def wagen1_plot(c: Config): """Plot of wagen1 compared to given specification.""" plt.landscape() wheel_print = (0.31, 0.25) wheel_prints = [] for w_i in range(len(truck1.axle_distances) + 1): if w_i in [1, 2]: wheel_prints.append([wheel_print, wheel_print]) else: wheel_prints.append([wheel_print]) plt.subplot(1, 2, 1) xlim, ylim = topview_vehicle(truck1, wheel_prints=wheel_prints) plt.title("Truck 1 specification") plt.xlabel("Width (m)") plt.ylabel("Length (m)") plt.subplot(1, 2, 2) topview_vehicle(truck1, xlim=xlim, ylim=ylim) plt.title("Truck 1 in simulation") plt.xlabel("Width (m)") plt.ylabel("Length (m)") plt.savefig(c.get_image_path("vehicles", "wagen-1", bridge=False) + ".pdf") plt.close()
def top_view_bridge( config: Config, abutments: bool = False, edges: bool = False, piers: bool = False, lanes: bool = False, lane_fill: bool = False, landscape: bool = True, compass: bool = False, ): """Plot the top view of a bridge's geometry. Args: bridge: the bridge top to plot. landscape: orient the plot in landscape (16 x 10) ? abutments: plot the bridge's abutments? edges: plot the longitudinal edges? piers: plot where the piers connect to the deck? lanes: plot lanes on the bridge? lane_fill: plot fill or only outline? compass: plot a compass rose? """ bridge = config.bridge if landscape: plt.landscape() plt.axis("equal") if edges: plt.hlines([bridge.z_min, bridge.z_max], 0, bridge.length) if abutments: plt.vlines([0, bridge.length], bridge.z_min, bridge.z_max) if piers: for pier in bridge.supports: z_min_top, z_max_top = pier.z_min_max_top() x_min, x_max = pier.x_min_max_top() plt.vlines([x_min, x_max], z_min_top, z_max_top) if lanes: for lane in bridge.lanes: plt.gca().add_patch( matplotlib.patches.Rectangle( (0, lane.z_min), bridge.length, lane.z_max - lane.z_min, facecolor="black" if lane_fill else "none", edgecolor="black", ) ) if compass: ax = plt.gca() # Reference to the original axis. dir_path = os.path.dirname(os.path.abspath(__file__)) compass_img = plt.imread(os.path.join(dir_path, "compass-rose.png")) c_len = max(bridge.width, bridge.length) * 0.2 ax_c = ax.inset_axes( [0, bridge.z_max + (c_len * 0.05), c_len, c_len], transform=ax.transData, ) ax_c.imshow(compass_img) ax_c.axis("off") plt.sca(ax) # Return control to the original axis. plt.xlabel("X position") plt.ylabel("Z position")
def temperature_effect_date(c: Config, month: str, vert: bool): temp = __init__.load(name=month) point = Point(x=51, y=0, z=-8.4) plt.landscape() def plot_hours(): if not vert: return label_set = False for dt in temp["datetime"]: if np.isclose(float(dt.hour + dt.minute), 0): label = None if not label_set: label = "Time at vertical line = 00:00" label_set = True plt.axvline(x=dt, linewidth=1, color="black", label=label) # Plot the temperature. plt.subplot(2, 1, 1) plot_hours() plt.scatter( temp["datetime"], temp["temp"], c=temp["missing"], cmap=mpl.cm.get_cmap("bwr"), s=1, ) plt.ylabel("Temperature (°C)") plt.xlabel("Date") plt.gcf().autofmt_xdate() plt.title(f"Temperature in {str(month[0]).upper()}{month[1:]}") plt.legend() # Plot the effect at a point. response_type = ResponseType.YTranslation plt.subplot(2, 1, 2) plot_hours() effect = __init__.effect( c=c, response_type=response_type, points=[point], temps=temp["temp"] )[0] plt.scatter( temp["datetime"], effect * 1000, c=temp["missing"], cmap=mpl.cm.get_cmap("bwr"), s=1, ) plt.ylabel(f"{response_type.name()} (mm)") plt.xlabel("Date") plt.gcf().autofmt_xdate() plt.title(f"{response_type.name()} to unit thermal loading in {month}") # Save. plt.tight_layout() plt.savefig(c.get_image_path("classify/temperature", f"{month}.png")) plt.savefig(c.get_image_path("classify/temperature", f"{month}.pdf")) plt.close()
