = np.random.RandomState(seed=expnum * ccd.ccdnum)
    these = rand.choice(len(cat) - 1, nstar, replace=False)
    #these = rand.random_integers(0,len(cat)-1,nstar)
    cat = cat[these]
    cat = cat[np.argsort(cat.median[:, ps1band[band]])]  # sort by magnitude
    #print(cat.nmag_ok)

    get_tim_kwargs = dict(const2psf=True, splinesky=splinesky)

    # Make a QAplot of the positions of all the stars.
    tim = im.get_tractor_image(**get_tim_kwargs)
    img = tim.getImage()
    #img = tim.getImage()/scales[band]

    fig = plt.figure(figsize=(5, 10))
    ax = fig.gca()
    ax.get_xaxis().get_major_formatter().set_useOffset(False)
    #ax.imshow(np.arcsinh(img),cmap='gray',interpolation='nearest',
    #          origin='lower',vmin=vmax,vmax=vmax)

    ax.imshow(img, **tim.ima)
    ax.axis('off')
    ax.set_title('{}: {}/{} AM={:.2f} Seeing={:.3f}"'.format(
        band, expnum, ccdname, ccd.airmass, ccd.seeing))

    for istar, ps1star in enumerate(cat):
        ra, dec = (ps1star.ra, ps1star.dec)
        ok, xpos, ypos = wcs.radec2pixelxy(ra, dec)
        ax.text(xpos,
                ypos,
                '{:2d}'.format(istar + 1),
                color='red',
                horizontalalignment='left')
        circ = plt.Circle((xpos, ypos), radius=30, color='g', fill=False, lw=1)
        ax.add_patch(circ)

    #radec = wcs.radec_bounds()
    #ax.scatter(cat.ra,cat.dec)
    #ax.set_xlim([radec[1],radec[0]])#*[1.0002,0.9998])
    #ax.set_ylim([radec[2],radec[3]])#*[0.985,1.015])
    #ax.set_xlabel('$RA\ (deg)$',fontsize=18)
    #ax.set_ylabel('$Dec\ (deg)$',fontsize=18)
    fig.savefig(pngprefix + '-ccd.png', bbox_inches='tight')

    # Initialize the many-stamp QAplot
    ncols = 3
    nrows = np.ceil(nstar / ncols).astype('int')

    inchperstamp = 2.0
    fig = plt.figure(figsize=(inchperstamp * 3 * ncols, inchperstamp * nrows))
    irow = 0
    icol = 0

    for istar, ps1star in enumerate(cat):
        ra, dec = (ps1star.ra, ps1star.dec)
        mag = ps1star.median[ps1band[band]]  # r-band

        ok, xpos, ypos = wcs.radec2pixelxy(ra, dec)
        ix, iy = int(xpos), int(ypos)

        # create a little tractor Image object around the star
        slc = (slice(max(iy - stampsize, 0), min(iy + stampsize + 1, H)),
               slice(max(ix - stampsize, 0), min(ix + stampsize + 1, W)))

        # The PSF model 'const2Psf' is the one used in DR1: a 2-component
        # Gaussian fit to PsfEx instantiated in the image center.
        tim = im.get_tractor_image(slc=slc, **get_tim_kwargs)
        stamp = tim.getImage()
        ivarstamp = tim.getInvvar()

        # Initialize a tractor PointSource from PS1 measurements
        flux = NanoMaggies.magToNanomaggies(mag)
        star = PointSource(RaDecPos(ra, dec), NanoMaggies(**{band: flux}))

        # Fit just the source RA,Dec,flux.
        tractor = Tractor([tim], [star])
        tractor.freezeParam('images')

        print('2-component MOG:', tim.psf)
        tractor.printThawedParams()

        for step in range(50):
            dlnp, X, alpha = tractor.optimize()
            if dlnp < 0.1:
                break
        print('Fit:', star)
        model_mog = tractor.getModelImage(0)
        chi2_mog = -2.0 * tractor.getLogLikelihood()
        mag_mog = NanoMaggies.nanomaggiesToMag(star.brightness)[0]

        # Now change the PSF model to a pixelized PSF model from PsfEx instantiated
        # at this place in the image.
        psf = PixelizedPsfEx(im.psffn)
        tim.psf = psf.constantPsfAt(xpos, ypos)

        #print('PSF model:', tim.psf)
        #tractor.printThawedParams()
        for step in range(50):
            dlnp, X, alpha = tractor.optimize()
            if dlnp < 0.1:
                break

        print('Fit:', star)
        model_psfex = tractor.getModelImage(0)
        chi2_psfex = -2.0 * tractor.getLogLikelihood()
        mag_psfex = NanoMaggies.nanomaggiesToMag(star.brightness)[0]

