Exemple #1
0
def wagen1_plot(c: Config):
    """Plot of wagen1 compared to given specification."""
    plt.landscape()

    wheel_print = (0.31, 0.25)
    wheel_prints = []
    for w_i in range(len(truck1.axle_distances) + 1):
        if w_i in [1, 2]:
            wheel_prints.append([wheel_print, wheel_print])
        else:
            wheel_prints.append([wheel_print])

    plt.subplot(1, 2, 1)
    xlim, ylim = topview_vehicle(truck1, wheel_prints=wheel_prints)
    plt.title("Truck 1 specification")
    plt.xlabel("Width (m)")
    plt.ylabel("Length (m)")

    plt.subplot(1, 2, 2)
    topview_vehicle(truck1, xlim=xlim, ylim=ylim)
    plt.title("Truck 1 in simulation")
    plt.xlabel("Width (m)")
    plt.ylabel("Length (m)")

    plt.savefig(c.get_image_path("vehicles", "wagen-1", bridge=False) + ".pdf")
    plt.close()
Exemple #2
0
def top_view_bridge(
    config: Config,
    abutments: bool = False,
    edges: bool = False,
    piers: bool = False,
    lanes: bool = False,
    lane_fill: bool = False,
    landscape: bool = True,
    compass: bool = False,
):
    """Plot the top view of a bridge's geometry.

    Args:
        bridge: the bridge top to plot.
        landscape: orient the plot in landscape (16 x 10) ?
        abutments: plot the bridge's abutments?
        edges: plot the longitudinal edges?
        piers: plot where the piers connect to the deck?
        lanes: plot lanes on the bridge?
        lane_fill: plot fill or only outline?
        compass: plot a compass rose?

    """
    bridge = config.bridge
    if landscape:
        plt.landscape()
    plt.axis("equal")
    if edges:
        plt.hlines([bridge.z_min, bridge.z_max], 0, bridge.length)
    if abutments:
        plt.vlines([0, bridge.length], bridge.z_min, bridge.z_max)
    if piers:
        for pier in bridge.supports:
            z_min_top, z_max_top = pier.z_min_max_top()
            x_min, x_max = pier.x_min_max_top()
            plt.vlines([x_min, x_max], z_min_top, z_max_top)
    if lanes:
        for lane in bridge.lanes:
            plt.gca().add_patch(
                matplotlib.patches.Rectangle(
                    (0, lane.z_min),
                    bridge.length,
                    lane.z_max - lane.z_min,
                    facecolor="black" if lane_fill else "none",
                    edgecolor="black",
                )
            )
    if compass:
        ax = plt.gca()  # Reference to the original axis.
        dir_path = os.path.dirname(os.path.abspath(__file__))
        compass_img = plt.imread(os.path.join(dir_path, "compass-rose.png"))
        c_len = max(bridge.width, bridge.length) * 0.2
        ax_c = ax.inset_axes(
            [0, bridge.z_max + (c_len * 0.05), c_len, c_len], transform=ax.transData,
        )
        ax_c.imshow(compass_img)
        ax_c.axis("off")
        plt.sca(ax)  # Return control to the original axis.
    plt.xlabel("X position")
    plt.ylabel("Z position")
def temperature_effect_date(c: Config, month: str, vert: bool):
    temp = __init__.load(name=month)
    point = Point(x=51, y=0, z=-8.4)
    plt.landscape()

    def plot_hours():
        if not vert:
            return
        label_set = False
        for dt in temp["datetime"]:
            if np.isclose(float(dt.hour + dt.minute), 0):
                label = None
                if not label_set:
                    label = "Time at vertical line = 00:00"
                    label_set = True
                plt.axvline(x=dt, linewidth=1, color="black", label=label)