def plot_contour_deck( c: Config, responses: Responses, point_loads: List[PointLoad] = [], units: Optional[str] = None, cmap=default_cmap, norm=None, scatter: bool = False, levels: int = 14, mm_legend: bool = True, mm_legend_without_f: Optional[Callable[[Point], bool]] = None, sci_format: bool = False, decimals: int = 4, y: float = 0, ): """Contour or scatter plot of simulation responses. Args: config: simulation configuration object. responses: the simulation responses to plot. units: optional units string for the colourbar. cmap: Matplotlib colormap to use for colouring responses. norm: Matplotlib norm to use for colouring responses. scatter: scatter plot instead of contour plot? levels: levels in the contour plot. mm_legend: plot a legend of min and max values? mm_legend_without_f: function to filter points considered in the legend. sci_format: force scientific formatting (E) in the legend. decimals: round legend values to this many decimals. """ amax, amax_x, amax_z = -np.inf, None, None amin, amin_x, amin_z = np.inf, None, None X, Z, H = [], [], [] # 2D arrays, x and z coordinates, and height. # Begin structure data. def structure_data(responses): nonlocal amax nonlocal amax_x nonlocal amax_z nonlocal amin nonlocal amin_x nonlocal amin_z nonlocal X nonlocal Z nonlocal H # First reset the maximums and minimums. amax, amax_x, amax_z = -np.inf, None, None amin, amin_x, amin_z = np.inf, None, None X, Z, H = [], [], [] for x in responses.xs: # There is a chance that no sensors exist at given y position for every # x position, thus we must check. if y in responses.zs[x]: for z in responses.zs[x][y]: X.append(x) Z.append(z) H.append(responses.responses[0][x][y][z]) if H[-1] > amax: amax = H[-1] amax_x, amax_z = X[-1], Z[-1] if H[-1] < amin: amin = H[-1] amin_x, amin_z = X[-1], Z[-1] print(f"amin, amax = {amin}, {amax}") structure_data(responses) if len(X) == 0: raise ValueError(f"No fem for contour plot") # Plot fem, contour or scatter plot. if scatter: cs = plt.scatter( x=np.array(X).flatten(), y=np.array(Z).flatten(), c=np.array(H).flatten(), cmap=cmap, norm=norm, s=1, ) else: cs = plt.tricontourf(X, Z, H, levels=levels, cmap=cmap, norm=norm) # Colourbar, maybe using given norm. clb = plt.colorbar(cs, norm=norm) if units is not None: clb.ax.set_title(units) # Plot point loads. for pload in point_loads: x = pload.x z = pload.z plt.scatter( [x], [z], label=f"{pload.load} kN load", marker="o", color="black", ) # Begin: min, max legend. if mm_legend or mm_legend_without_f is not None: if mm_legend_without_f is not None: structure_data(responses.without(mm_legend_without_f)) # Plot min and max fem. amin_s = (f"{amin:.{decimals}g}" if sci_format else f"{np.around(amin, decimals)}") amax_s = (f"{amax:.{decimals}g}" if sci_format else f"{np.around(amax, decimals)}") aabs_s = (f"{amin - amax:.{decimals}g}" if sci_format else f"{np.around(abs(amin - amax), decimals)}") units_str = "" if units is None else f" {units}" print(units_str) for point, label, color, alpha in [ ((amin_x, amin_z), f"min = {amin_s} {units_str}", "orange", 0), ((amax_x, amax_z), f"max = {amax_s} {units_str}", "green", 0), ((amin_x, amin_z), f"|min-max| = {aabs_s} {units_str}", "red", 0), ]: plt.scatter( [point[0]], [point[1]], label=label, marker="o", color=color, alpha=alpha, ) # End: min, max legend. plt.xlabel("X position") plt.ylabel("Z position")