        #mn, mx = np.percentile((stamp-model_psfex)[ivarstamp>0],[1,95])
        sig = np.std((stamp - model_psfex)[ivarstamp > 0])
        mn, mx = [-2.0 * sig, 5 * sig]

        # Generate a QAplot.
        if (istar > 0) and (istar % (ncols) == 0):
            irow = irow + 1
        icol = 3 * istar - 3 * ncols * irow
        #print(istar, irow, icol, icol+1, icol+2)

        ax1 = plt.subplot2grid((nrows, 3 * ncols), (irow, icol),
                               aspect='equal')
        ax1.axis('off')
        #ax1.imshow(stamp, **tim.ima)
        ax1.imshow(stamp,
                   cmap='gray',
                   interpolation='nearest',
                   origin='lower',
                   vmin=mn,
                   vmax=mx)
        ax1.text(0.1,
                 0.9,
                 '{:2d}'.format(istar + 1),
                 color='white',
                 horizontalalignment='left',
                 verticalalignment='top',
                 transform=ax1.transAxes)

        ax2 = plt.subplot2grid((nrows, 3 * ncols), (irow, icol + 1),
                               aspect='equal')
        ax2.axis('off')
        #ax2.imshow(stamp-model_mog, **tim.ima)
        ax2.imshow(stamp - model_mog,
                   cmap='gray',
                   interpolation='nearest',
                   origin='lower',
                   vmin=mn,
                   vmax=mx)
        ax2.text(0.1,
                 0.9,
                 'MoG',
                 color='white',
                 horizontalalignment='left',
                 verticalalignment='top',
                 transform=ax2.transAxes)
        ax2.text(0.08,
                 0.08,
                 '{:.3f}'.format(mag_mog),
                 color='white',
                 horizontalalignment='left',
                 verticalalignment='bottom',
                 transform=ax2.transAxes)

        #ax2.set_title('{:.3f}, {:.2f}'.format(mag_psfex,chi2_psfex),fontsize=14)
        #ax2.set_title('{:.3f}, $\chi^{2}$={:.2f}'.format(mag_psfex,chi2_psfex))

        ax3 = plt.subplot2grid((nrows, 3 * ncols), (irow, icol + 2),
                               aspect='equal')
        ax3.axis('off')
        #ax3.imshow(stamp-model_psfex, **tim.ima)
        ax3.imshow(stamp - model_psfex,
                   cmap='gray',
                   interpolation='nearest',
                   origin='lower',
                   vmin=mn,
                   vmax=mx)
        ax3.text(0.1,
                 0.9,
                 'PSFEx',
                 color='white',
                 horizontalalignment='left',
                 verticalalignment='top',
                 transform=ax3.transAxes)
        ax3.text(0.08,
                 0.08,
                 '{:.3f}'.format(mag_psfex),
                 color='white',
                 horizontalalignment='left',
                 verticalalignment='bottom',
                 transform=ax3.transAxes)

        if istar == (nstar - 1):
            break
    fig.savefig(pngprefix + '-stargrid.png', bbox_inches='tight')
Ejemplo n.º 6
0
def psf_residuals(expnum,ccdname,stampsize=35,nstar=30,
                  magrange=(13,17),verbose=0):

    # Set the debugging level.
    if verbose==0:
        lvl = logging.INFO
    else:
        lvl = logging.DEBUG
    logging.basicConfig(level=lvl,format='%(message)s',stream=sys.stdout)

    pngprefix = 'qapsf-{}-{}'.format(expnum,ccdname)

    # Gather all the info we need about this CCD.
    decals = Decals()
    ccd = decals.find_ccds(expnum=expnum,ccdname=ccdname)[0]
    band = ccd.filter
    ps1band = dict(g=0,r=1,i=2,z=3,Y=4)
    print('Band {}'.format(band))

    #scales = dict(g=0.0066, r=0.01, z=0.025)
    #vmin, vmax = np.arcsinh(-1), np.arcsinh(100)
    #print(scales[band])

    im = DecamImage(decals,ccd)
    iminfo = im.get_image_info()
    H,W = iminfo['dims']

    wcs = im.get_wcs()

    # Choose a uniformly selected subset of PS1 stars on this CCD.
    ps1 = ps1cat(ccdwcs=wcs)
    cat = ps1.get_stars(band=band,magrange=magrange)

    rand = np.random.RandomState(seed=expnum*ccd.ccdnum)
    these = rand.choice(len(cat)-1,nstar,replace=False)
    #these = rand.random_integers(0,len(cat)-1,nstar)
    cat = cat[these]
    cat = cat[np.argsort(cat.median[:,ps1band[band]])] # sort by magnitude
    #print(cat.nmag_ok)