    # Plot the temperature.
    plt.subplot(2, 1, 1)
    plot_hours()
    plt.scatter(
        temp["datetime"],
        temp["temp"],
        c=temp["missing"],
        cmap=mpl.cm.get_cmap("bwr"),
        s=1,
    )
    plt.ylabel("Temperature (°C)")
    plt.xlabel("Date")
    plt.gcf().autofmt_xdate()
    plt.title(f"Temperature in {str(month[0]).upper()}{month[1:]}")
    plt.legend()
    # Plot the effect at a point.
    response_type = ResponseType.YTranslation
    plt.subplot(2, 1, 2)
    plot_hours()
    effect = __init__.effect(
        c=c, response_type=response_type, points=[point], temps=temp["temp"]
    )[0]
    plt.scatter(
        temp["datetime"],
        effect * 1000,
        c=temp["missing"],
        cmap=mpl.cm.get_cmap("bwr"),
        s=1,
    )
    plt.ylabel(f"{response_type.name()} (mm)")
    plt.xlabel("Date")
    plt.gcf().autofmt_xdate()
    plt.title(f"{response_type.name()} to unit thermal loading in {month}")
    # Save.
    plt.tight_layout()
    plt.savefig(c.get_image_path("classify/temperature", f"{month}.png"))
    plt.savefig(c.get_image_path("classify/temperature", f"{month}.pdf"))
    plt.close()
Exemple #4
0
def plot_contour_deck(
    c: Config,
    responses: Responses,
    point_loads: List[PointLoad] = [],
    units: Optional[str] = None,
    cmap=default_cmap,
    norm=None,
    scatter: bool = False,
    levels: int = 14,
    mm_legend: bool = True,
    mm_legend_without_f: Optional[Callable[[Point], bool]] = None,
    sci_format: bool = False,
    decimals: int = 4,
    y: float = 0,
):
    """Contour or scatter plot of simulation responses.

    Args:
        config: simulation configuration object.
        responses: the simulation responses to plot.
        units: optional units string for the colourbar.
        cmap: Matplotlib colormap to use for colouring responses.
        norm: Matplotlib norm to use for colouring responses.
        scatter: scatter plot instead of contour plot?
        levels: levels in the contour plot.
        mm_legend: plot a legend of min and max values?
        mm_legend_without_f: function to filter points considered in the legend.
        sci_format: force scientific formatting (E) in the legend.
        decimals: round legend values to this many decimals.

    """
    amax, amax_x, amax_z = -np.inf, None, None
    amin, amin_x, amin_z = np.inf, None, None
    X, Z, H = [], [], []  # 2D arrays, x and z coordinates, and height.

    # Begin structure data.
    def structure_data(responses):
        nonlocal amax
        nonlocal amax_x
        nonlocal amax_z
        nonlocal amin
        nonlocal amin_x
        nonlocal amin_z
        nonlocal X
        nonlocal Z
        nonlocal H
        # First reset the maximums and minimums.
        amax, amax_x, amax_z = -np.inf, None, None
        amin, amin_x, amin_z = np.inf, None, None
        X, Z, H = [], [], []
        for x in responses.xs:
            # There is a chance that no sensors exist at given y position for every
            # x position, thus we must check.
            if y in responses.zs[x]:
                for z in responses.zs[x][y]:
                    X.append(x)
                    Z.append(z)
                    H.append(responses.responses[0][x][y][z])
                    if H[-1] > amax:
                        amax = H[-1]
                        amax_x, amax_z = X[-1], Z[-1]
                    if H[-1] < amin:
                        amin = H[-1]
                        amin_x, amin_z = X[-1], Z[-1]
        print(f"amin, amax = {amin}, {amax}")

    structure_data(responses)
    if len(X) == 0:
        raise ValueError(f"No fem for contour plot")

    # Plot fem, contour or scatter plot.
    if scatter:
        cs = plt.scatter(
            x=np.array(X).flatten(),
            y=np.array(Z).flatten(),
            c=np.array(H).flatten(),
            cmap=cmap,
            norm=norm,
            s=1,
        )
    else:
        cs = plt.tricontourf(X, Z, H, levels=levels, cmap=cmap, norm=norm)

    # Colourbar, maybe using given norm.
    clb = plt.colorbar(cs, norm=norm)
    if units is not None:
        clb.ax.set_title(units)

    # Plot point loads.
    for pload in point_loads:
        x = pload.x
        z = pload.z
        plt.scatter(
            [x],
            [z],
            label=f"{pload.load} kN load",
            marker="o",
            color="black",
        )