def number_of_uls_plot(c: Config): """Plot error as a function of number of unit load simulations.""" if not c.shorten_paths: raise ValueError("This plot requires --shorten-paths true") response_type = ResponseType.YTranslation num_ulss = np.arange(100, 2000, 10) chosen_uls = 600 point = Point(x=c.bridge.x_max - (c.bridge.length / 2), y=0, z=-8.4) wagen1_time = truck1.time_at(x=point.x, bridge=c.bridge) print_i(f"Wagen 1 time at x = {point.x:.3f} is t = {wagen1_time:.3f}") # Determine the reference value. truck_loads = flatten( truck1.to_point_load_pw(time=wagen1_time, bridge=c.bridge), PointLoad) print_i(f"Truck loads = {truck_loads}") sim_responses = load_fem_responses( c=c, response_type=response_type, sim_runner=OSRunner(c), sim_params=SimParams(ploads=truck_loads, response_types=[response_type]), ) ref_value = sim_responses.at_deck(point, interp=True) * 1000 print_i(f"Reference value = {ref_value}") # Collect the data. total_load = [] num_loads = [] responses = [] for num_uls in num_ulss: c.il_num_loads = num_uls # Nested in here because it depends on the setting of 'il_num_loads'. truck_loads = flatten( truck1.to_wheel_track_loads(c=c, time=wagen1_time), PointLoad) num_loads.append(len(truck_loads)) total_load.append(sum(map(lambda l: l.kn, truck_loads))) sim_responses = load_fem_responses( c=c, response_type=response_type, sim_runner=OSRunner(c), sim_params=SimParams(ploads=truck_loads, response_types=[response_type]), ) responses.append(sim_responses.at_deck(point, interp=True) * 1000) # Plot the raw fem, then error on the second axis. plt.landscape() # plt.plot(num_ulss, fem) # plt.ylabel(f"{response_type.name().lower()} (mm)") plt.xlabel("ULS") error = np.abs(np.array(responses) - ref_value).flatten() * 100 # ax2 = plt.twinx() plt.plot(num_ulss, error) plt.ylabel("Error (%)") plt.title( f"Error in {response_type.name()} to Truck 1 as a function of ULS") # Plot the chosen number of ULS. chosen_error = np.interp([chosen_uls], num_ulss, error)[0] plt.axhline( chosen_error, label=f"At {chosen_uls} ULS, error = {np.around(chosen_error, 2)} %", color="black", ) plt.axhline(0, color="red", label="Response from direct simulation (no wheel tracks)") plt.legend() plt.tight_layout() plt.savefig(c.get_image_path("paramselection", "uls.pdf")) plt.close() # Additional verification plots. plt.plot(num_ulss, total_load) plt.savefig(c.get_image_path("paramselection", "uls-verify-total-load.pdf")) plt.close() plt.plot(num_ulss, num_loads) plt.savefig(c.get_image_path("paramselection", "uls-verify-num-loads.pdf")) plt.close()
def plot_mmm_strain_convergence( c: Config, pier: int, df: pd.DataFrame, all_strains: Dict[float, Responses], title: str, without: Optional[Callable[[Point], bool]] = None, append: Optional[str] = None, ): """Plot convergence of given fem as model size grows.""" # A grid of points 1m apart, over which to calculate fem. grid = [ Point(x=x, y=0, z=z) for x, z in itertools.product( np.linspace(c.bridge.x_min, c.bridge.x_max, int(c.bridge.length)), np.linspace(c.bridge.z_min, c.bridge.z_max, int(c.bridge.width)), ) ] # If requested, remove some values from the fem. if without is not None: grid = [point for point in grid if not without(point)] for msl, strains in all_strains.items(): print(f"Removing points from strains with max_shell_len = {msl}") all_strains[msl] = strains.without(without) # Collect fem over all fem, and over the grid. Iterate by # decreasing max_shell_len. mins, maxes, means = [], [], [] gmins, gmaxes, gmeans = [], [], [] max_shell_lens = [] for msl, strains in sorted(all_strains.items(), key=lambda kv: -kv[0]): max_shell_lens.append(msl) print_i(f"Gathering