    # Make a QAplot of the positions of all the stars.
    tim = im.get_tractor_image(const2psf=True)
    img = tim.getImage()
    #img = tim.getImage()/scales[band]

    fig = plt.figure(figsize=(5,10))
    ax = fig.gca()
    ax.get_xaxis().get_major_formatter().set_useOffset(False)
    #ax.imshow(np.arcsinh(img),cmap='gray',interpolation='nearest',
    #          origin='lower',vmin=vmax,vmax=vmax)
    
    ax.imshow(img, **tim.ima)
    ax.axis('off')
    ax.set_title('{}: {}/{} AM={:.2f} Seeing={:.3f}"'.
                 format(band,expnum,ccdname,ccd.airmass,ccd.seeing))

    for istar, ps1star in enumerate(cat):
        ra, dec = (ps1star.ra, ps1star.dec)
        ok, xpos, ypos = wcs.radec2pixelxy(ra, dec)
        ax.text(xpos,ypos,'{:2d}'.format(istar+1),color='red',
                horizontalalignment='left')
        circ = plt.Circle((xpos,ypos),radius=30,color='g',fill=False,lw=1)
        ax.add_patch(circ)

    #radec = wcs.radec_bounds()
    #ax.scatter(cat.ra,cat.dec)
    #ax.set_xlim([radec[1],radec[0]])#*[1.0002,0.9998])
    #ax.set_ylim([radec[2],radec[3]])#*[0.985,1.015])
    #ax.set_xlabel('$RA\ (deg)$',fontsize=18)
    #ax.set_ylabel('$Dec\ (deg)$',fontsize=18)
    fig.savefig(pngprefix+'-ccd.png',bbox_inches='tight')

    # Initialize the many-stamp QAplot
    ncols = 3
    nrows = np.ceil(nstar/ncols).astype('int')

    inchperstamp = 2.0
    fig = plt.figure(figsize=(inchperstamp*3*ncols,inchperstamp*nrows))
    irow = 0
    icol = 0
    
    for istar, ps1star in enumerate(cat):
        ra, dec = (ps1star.ra, ps1star.dec)
        mag = ps1star.median[ps1band[band]] # r-band

        ok, xpos, ypos = wcs.radec2pixelxy(ra, dec)
        ix,iy = int(xpos), int(ypos)

        # create a little tractor Image object around the star
        slc = (slice(max(iy-stampsize, 0), min(iy+stampsize+1, H)),
               slice(max(ix-stampsize, 0), min(ix+stampsize+1, W)))

        # The PSF model 'const2Psf' is the one used in DR1: a 2-component
        # Gaussian fit to PsfEx instantiated in the image center.
        tim = im.get_tractor_image(slc=slc, const2psf=True)
        stamp = tim.getImage()
        ivarstamp = tim.getInvvar()

        # Initialize a tractor PointSource from PS1 measurements
        flux = NanoMaggies.magToNanomaggies(mag)
        star = PointSource(RaDecPos(ra,dec), NanoMaggies(**{band: flux}))

        # Fit just the source RA,Dec,flux.
        tractor = Tractor([tim], [star])
        tractor.freezeParam('images')

        print('2-component MOG:', tim.psf)
        tractor.printThawedParams()

        for step in range(50):
            dlnp,X,alpha = tractor.optimize()
            if dlnp < 0.1:
                break
        print('Fit:', star)
        model_mog = tractor.getModelImage(0)
        chi2_mog = -2.0*tractor.getLogLikelihood()
        mag_mog = NanoMaggies.nanomaggiesToMag(star.brightness)[0]

        # Now change the PSF model to a pixelized PSF model from PsfEx instantiated
        # at this place in the image.
        psf = PixelizedPsfEx(im.psffn)
        tim.psf = psf.constantPsfAt(xpos, ypos)

        #print('PSF model:', tim.psf)
        #tractor.printThawedParams()
        for step in range(50):
            dlnp,X,alpha = tractor.optimize()
            if dlnp < 0.1:
                break

        print('Fit:', star)
        model_psfex = tractor.getModelImage(0)
        chi2_psfex = -2.0*tractor.getLogLikelihood()
        mag_psfex = NanoMaggies.nanomaggiesToMag(star.brightness)[0]

        #mn, mx = np.percentile((stamp-model_psfex)[ivarstamp>0],[1,95])
        sig = np.std((stamp-model_psfex)[ivarstamp>0])
        mn, mx = [-2.0*sig,5*sig]