    # Begin: min, max legend.
    if mm_legend or mm_legend_without_f is not None:
        if mm_legend_without_f is not None:
            structure_data(responses.without(mm_legend_without_f))
        # Plot min and max fem.
        amin_s = (f"{amin:.{decimals}g}"
                  if sci_format else f"{np.around(amin, decimals)}")
        amax_s = (f"{amax:.{decimals}g}"
                  if sci_format else f"{np.around(amax, decimals)}")
        aabs_s = (f"{amin - amax:.{decimals}g}" if sci_format else
                  f"{np.around(abs(amin - amax), decimals)}")
        units_str = "" if units is None else f" {units}"
        print(units_str)
        for point, label, color, alpha in [
            ((amin_x, amin_z), f"min = {amin_s} {units_str}", "orange", 0),
            ((amax_x, amax_z), f"max = {amax_s} {units_str}", "green", 0),
            ((amin_x, amin_z), f"|min-max| = {aabs_s} {units_str}", "red", 0),
        ]:
            plt.scatter(
                [point[0]],
                [point[1]],
                label=label,
                marker="o",
                color=color,
                alpha=alpha,
            )
    # End: min, max legend.

    plt.xlabel("X position")
    plt.ylabel("Z position")
Exemple #5
0
def number_of_uls_plot(c: Config):
    """Plot error as a function of number of unit load simulations."""
    if not c.shorten_paths:
        raise ValueError("This plot requires --shorten-paths true")
    response_type = ResponseType.YTranslation
    num_ulss = np.arange(100, 2000, 10)
    chosen_uls = 600
    point = Point(x=c.bridge.x_max - (c.bridge.length / 2), y=0, z=-8.4)
    wagen1_time = truck1.time_at(x=point.x, bridge=c.bridge)
    print_i(f"Wagen 1 time at x = {point.x:.3f} is t = {wagen1_time:.3f}")

    # Determine the reference value.
    truck_loads = flatten(
        truck1.to_point_load_pw(time=wagen1_time, bridge=c.bridge), PointLoad)
    print_i(f"Truck loads = {truck_loads}")
    sim_responses = load_fem_responses(
        c=c,
        response_type=response_type,
        sim_runner=OSRunner(c),
        sim_params=SimParams(ploads=truck_loads,
                             response_types=[response_type]),
    )
    ref_value = sim_responses.at_deck(point, interp=True) * 1000
    print_i(f"Reference value = {ref_value}")

    # Collect the data.
    total_load = []
    num_loads = []
    responses = []
    for num_uls in num_ulss:
        c.il_num_loads = num_uls
        # Nested in here because it depends on the setting of 'il_num_loads'.
        truck_loads = flatten(
            truck1.to_wheel_track_loads(c=c, time=wagen1_time), PointLoad)
        num_loads.append(len(truck_loads))
        total_load.append(sum(map(lambda l: l.kn, truck_loads)))
        sim_responses = load_fem_responses(
            c=c,
            response_type=response_type,
            sim_runner=OSRunner(c),
            sim_params=SimParams(ploads=truck_loads,
                                 response_types=[response_type]),
        )
        responses.append(sim_responses.at_deck(point, interp=True) * 1000)