strains with max_shell_len = {msl}", end="\r") grid_strains = np.array([strains.at_deck(point, interp=True) for point in grid]) gmins.append(scalar(np.min(grid_strains))) gmaxes.append(scalar(np.max(grid_strains))) gmeans.append(scalar(np.mean(grid_strains))) strains = np.array(list(strains.values())) mins.append(scalar(np.min(strains))) maxes.append(scalar(np.max(strains))) means.append(scalar(np.mean(strains))) print() # Normalize and plot the mins, maxes, and means. def normalize(ys): print(ys) return ys / np.mean(ys[-5:]) mins, maxes, means = normalize(mins), normalize(maxes), normalize(means) gmins, gmaxes, gmeans = normalize(gmins), normalize(gmaxes), normalize(gmeans) deck_nodes = [df.at[msl, "deck-nodes"] for msl in max_shell_lens] pier_nodes = [df.at[msl, "pier-nodes"] for msl in max_shell_lens] num_nodes = np.array(deck_nodes) + np.array(pier_nodes) print(f"MSLs = {max_shell_lens}") print(f"num_nodes = {num_nodes}") # Plot all lines, for debugging. plt.landscape() plt.plot(num_nodes, mins, label="mins") plt.plot(num_nodes, maxes, label="maxes") plt.plot(num_nodes, means, label="means") plt.plot(num_nodes, gmins, label="gmins") plt.plot(num_nodes, gmaxes, label="gmaxes") plt.plot(num_nodes, gmeans, label="gmeans") plt.grid(axis="y") plt.xlabel("Nodes in FEM") plt.ylabel("Strain") plt.title(title) plt.tight_layout() plt.legend() plt.savefig( c.get_image_path("convergence-pier-strain", f"mmm-{append}-all.pdf", acc=False) ) plt.close() # Only plot some lines, for the thesis. plt.landscape() plt.plot(num_nodes, gmins, label="Minimum") plt.plot(num_nodes, gmaxes, label="Maximum") plt.plot(num_nodes, gmeans, label="Mean") plt.grid(axis="y") plt.title(title) plt.xlabel("Nodes in FEM") plt.ylabel("Strain") plt.legend() plt.tight_layout() plt.savefig( c.get_image_path("convergence-pier-strain", f"mmm-{append}.pdf", acc=False) ) plt.close()
def comparison_plots_705(c: Config, run_only: bool, scatter: bool): """Make contour plots for all verification points on bridge 705.""" # from classify.scenario.bridge import transverse_crack # c = transverse_crack().use(c)[0] positions = [ # (52, -8.4, "a"), (34.95459, 26.24579 - 16.6, "a"), (51.25051, 16.6 - 16.6, "b"), (89.98269, 9.445789 - 16.6, "c"), (102.5037, 6.954211 - 16.6, "d"), # (34.95459, 29.22606 - 16.6, "a"), # (51.25051, 16.6 - 16.6, "b"), # (92.40638, 12.405 - 16.6, "c"), # (101.7649, 3.973938 - 16.6, "d"), ] diana_values = pd.read_csv("validation/diana-screenshots/min-max.csv") response_types = [ResponseType.YTranslation, ResponseType.Strain] # For each response type and loading position first create contour plots for # OpenSees. Then finally create subplots comparing to Diana. cmap = diana_cmap_r for load_x, load_z, label in positions: for response_type in response_types: # Setup the metadata. if response_type == ResponseType.YTranslation: rt_str = "displa" unit_str = "mm" elif response_type == ResponseType.Strain: rt_str = "strain" unit_str = "E-6" else: raise ValueError("Unsupported response type") row = diana_values[diana_values["name"] == f"{label}-{rt_str}"] dmin, dmax = float(row["dmin"]), float(row["dmax"]) omin, omax = float(row["omin"]), float(row["omax"]) amin, amax = max(dmin, omin), min(dmax, omax) levels = np.linspace(amin, amax, 16) # Create the OpenSees plot. loads = [ PointLoad( x_frac=c.bridge.x_frac(load_x), z_frac=c.bridge.z_frac(load_z), kn=100, ) ] fem_responses = load_fem_responses( c=c, response_type=response_type, sim_runner=OSRunner(c), sim_params=SimParams(ploads=loads, response_types=response_types), ) if run_only: continue title = ( f"{response_type.name()} from a {loads[0].kn} kN point load at" + f"\nx = {load_x:.3f}m, z = {load_z:.3f}m, with ") save = lambda prefix: c.get_image_path( "validation/diana-comp", safe_str(f"{prefix}{response_type.name()}") + ".pdf", ) top_view_bridge(c.bridge, piers=True, abutments=True) fem_responses = fem_responses.resize() sci_format = response_type == ResponseType.Strain plot_contour_deck( c=c, responses=fem_responses, ploads=loads, cmap=cmap, levels=levels, sci_format=sci_format, decimals=4, scatter=scatter, ) plt.title(title + "OpenSees") plt.tight_layout() plt.savefig(save(f"{label}-")) plt.close() # Finally create label/title the Diana plot. if label is not None: # First plot and clear, just to have the same colorbar. plot_contour_deck(c=c, responses=fem_responses, ploads=loads, cmap=cmap, levels=levels) plt.cla() # Then plot the bridge and top_view_bridge(c.bridge, piers=True, abutments=True) plt.imshow( mpimg.imread( f"validation/diana-screenshots/{label}-{rt_str}.png"), extent=( c.bridge.x_min, c.bridge.x_max, c.bridge.z_min, c.bridge.z_max, ), ) dmin_s = f"{dmin:.4e}" if sci_format else f"{dmin:.4f}" dmax_s = f"{dmax:.4e}" if sci_format else f"{dmax:.4f}" dabs_s = (f"{abs(dmin - dmax):.4e}" if sci_format else f"{abs(dmin - dmax):.4f}") for point, leg_label, color, alpha in [ ((load_x, load_z), f"{loads[0].kn} kN load", "r", 1), ((0, 0), f"min = {dmin_s} {fem_responses.units}", "r", 0), ((0, 0), f"max = {dmax_s} {fem_responses.units}", "r", 0), ((0, 0), f"|min-max| = {dabs_s} {fem_responses.units}", "r", 0), ]: plt.scatter( [point[0]], [point[1]], label=leg_label, marker="o", color=color, alpha=alpha, ) plt.legend() plt.title(title + "Diana") plt.xlabel("X position (m)") plt.ylabel("Z position (m)") plt.tight_layout() plt.savefig(save(f"{label}-diana-")) plt.close()
def piers_displaced(c: Config): """Contour plots of pier displacement for the given pier indices.""" pier_indices = [4, 5] response_types = [ResponseType.YTranslation, ResponseType.Strain] axis_values = pd.read_csv("validation/axis-screenshots/piers-min-max.csv") for r_i, response_type in enumerate(response_types): for p in pier_indices: # Run the simulation and collect fem. sim_responses = load_fem_responses( c=c, response_type=response_type, sim_runner=OSRunner(c), sim_params=SimParams(displacement_ctrl=PierSettlement( displacement=c.pd_unit_disp, pier=p), ), ) # In the case of stress we map from kn/m2 to kn/mm2 (E-6) and then # divide by 1000, so (E-9). assert c.pd_unit_disp == 1 if response_type == ResponseType.Strain: sim_responses.to_stress(c.bridge).map(lambda r: r * 1e-9) # Get min and max values for both Axis and OpenSees. rt_str = ("displa" if response_type == ResponseType.YTranslation else "stress") row = axis_values[axis_values["name"] == f"{p}-{rt_str}"] dmin, dmax = float(row["dmin"]), float(row["dmax"]) omin, omax = float(row["omin"]), float(row["omax"]) amin, amax = max(dmin, omin), min(dmax, omax) levels = np.linspace(amin, amax, 16) # Plot and save the image. If plotting strains use Axis values for # colour normalization. # norm = None from plot import axis_cmap_r cmap = axis_cmap_r top_view_bridge(c.bridge, abutments=True, piers=True) plot_contour_deck(c=c, cmap=cmap, responses=sim_responses, levels=levels) plt.tight_layout() plt.title( f"{sim_responses.response_type.name()} from 1mm pier settlement with OpenSees" ) plt.savefig( c.get_image_path( "validation/pier-displacement", safe_str(f"pier-{p}-{sim_responses.response_type.name()}") + ".pdf", )) plt.close() # First plot and clear, just to have the