        # Generate a QAplot.
        if (istar>0) and (istar%(ncols)==0):
            irow = irow+1
        icol = 3*istar - 3*ncols*irow
        #print(istar, irow, icol, icol+1, icol+2)

        ax1 = plt.subplot2grid((nrows,3*ncols), (irow,icol), aspect='equal')
        ax1.axis('off')
        #ax1.imshow(stamp, **tim.ima)
        ax1.imshow(stamp,cmap='gray',interpolation='nearest',
                   origin='lower',vmin=mn,vmax=mx)
        ax1.text(0.1,0.9,'{:2d}'.format(istar+1),color='white',
                horizontalalignment='left',verticalalignment='top',
                transform=ax1.transAxes)

        ax2 = plt.subplot2grid((nrows,3*ncols), (irow,icol+1), aspect='equal')
        ax2.axis('off')
        #ax2.imshow(stamp-model_mog, **tim.ima)
        ax2.imshow(stamp-model_mog,cmap='gray',interpolation='nearest',
                   origin='lower',vmin=mn,vmax=mx)
        ax2.text(0.1,0.9,'MoG',color='white',
                horizontalalignment='left',verticalalignment='top',
                transform=ax2.transAxes)
        ax2.text(0.08,0.08,'{:.3f}'.format(mag_mog),color='white',
                 horizontalalignment='left',verticalalignment='bottom',
                 transform=ax2.transAxes)

        #ax2.set_title('{:.3f}, {:.2f}'.format(mag_psfex,chi2_psfex),fontsize=14)
        #ax2.set_title('{:.3f}, $\chi^{2}$={:.2f}'.format(mag_psfex,chi2_psfex))

        ax3 = plt.subplot2grid((nrows,3*ncols), (irow,icol+2), aspect='equal')
        ax3.axis('off')
        #ax3.imshow(stamp-model_psfex, **tim.ima)
        ax3.imshow(stamp-model_psfex,cmap='gray',interpolation='nearest',
                   origin='lower',vmin=mn,vmax=mx)
        ax3.text(0.1,0.9,'PSFEx',color='white',
                horizontalalignment='left',verticalalignment='top',
                transform=ax3.transAxes)
        ax3.text(0.08,0.08,'{:.3f}'.format(mag_psfex),color='white',
                 horizontalalignment='left',verticalalignment='bottom',
                 transform=ax3.transAxes)

        if istar==(nstar-1):
            break
    fig.savefig(pngprefix+'-stargrid.png',bbox_inches='tight')
Ejemplo n.º 7
0
def main(decals=None, opt=None):
    '''Driver function for forced photometry of individual DECam images.
    '''
    if opt is None:
        parser = get_parser()
        opt = parser.parse_args()

    Time.add_measurement(MemMeas)
    t0 = Time()

    if os.path.exists(opt.outfn):
        print('Ouput file exists:', opt.outfn)
        sys.exit(0)

    if not opt.forced:
        opt.apphot = True

    zoomslice = None
    if opt.zoom is not None:
        (x0,x1,y0,y1) = opt.zoom
        zoomslice = (slice(y0,y1), slice(x0,x1))

    ps = None
    if opt.plots is not None:
        from astrometry.util.plotutils import PlotSequence
        ps = PlotSequence(opt.plots)

    # Try parsing filename as exposure number.
    try:
        expnum = int(opt.filename)
        opt.filename = None
    except:
        # make this 'None' for decals.find_ccds()
        expnum = None

    # Try parsing HDU number
    try:
        opt.hdu = int(opt.hdu)
        ccdname = None
    except:
        ccdname = opt.hdu
        opt.hdu = -1

    if decals is None:
        decals = Decals()

    if opt.filename is not None and opt.hdu >= 0:
        # Read metadata from file
        T = exposure_metadata([opt.filename], hdus=[opt.hdu])
        print('Metadata:')
        T.about()
    else:
        # Read metadata from decals-ccds.fits table
        T = decals.find_ccds(expnum=expnum, ccdname=ccdname)
        print(len(T), 'with expnum', expnum, 'and CCDname', ccdname)
        if opt.hdu >= 0:
            T.cut(T.image_hdu == opt.hdu)
            print(len(T), 'with HDU', opt.hdu)
        if opt.filename is not None:
            T.cut(np.array([f.strip() == opt.filename for f in T.image_filename]))
            print(len(T), 'with filename', opt.filename)
        assert(len(T) == 1)

    im = decals.get_image_object(T[0])
    tim = im.get_tractor_image(slc=zoomslice, pixPsf=True, splinesky=True)
    print('Got tim:', tim)

    if opt.catfn in ['DR1', 'DR2']:
        if opt.catalog_path is None:
            opt.catalog_path = opt.catfn.lower()