    # Plot the raw fem, then error on the second axis.
    plt.landscape()
    # plt.plot(num_ulss, fem)
    # plt.ylabel(f"{response_type.name().lower()} (mm)")
    plt.xlabel("ULS")
    error = np.abs(np.array(responses) - ref_value).flatten() * 100
    # ax2 = plt.twinx()
    plt.plot(num_ulss, error)
    plt.ylabel("Error (%)")
    plt.title(
        f"Error in {response_type.name()} to Truck 1 as a function of ULS")
    # Plot the chosen number of ULS.
    chosen_error = np.interp([chosen_uls], num_ulss, error)[0]
    plt.axhline(
        chosen_error,
        label=f"At {chosen_uls} ULS, error = {np.around(chosen_error, 2)} %",
        color="black",
    )
    plt.axhline(0,
                color="red",
                label="Response from direct simulation (no wheel tracks)")
    plt.legend()
    plt.tight_layout()
    plt.savefig(c.get_image_path("paramselection", "uls.pdf"))
    plt.close()
    # Additional verification plots.
    plt.plot(num_ulss, total_load)
    plt.savefig(c.get_image_path("paramselection",
                                 "uls-verify-total-load.pdf"))
    plt.close()
    plt.plot(num_ulss, num_loads)
    plt.savefig(c.get_image_path("paramselection", "uls-verify-num-loads.pdf"))
    plt.close()
Exemple #6
0
def plot_mmm_strain_convergence(
    c: Config,
    pier: int,
    df: pd.DataFrame,
    all_strains: Dict[float, Responses],
    title: str,
    without: Optional[Callable[[Point], bool]] = None,
    append: Optional[str] = None,
):
    """Plot convergence of given fem as model size grows."""
    # A grid of points 1m apart, over which to calculate fem.
    grid = [
        Point(x=x, y=0, z=z)
        for x, z in itertools.product(
            np.linspace(c.bridge.x_min, c.bridge.x_max, int(c.bridge.length)),
            np.linspace(c.bridge.z_min, c.bridge.z_max, int(c.bridge.width)),
        )
    ]
    # If requested, remove some values from the fem.
    if without is not None:
        grid = [point for point in grid if not without(point)]
        for msl, strains in all_strains.items():
            print(f"Removing points from strains with max_shell_len = {msl}")
            all_strains[msl] = strains.without(without)
    # Collect fem over all fem, and over the grid. Iterate by
    # decreasing max_shell_len.
    mins, maxes, means = [], [], []
    gmins, gmaxes, gmeans = [], [], []
    max_shell_lens = []
    for msl, strains in sorted(all_strains.items(), key=lambda kv: -kv[0]):
        max_shell_lens.append(msl)
        print_i(f"Gathering strains with max_shell_len = {msl}", end="\r")
        grid_strains = np.array([strains.at_deck(point, interp=True) for point in grid])
        gmins.append(scalar(np.min(grid_strains)))
        gmaxes.append(scalar(np.max(grid_strains)))
        gmeans.append(scalar(np.mean(grid_strains)))
        strains = np.array(list(strains.values()))
        mins.append(scalar(np.min(strains)))
        maxes.append(scalar(np.max(strains)))
        means.append(scalar(np.mean(strains)))
    print()
    # Normalize and plot the mins, maxes, and means.
    def normalize(ys):
        print(ys)
        return ys / np.mean(ys[-5:])