same colorbar. plot_contour_deck(c=c, responses=sim_responses, cmap=cmap, levels=levels) plt.cla() # Save the axis plots. axis_img = mpimg.imread( f"validation/axis-screenshots/{p}-{rt_str}.png") top_view_bridge(c.bridge, abutments=True) plt.imshow( axis_img, extent=( c.bridge.x_min, c.bridge.x_max, c.bridge.z_min, c.bridge.z_max, ), ) # Plot the load and min, max values. for point, leg_label, color in [ ((0, 0), f"min = {np.around(dmin, 3)} {sim_responses.units}", "r"), ((0, 0), f"max = {np.around(dmax, 3)} {sim_responses.units}", "r"), ( (0, 0), f"|min-max| = {np.around(abs(dmax - dmin), 3)} {sim_responses.units}", "r", ), ]: plt.scatter( [point[0]], [point[1]], label=leg_label, marker="o", color=color, alpha=0, ) if response_type == ResponseType.YTranslation: plt.legend() # Title and save. plt.title( f"{response_type.name()} from 1mm pier settlement with AxisVM") plt.xlabel("X position (m)") plt.ylabel("Z position (m)") plt.tight_layout() plt.savefig( c.get_image_path( "validation/pier-displacement", f"{p}-axis-{rt_str}.pdf", )) plt.close()
def time_series_plot(c: Config, n: float): """Plot 24min time series of cracking, for multiple cracked bridges. For each bridge (hard-coded), a time series of strain fem is plotted. For each bridge it is initially in healthy condition, and the crack occurs halfway through. Args: n: float, meters in front of the crack zone where to place sensor. """ # First construct one day (24 minutes) of traffic. total_mins = 24 total_seconds = total_mins * 60 traffic_scenario = normal_traffic(c=c, lam=5, min_d=2) traffic_sequence, traffic, traffic_array = load_traffic( c=c, traffic_scenario=traffic_scenario, max_time=total_seconds, ) traffic_array.shape # Temperatures for one day. temps_day = temperature.from_to_mins( temperature.load("holly-springs"), datetime.fromisoformat(f"2019-07-03T00:00"), datetime.fromisoformat(f"2019-07-03T23:59"), ) print(f"len temps = {len(temps_day['solar'])}") print(f"len temps = {len(temps_day['temp'])}") # Then generate some cracking time series. damages = [ HealthyDamage(), transverse_crack(), transverse_crack(length=14.0, at_x=48.0), ] sensors = [ Point(x=52, z=-8.4), # Sensor in middle of lane. Point(x=damages[1].crack_area(c.bridge)[0] - n, z=-8.4), # Sensor in front of crack zone. Point(x=damages[2].crack_area(c.bridge)[0] - n, z=-8.4), # Sensor in front of crack zone. ] [print(f"Sensor {i} = {sensors[i]}") for i in range(len(sensors))] time_series = [ crack_time_series( c=c, traffic_array=traffic_array, traffic_array_mins=total_mins, sensor=sensor, crack_frac=0.5, damage=damage, temps=temps_day["temp"], solar=temps_day["solar"], ) for damage, sensor in zip(damages, sensors) ] plt.portrait() for i, (y_trans, strain) in enumerate(time_series): x = np.arange(len(strain)) * c.sensor_hz / 60 x_m = sensors[i].x damage_str = "Healthy Bridge" if i == 1: damage_str = "0.5 m crack zone" if i == 2: damage_str = "14 m crack zone" plt.subplot(len(time_series), 2, i * 2 + 1) plt.plot(x, y_trans * 1000, color="tab:blue") if i < len(time_series) - 1: plt.tick_params(axis="x", bottom=False, labelbottom=False) else: plt.xlabel("Hours") plt.title(f"At x = {x_m} m\n{damage_str}") plt.ylabel("Y trans. (mm)") plt.subplot(len(time_series), 2, i * 2 + 2) plt.plot(x, strain * 1e6, color="tab:orange") if i < len(time_series) - 1: plt.tick_params(axis="x", bottom=False, labelbottom=False) else: plt.xlabel("Hours") plt.title(f"At x = {x_m} m,\n{damage_str}") plt.ylabel("Microstrain XXB") plt.tight_layout() plt.savefig(c.get_image_path("crack", "time-series-q5.pdf")) plt.close()