        margin = 20
        TT = []
        chipwcs = tim.subwcs
        bricks = bricks_touching_wcs(chipwcs, decals=decals)
        for b in bricks:
            # there is some overlap with this brick... read the catalog.
            fn = os.path.join(opt.catalog_path, 'tractor', b.brickname[:3],
                              'tractor-%s.fits' % b.brickname)
            if not os.path.exists(fn):
                print('WARNING: catalog', fn, 'does not exist.  Skipping!')
                continue
            print('Reading', fn)
            T = fits_table(fn)
            ok,xx,yy = chipwcs.radec2pixelxy(T.ra, T.dec)
            W,H = chipwcs.get_width(), chipwcs.get_height()
            I = np.flatnonzero((xx >= -margin) * (xx <= (W+margin)) *
                               (yy >= -margin) * (yy <= (H+margin)))
            T.cut(I)
            print('Cut to', len(T), 'sources within image + margin')
            # print('Brick_primary:', np.unique(T.brick_primary))
            T.cut(T.brick_primary)
            print('Cut to', len(T), 'on brick_primary')
            T.cut((T.out_of_bounds == False) * (T.left_blob == False))
            print('Cut to', len(T), 'on out_of_bounds and left_blob')
            TT.append(T)
        T = merge_tables(TT)
        T._header = TT[0]._header
        del TT

        # Fix up various failure modes:
        # FixedCompositeGalaxy(pos=RaDecPos[240.51147402832561, 10.385488075518923], brightness=NanoMaggies: g=(flux -2.87), r=(flux -5.26), z=(flux -7.65), fracDev=FracDev(0.60177207), shapeExp=re=3.78351e-44, e1=9.30367e-13, e2=1.24392e-16, shapeDev=re=inf, e1=-0, e2=-0)
        # -> convert to EXP
        I = np.flatnonzero(np.array([((t.type == 'COMP') and
                                      (not np.isfinite(t.shapedev_r)))
                                     for t in T]))
        if len(I):
            print('Converting', len(I), 'bogus COMP galaxies to EXP')
            for i in I:
                T.type[i] = 'EXP'

        # Same thing with the exp component.
        # -> convert to DEV
        I = np.flatnonzero(np.array([((t.type == 'COMP') and
                                      (not np.isfinite(t.shapeexp_r)))
                                     for t in T]))
        if len(I):
            print('Converting', len(I), 'bogus COMP galaxies to DEV')
            for i in I:
                T.type[i] = 'DEV'

        if opt.write_cat:
            T.writeto(opt.write_cat)
            print('Wrote catalog to', opt.write_cat)

    else:
        T = fits_table(opt.catfn)

    T.shapeexp = np.vstack((T.shapeexp_r, T.shapeexp_e1, T.shapeexp_e2)).T
    T.shapedev = np.vstack((T.shapedev_r, T.shapedev_e1, T.shapedev_e2)).T

    cat = read_fits_catalog(T, ellipseClass=tractor.ellipses.EllipseE)
    # print('Got cat:', cat)

    print('Forced photom...')
    opti = None
    if opt.ceres:
        from tractor.ceres_optimizer import CeresOptimizer
        B = 8
        opti = CeresOptimizer(BW=B, BH=B)

    tr = Tractor([tim], cat, optimizer=opti)
    tr.freezeParam('images')
    for src in cat:
        src.freezeAllBut('brightness')
        src.getBrightness().freezeAllBut(tim.band)

    F = fits_table()
    F.brickid   = T.brickid
    F.brickname = T.brickname
    F.objid     = T.objid

    F.filter  = np.array([tim.band]               * len(T))
    F.mjd     = np.array([tim.primhdr['MJD-OBS']] * len(T))
    F.exptime = np.array([tim.primhdr['EXPTIME']] * len(T))

    ok,x,y = tim.sip_wcs.radec2pixelxy(T.ra, T.dec)
    F.x = (x-1).astype(np.float32)
    F.y = (y-1).astype(np.float32)

    if opt.apphot:
        import photutils

        img = tim.getImage()
        ie = tim.getInvError()
        with np.errstate(divide='ignore'):
            imsigma = 1. / ie
        imsigma[ie == 0] = 0.

        apimg = []
        apimgerr = []

        # Aperture photometry locations
        xxyy = np.vstack([tim.wcs.positionToPixel(src.getPosition()) for src in cat]).T
        apxy = xxyy - 1.

        apertures = apertures_arcsec / tim.wcs.pixel_scale()
        print('Apertures:', apertures, 'pixels')

        for rad in apertures:
            aper = photutils.CircularAperture(apxy, rad)
            p = photutils.aperture_photometry(img, aper, error=imsigma)
            apimg.append(p.field('aperture_sum'))
            apimgerr.append(p.field('aperture_sum_err'))
        ap = np.vstack(apimg).T
        ap[np.logical_not(np.isfinite(ap))] = 0.
        F.apflux = ap
        ap = 1./(np.vstack(apimgerr).T)**2
        ap[np.logical_not(np.isfinite(ap))] = 0.
        F.apflux_ivar = ap

    if opt.forced:
        kwa = {}
        if opt.plots is None:
            kwa.update(wantims=False)