    mins, maxes, means = normalize(mins), normalize(maxes), normalize(means)
    gmins, gmaxes, gmeans = normalize(gmins), normalize(gmaxes), normalize(gmeans)
    deck_nodes = [df.at[msl, "deck-nodes"] for msl in max_shell_lens]
    pier_nodes = [df.at[msl, "pier-nodes"] for msl in max_shell_lens]
    num_nodes = np.array(deck_nodes) + np.array(pier_nodes)
    print(f"MSLs = {max_shell_lens}")
    print(f"num_nodes = {num_nodes}")
    # Plot all lines, for debugging.
    plt.landscape()
    plt.plot(num_nodes, mins, label="mins")
    plt.plot(num_nodes, maxes, label="maxes")
    plt.plot(num_nodes, means, label="means")
    plt.plot(num_nodes, gmins, label="gmins")
    plt.plot(num_nodes, gmaxes, label="gmaxes")
    plt.plot(num_nodes, gmeans, label="gmeans")
    plt.grid(axis="y")
    plt.xlabel("Nodes in FEM")
    plt.ylabel("Strain")
    plt.title(title)
    plt.tight_layout()
    plt.legend()
    plt.savefig(
        c.get_image_path("convergence-pier-strain", f"mmm-{append}-all.pdf", acc=False)
    )
    plt.close()
    # Only plot some lines, for the thesis.
    plt.landscape()
    plt.plot(num_nodes, gmins, label="Minimum")
    plt.plot(num_nodes, gmaxes, label="Maximum")
    plt.plot(num_nodes, gmeans, label="Mean")
    plt.grid(axis="y")
    plt.title(title)
    plt.xlabel("Nodes in FEM")
    plt.ylabel("Strain")
    plt.legend()
    plt.tight_layout()
    plt.savefig(
        c.get_image_path("convergence-pier-strain", f"mmm-{append}.pdf", acc=False)
    )
    plt.close()
Exemple #7
0
def comparison_plots_705(c: Config, run_only: bool, scatter: bool):
    """Make contour plots for all verification points on bridge 705."""
    # from classify.scenario.bridge import transverse_crack
    # c = transverse_crack().use(c)[0]
    positions = [
        # (52, -8.4, "a"),
        (34.95459, 26.24579 - 16.6, "a"),
        (51.25051, 16.6 - 16.6, "b"),
        (89.98269, 9.445789 - 16.6, "c"),
        (102.5037, 6.954211 - 16.6, "d"),
        # (34.95459, 29.22606 - 16.6, "a"),
        # (51.25051, 16.6 - 16.6, "b"),
        # (92.40638, 12.405 - 16.6, "c"),
        # (101.7649, 3.973938 - 16.6, "d"),
    ]
    diana_values = pd.read_csv("validation/diana-screenshots/min-max.csv")
    response_types = [ResponseType.YTranslation, ResponseType.Strain]
    # For each response type and loading position first create contour plots for
    # OpenSees. Then finally create subplots comparing to Diana.
    cmap = diana_cmap_r
    for load_x, load_z, label in positions:
        for response_type in response_types:
            # Setup the metadata.
            if response_type == ResponseType.YTranslation:
                rt_str = "displa"
                unit_str = "mm"
            elif response_type == ResponseType.Strain:
                rt_str = "strain"
                unit_str = "E-6"
            else:
                raise ValueError("Unsupported response type")
            row = diana_values[diana_values["name"] == f"{label}-{rt_str}"]
            dmin, dmax = float(row["dmin"]), float(row["dmax"])
            omin, omax = float(row["omin"]), float(row["omax"])
            amin, amax = max(dmin, omin), min(dmax, omax)
            levels = np.linspace(amin, amax, 16)

            # Create the OpenSees plot.
            loads = [
                PointLoad(
                    x_frac=c.bridge.x_frac(load_x),
                    z_frac=c.bridge.z_frac(load_z),
                    kn=100,
                )
            ]
            fem_responses = load_fem_responses(
                c=c,
                response_type=response_type,
                sim_runner=OSRunner(c),
                sim_params=SimParams(ploads=loads,
                                     response_types=response_types),
            )
            if run_only:
                continue
            title = (
                f"{response_type.name()} from a {loads[0].kn} kN point load at"
                + f"\nx = {load_x:.3f}m, z = {load_z:.3f}m, with ")
            save = lambda prefix: c.get_image_path(
                "validation/diana-comp",
                safe_str(f"{prefix}{response_type.name()}") + ".pdf",
            )
            top_view_bridge(c.bridge, piers=True, abutments=True)
            fem_responses = fem_responses.resize()
            sci_format = response_type == ResponseType.Strain
            plot_contour_deck(
                c=c,
                responses=fem_responses,
                ploads=loads,
                cmap=cmap,
                levels=levels,
                sci_format=sci_format,
                decimals=4,
                scatter=scatter,
            )
            plt.title(title + "OpenSees")
            plt.tight_layout()
            plt.savefig(save(f"{label}-"))
            plt.close()