        R = tr.optimize_forced_photometry(variance=True, fitstats=True,
                                          shared_params=False, **kwa)

        if opt.plots:
            (data,mod,ie,chi,roi) = R.ims1[0]

            ima = tim.ima
            imchi = dict(interpolation='nearest', origin='lower', vmin=-5, vmax=5)
            plt.clf()
            plt.imshow(data, **ima)
            plt.title('Data: %s' % tim.name)
            ps.savefig()

            plt.clf()
            plt.imshow(mod, **ima)
            plt.title('Model: %s' % tim.name)
            ps.savefig()

            plt.clf()
            plt.imshow(chi, **imchi)
            plt.title('Chi: %s' % tim.name)
            ps.savefig()

        F.flux = np.array([src.getBrightness().getFlux(tim.band)
                           for src in cat]).astype(np.float32)
        F.flux_ivar = R.IV.astype(np.float32)

        F.fracflux = R.fitstats.profracflux.astype(np.float32)
        F.rchi2    = R.fitstats.prochi2    .astype(np.float32)

    program_name = sys.argv[0]
    version_hdr = get_version_header(program_name, decals.decals_dir)
    # HACK -- print only two directory names + filename of CPFILE.
    fname = os.path.basename(im.imgfn)
    d = os.path.dirname(im.imgfn)
    d1 = os.path.basename(d)
    d = os.path.dirname(d)
    d2 = os.path.basename(d)
    fname = os.path.join(d2, d1, fname)
    print('Trimmed filename to', fname)
    #version_hdr.add_record(dict(name='CPFILE', value=im.imgfn, comment='DECam comm.pipeline file'))
    version_hdr.add_record(dict(name='CPFILE', value=fname, comment='DECam comm.pipeline file'))
    version_hdr.add_record(dict(name='CPHDU', value=im.hdu, comment='DECam comm.pipeline ext'))
    version_hdr.add_record(dict(name='CAMERA', value='DECam', comment='Dark Energy Camera'))
    version_hdr.add_record(dict(name='EXPNUM', value=im.expnum, comment='DECam exposure num'))
    version_hdr.add_record(dict(name='CCDNAME', value=im.ccdname, comment='DECam CCD name'))
    version_hdr.add_record(dict(name='FILTER', value=tim.band, comment='Bandpass of this image'))
    version_hdr.add_record(dict(name='EXPOSURE', value='decam-%s-%s' % (im.expnum, im.ccdname), comment='Name of this image'))

    keys = ['TELESCOP','OBSERVAT','OBS-LAT','OBS-LONG','OBS-ELEV',
            'INSTRUME']
    for key in keys:
        if key in tim.primhdr:
            version_hdr.add_record(dict(name=key, value=tim.primhdr[key]))

    hdr = fitsio.FITSHDR()

    units = {'mjd':'sec', 'exptime':'sec', 'flux':'nanomaggy',
             'flux_ivar':'1/nanomaggy^2'}
    columns = F.get_columns()
    for i,col in enumerate(columns):
        if col in units:
            hdr.add_record(dict(name='TUNIT%i' % (i+1), value=units[col]))

    outdir = os.path.dirname(opt.outfn)
    if len(outdir):
        trymakedirs(outdir)
    fitsio.write(opt.outfn, None, header=version_hdr, clobber=True)
    F.writeto(opt.outfn, header=hdr, append=True)
    print('Wrote', opt.outfn)

    print('Finished forced phot:', Time()-t0)
    return 0
Ejemplo n.º 8
0
def main(decals=None, opt=None):
    '''Driver function for forced photometry of individual DECam images.
    '''
    if opt is None:
        parser = get_parser()
        opt = parser.parse_args()

    Time.add_measurement(MemMeas)
    t0 = Time()

    if os.path.exists(opt.outfn):
        print('Ouput file exists:', opt.outfn)
        sys.exit(0)

    if not opt.forced:
        opt.apphot = True

    zoomslice = None
    if opt.zoom is not None:
        (x0, x1, y0, y1) = opt.zoom
        zoomslice = (slice(y0, y1), slice(x0, x1))

    ps = None
    if opt.plots is not None:
        from astrometry.util.plotutils import PlotSequence
        ps = PlotSequence(opt.plots)

    # Try parsing filename as exposure number.
    try:
        expnum = int(opt.filename)
        opt.filename = None
    except:
        # make this 'None' for decals.find_ccds()
        expnum = None

    # Try parsing HDU number
    try:
        opt.hdu = int(opt.hdu)
        ccdname = None
    except:
        ccdname = opt.hdu
        opt.hdu = -1

    if decals is None:
        decals = Decals()

    if opt.filename is not None and opt.hdu >= 0:
        # Read metadata from file
        T = exposure_metadata([opt.filename], hdus=[opt.hdu])
        print('Metadata:')
        T.about()
    else:
        # Read metadata from decals-ccds.fits table
        T = decals.find_ccds(expnum=expnum, ccdname=ccdname)
        print(len(T), 'with expnum', expnum, 'and CCDname', ccdname)
        if opt.hdu >= 0:
            T.cut(T.image_hdu == opt.hdu)
            print(len(T), 'with HDU', opt.hdu)
        if opt.filename is not None:
            T.cut(
                np.array([f.strip() == opt.filename
                          for f in T.image_filename]))
            print(len(T), 'with filename', opt.filename)
        assert (len(T) == 1)

    im = decals.get_image_object(T[0])
    tim = im.get_tractor_image(slc=zoomslice, pixPsf=True, splinesky=True)
    print('Got tim:', tim)

    if opt.catfn in ['DR1', 'DR2']:
        if opt.catalog_path is None:
            opt.catalog_path = opt.catfn.lower()

        margin = 20
        TT = []
        chipwcs = tim.subwcs
        bricks = bricks_touching_wcs(chipwcs, decals=decals)
        for b in bricks:
            # there is some overlap with this brick... read the catalog.
            fn = os.path.join(opt.catalog_path, 'tractor', b.brickname[:3],
                              'tractor-%s.fits' % b.brickname)
            if not os.path.exists(fn):
                print('WARNING: catalog', fn, 'does not exist.  Skipping!')
                continue
            print('Reading', fn)
            T = fits_table(fn)
            ok, xx, yy = chipwcs.radec2pixelxy(T.ra, T.dec)
            W, H = chipwcs.get_width(), chipwcs.get_height()
            I = np.flatnonzero((xx >= -margin) * (xx <= (W + margin)) *
                               (yy >= -margin) * (yy <= (H + margin)))
            T.cut(I)
            print('Cut to', len(T), 'sources within image + margin')
            # print('Brick_primary:', np.unique(T.brick_primary))
            T.cut(T.brick_primary)
            print('Cut to', len(T), 'on brick_primary')
            T.cut((T.out_of_bounds == False) * (T.left_blob == False))
            print('Cut to', len(T), 'on out_of_bounds and left_blob')
            TT.append(T)
        T = merge_tables(TT)
        T._header = TT[0]._header
        del TT

        # Fix up various failure modes:
        # FixedCompositeGalaxy(pos=RaDecPos[240.51147402832561, 10.385488075518923], brightness=NanoMaggies: g=(flux -2.87), r=(flux -5.26), z=(flux -7.65), fracDev=FracDev(0.60177207), shapeExp=re=3.78351e-44, e1=9.30367e-13, e2=1.24392e-16, shapeDev=re=inf, e1=-0, e2=-0)
        # -> convert to EXP
        I = np.flatnonzero(
            np.array([((t.type == 'COMP') and (not np.isfinite(t.shapedev_r)))
                      for t in T]))
        if len(I):
            print('Converting', len(I), 'bogus COMP galaxies to EXP')
            for i in I:
                T.type[i] = 'EXP'

        # Same thing with the exp component.
        # -> convert to DEV
        I = np.flatnonzero(
            np.array([((t.type == 'COMP') and (not np.isfinite(t.shapeexp_r)))
                      for t in T]))
        if len(I):
            print('Converting', len(I), 'bogus COMP galaxies to DEV')
            for i in I:
                T.type[i] = 'DEV'

        if opt.write_cat:
            T.writeto(opt.write_cat)
            print('Wrote catalog to', opt.write_cat)

    else:
        T = fits_table(opt.catfn)

    T.shapeexp = np.vstack((T.shapeexp_r, T.shapeexp_e1, T.shapeexp_e2)).T
    T.shapedev = np.vstack((T.shapedev_r, T.shapedev_e1, T.shapedev_e2)).T

    cat = read_fits_catalog(T, ellipseClass=tractor.ellipses.EllipseE)
    # print('Got cat:', cat)

    print('Forced photom...')
    opti = None
    if opt.ceres:
        from tractor.ceres_optimizer import CeresOptimizer
        B = 8
        opti = CeresOptimizer(BW=B, BH=B)

    tr = Tractor([tim], cat, optimizer=opti)
    tr.freezeParam('images')
    for src in cat:
        src.freezeAllBut('brightness')
        src.getBrightness().freezeAllBut(tim.band)

    F = fits_table()
    F.brickid = T.brickid
    F.brickname = T.brickname
    F.objid = T.objid

    F.filter = np.array([tim.band] * len(T))
    F.mjd = np.array([tim.primhdr['MJD-OBS']] * len(T))
    F.exptime = np.array([tim.primhdr['EXPTIME']] * len(T))

    ok, x, y = tim.sip_wcs.radec2pixelxy(T.ra, T.dec)
    F.x = (x - 1).astype(np.float32)
    F.y = (y - 1).astype(np.float32)

    if opt.apphot:
        import photutils

        img = tim.getImage()
        ie = tim.getInvError()
        with np.errstate(divide='ignore'):
            imsigma = 1. / ie
        imsigma[ie == 0] = 0.