            # Finally create label/title the Diana plot.
            if label is not None:
                # First plot and clear, just to have the same colorbar.
                plot_contour_deck(c=c,
                                  responses=fem_responses,
                                  ploads=loads,
                                  cmap=cmap,
                                  levels=levels)
                plt.cla()
                # Then plot the bridge and
                top_view_bridge(c.bridge, piers=True, abutments=True)
                plt.imshow(
                    mpimg.imread(
                        f"validation/diana-screenshots/{label}-{rt_str}.png"),
                    extent=(
                        c.bridge.x_min,
                        c.bridge.x_max,
                        c.bridge.z_min,
                        c.bridge.z_max,
                    ),
                )
                dmin_s = f"{dmin:.4e}" if sci_format else f"{dmin:.4f}"
                dmax_s = f"{dmax:.4e}" if sci_format else f"{dmax:.4f}"
                dabs_s = (f"{abs(dmin - dmax):.4e}"
                          if sci_format else f"{abs(dmin - dmax):.4f}")
                for point, leg_label, color, alpha in [
                    ((load_x, load_z), f"{loads[0].kn} kN load", "r", 1),
                    ((0, 0), f"min = {dmin_s} {fem_responses.units}", "r", 0),
                    ((0, 0), f"max = {dmax_s} {fem_responses.units}", "r", 0),
                    ((0, 0), f"|min-max| = {dabs_s} {fem_responses.units}",
                     "r", 0),
                ]:
                    plt.scatter(
                        [point[0]],
                        [point[1]],
                        label=leg_label,
                        marker="o",
                        color=color,
                        alpha=alpha,
                    )
                plt.legend()
                plt.title(title + "Diana")
                plt.xlabel("X position (m)")
                plt.ylabel("Z position (m)")
                plt.tight_layout()
                plt.savefig(save(f"{label}-diana-"))
                plt.close()
Exemple #8
0
def piers_displaced(c: Config):
    """Contour plots of pier displacement for the given pier indices."""
    pier_indices = [4, 5]
    response_types = [ResponseType.YTranslation, ResponseType.Strain]
    axis_values = pd.read_csv("validation/axis-screenshots/piers-min-max.csv")
    for r_i, response_type in enumerate(response_types):
        for p in pier_indices:
            # Run the simulation and collect fem.
            sim_responses = load_fem_responses(
                c=c,
                response_type=response_type,
                sim_runner=OSRunner(c),
                sim_params=SimParams(displacement_ctrl=PierSettlement(
                    displacement=c.pd_unit_disp, pier=p), ),
            )

            # In the case of stress we map from kn/m2 to kn/mm2 (E-6) and then
            # divide by 1000, so (E-9).
            assert c.pd_unit_disp == 1
            if response_type == ResponseType.Strain:
                sim_responses.to_stress(c.bridge).map(lambda r: r * 1e-9)

            # Get min and max values for both Axis and OpenSees.
            rt_str = ("displa" if response_type == ResponseType.YTranslation
                      else "stress")
            row = axis_values[axis_values["name"] == f"{p}-{rt_str}"]
            dmin, dmax = float(row["dmin"]), float(row["dmax"])
            omin, omax = float(row["omin"]), float(row["omax"])
            amin, amax = max(dmin, omin), min(dmax, omax)
            levels = np.linspace(amin, amax, 16)

            # Plot and save the image. If plotting strains use Axis values for
            # colour normalization.
            # norm = None
            from plot import axis_cmap_r

            cmap = axis_cmap_r
            top_view_bridge(c.bridge, abutments=True, piers=True)
            plot_contour_deck(c=c,
                              cmap=cmap,
                              responses=sim_responses,
                              levels=levels)
            plt.tight_layout()
            plt.title(
                f"{sim_responses.response_type.name()} from 1mm pier settlement with OpenSees"
            )
            plt.savefig(
                c.get_image_path(
                    "validation/pier-displacement",
                    safe_str(f"pier-{p}-{sim_responses.response_type.name()}")
                    + ".pdf",
                ))
            plt.close()

            # First plot and clear, just to have the same colorbar.
            plot_contour_deck(c=c,
                              responses=sim_responses,
                              cmap=cmap,
                              levels=levels)
            plt.cla()
            # Save the axis plots.
            axis_img = mpimg.imread(
                f"validation/axis-screenshots/{p}-{rt_str}.png")
            top_view_bridge(c.bridge, abutments=True)
            plt.imshow(
                axis_img,
                extent=(
                    c.bridge.x_min,
                    c.bridge.x_max,
                    c.bridge.z_min,
                    c.bridge.z_max,
                ),
            )
            # Plot the load and min, max values.
            for point, leg_label, color in [
                ((0, 0), f"min = {np.around(dmin, 3)} {sim_responses.units}",
                 "r"),
                ((0, 0), f"max = {np.around(dmax, 3)} {sim_responses.units}",
                 "r"),
                (
                    (0, 0),
                    f"|min-max| = {np.around(abs(dmax - dmin), 3)} {sim_responses.units}",
                    "r",
                ),
            ]:
                plt.scatter(
                    [point[0]],
                    [point[1]],
                    label=leg_label,
                    marker="o",
                    color=color,
                    alpha=0,
                )
            if response_type == ResponseType.YTranslation:
                plt.legend()
            # Title and save.
            plt.title(
                f"{response_type.name()} from 1mm pier settlement with AxisVM")
            plt.xlabel("X position (m)")
            plt.ylabel("Z position (m)")
            plt.tight_layout()
            plt.savefig(
                c.get_image_path(
                    "validation/pier-displacement",
                    f"{p}-axis-{rt_str}.pdf",
                ))
            plt.close()
Exemple #9
0
def time_series_plot(c: Config, n: float):
    """Plot 24min time series of cracking, for multiple cracked bridges.