        apimg = []
        apimgerr = []

        # Aperture photometry locations
        xxyy = np.vstack(
            [tim.wcs.positionToPixel(src.getPosition()) for src in cat]).T
        apxy = xxyy - 1.

        apertures = apertures_arcsec / tim.wcs.pixel_scale()
        print('Apertures:', apertures, 'pixels')

        for rad in apertures:
            aper = photutils.CircularAperture(apxy, rad)
            p = photutils.aperture_photometry(img, aper, error=imsigma)
            apimg.append(p.field('aperture_sum'))
            apimgerr.append(p.field('aperture_sum_err'))
        ap = np.vstack(apimg).T
        ap[np.logical_not(np.isfinite(ap))] = 0.
        F.apflux = ap
        ap = 1. / (np.vstack(apimgerr).T)**2
        ap[np.logical_not(np.isfinite(ap))] = 0.
        F.apflux_ivar = ap

    if opt.forced:
        kwa = {}
        if opt.plots is None:
            kwa.update(wantims=False)

        R = tr.optimize_forced_photometry(variance=True,
                                          fitstats=True,
                                          shared_params=False,
                                          **kwa)

        if opt.plots:
            (data, mod, ie, chi, roi) = R.ims1[0]

            ima = tim.ima
            imchi = dict(interpolation='nearest',
                         origin='lower',
                         vmin=-5,
                         vmax=5)
            plt.clf()
            plt.imshow(data, **ima)
            plt.title('Data: %s' % tim.name)
            ps.savefig()

            plt.clf()
            plt.imshow(mod, **ima)
            plt.title('Model: %s' % tim.name)
            ps.savefig()

            plt.clf()
            plt.imshow(chi, **imchi)
            plt.title('Chi: %s' % tim.name)
            ps.savefig()

        F.flux = np.array([
            src.getBrightness().getFlux(tim.band) for src in cat
        ]).astype(np.float32)
        F.flux_ivar = R.IV.astype(np.float32)

        F.fracflux = R.fitstats.profracflux.astype(np.float32)
        F.rchi2 = R.fitstats.prochi2.astype(np.float32)

    program_name = sys.argv[0]
    version_hdr = get_version_header(program_name, decals.decals_dir)
    # HACK -- print only two directory names + filename of CPFILE.
    fname = os.path.basename(im.imgfn)
    d = os.path.dirname(im.imgfn)
    d1 = os.path.basename(d)
    d = os.path.dirname(d)
    d2 = os.path.basename(d)
    fname = os.path.join(d2, d1, fname)
    print('Trimmed filename to', fname)
    #version_hdr.add_record(dict(name='CPFILE', value=im.imgfn, comment='DECam comm.pipeline file'))
    version_hdr.add_record(
        dict(name='CPFILE', value=fname, comment='DECam comm.pipeline file'))
    version_hdr.add_record(
        dict(name='CPHDU', value=im.hdu, comment='DECam comm.pipeline ext'))
    version_hdr.add_record(
        dict(name='CAMERA', value='DECam', comment='Dark Energy Camera'))
    version_hdr.add_record(
        dict(name='EXPNUM', value=im.expnum, comment='DECam exposure num'))
    version_hdr.add_record(
        dict(name='CCDNAME', value=im.ccdname, comment='DECam CCD name'))
    version_hdr.add_record(
        dict(name='FILTER', value=tim.band, comment='Bandpass of this image'))
    version_hdr.add_record(
        dict(name='EXPOSURE',
             value='decam-%s-%s' % (im.expnum, im.ccdname),
             comment='Name of this image'))

    keys = [
        'TELESCOP', 'OBSERVAT', 'OBS-LAT', 'OBS-LONG', 'OBS-ELEV', 'INSTRUME'
    ]
    for key in keys:
        if key in tim.primhdr:
            version_hdr.add_record(dict(name=key, value=tim.primhdr[key]))

    hdr = fitsio.FITSHDR()

    units = {
        'mjd': 'sec',
        'exptime': 'sec',
        'flux': 'nanomaggy',
        'flux_ivar': '1/nanomaggy^2'
    }
    columns = F.get_columns()
    for i, col in enumerate(columns):
        if col in units:
            hdr.add_record(dict(name='TUNIT%i' % (i + 1), value=units[col]))

    outdir = os.path.dirname(opt.outfn)
    if len(outdir):
        trymakedirs(outdir)
    fitsio.write(opt.outfn, None, header=version_hdr, clobber=True)
    F.writeto(opt.outfn, header=hdr, append=True)
    print('Wrote', opt.outfn)

    print('Finished forced phot:', Time() - t0)
    return 0