    For each bridge (hard-coded), a time series of strain fem is plotted.
    For each bridge it is initially in healthy condition, and the crack occurs
    halfway through.

    Args:
        n: float, meters in front of the crack zone where to place sensor.

    """

    # First construct one day (24 minutes) of traffic.
    total_mins = 24
    total_seconds = total_mins * 60
    traffic_scenario = normal_traffic(c=c, lam=5, min_d=2)
    traffic_sequence, traffic, traffic_array = load_traffic(
        c=c,
        traffic_scenario=traffic_scenario,
        max_time=total_seconds,
    )
    traffic_array.shape

    # Temperatures for one day.
    temps_day = temperature.from_to_mins(
        temperature.load("holly-springs"),
        datetime.fromisoformat(f"2019-07-03T00:00"),
        datetime.fromisoformat(f"2019-07-03T23:59"),
    )
    print(f"len temps = {len(temps_day['solar'])}")
    print(f"len temps = {len(temps_day['temp'])}")

    # Then generate some cracking time series.
    damages = [
        HealthyDamage(),
        transverse_crack(),
        transverse_crack(length=14.0, at_x=48.0),
    ]
    sensors = [
        Point(x=52, z=-8.4),  # Sensor in middle of lane.
        Point(x=damages[1].crack_area(c.bridge)[0] - n,
              z=-8.4),  # Sensor in front of crack zone.
        Point(x=damages[2].crack_area(c.bridge)[0] - n,
              z=-8.4),  # Sensor in front of crack zone.
    ]
    [print(f"Sensor {i} = {sensors[i]}") for i in range(len(sensors))]
    time_series = [
        crack_time_series(
            c=c,
            traffic_array=traffic_array,
            traffic_array_mins=total_mins,
            sensor=sensor,
            crack_frac=0.5,
            damage=damage,
            temps=temps_day["temp"],
            solar=temps_day["solar"],
        ) for damage, sensor in zip(damages, sensors)
    ]
    plt.portrait()
    for i, (y_trans, strain) in enumerate(time_series):
        x = np.arange(len(strain)) * c.sensor_hz / 60
        x_m = sensors[i].x
        damage_str = "Healthy Bridge"
        if i == 1:
            damage_str = "0.5 m crack zone"
        if i == 2:
            damage_str = "14 m crack zone"
        plt.subplot(len(time_series), 2, i * 2 + 1)
        plt.plot(x, y_trans * 1000, color="tab:blue")
        if i < len(time_series) - 1:
            plt.tick_params(axis="x", bottom=False, labelbottom=False)
        else:
            plt.xlabel("Hours")
        plt.title(f"At x = {x_m} m\n{damage_str}")
        plt.ylabel("Y trans. (mm)")

        plt.subplot(len(time_series), 2, i * 2 + 2)
        plt.plot(x, strain * 1e6, color="tab:orange")
        if i < len(time_series) - 1:
            plt.tick_params(axis="x", bottom=False, labelbottom=False)
        else:
            plt.xlabel("Hours")
        plt.title(f"At x = {x_m} m,\n{damage_str}")
        plt.ylabel("Microstrain XXB")
    plt.tight_layout()
    plt.savefig(c.get_image_path("crack", "time-series-q5.pdf"))
    plt.close()