Ejemplo n.º 1
0
def test_dequeuing_from_queue_removes_item():
    queue = Queue()
    queue.enqueue(1)

    assert_equal(queue.empty(), False)
    assert_equal(queue.dequeue(), 1)
    assert_equal(queue.empty(), True)
Ejemplo n.º 2
0
def test_enqueuing_to_queue_adds_item_to_queue():
    queue = Queue()

    assert_equal(queue.empty(), True)
    queue.enqueue(1)
    assert_equal(queue.empty(), False)
    assert_equal(queue.dequeue(), 1)
Ejemplo n.º 3
0
    def flatorder(self, f):
        result = []
        queue = Queue(self.__root)
        while not queue.empty():
            cur_node = queue.exit()
            result.append(f(cur_node.value))
            if cur_node.left is not None:
                queue.enter(cur_node.left)

            if cur_node.right is not None:
                queue.enter(cur_node.right)
        return result
Ejemplo n.º 4
0
    def print_tree(self):
        """
        打印树的结构
        :return:
        """
        queue = Queue(self.__root)
        next_level = 1
        now_node_count = 0
        while not queue.empty():
            cur_node = queue.exit()
            print str(cur_node) + "\t",
            now_node_count += 1
            if now_node_count == next_level:
                print
                now_node_count = 0
                next_level *= 2
            if cur_node.left is not None:
                queue.enter(cur_node.left)

            if cur_node.right is not None:
                queue.enter(cur_node.right)
Ejemplo n.º 5
0
    def print_tree(self):
        """
        打印树的结构
        :return:
        """
        queue = Queue(self.__root)
        next_level = 1
        now_node_count = 0
        while not queue.empty():
            cur_node = queue.exit()
            print str(cur_node) + "\t",
            now_node_count += 1
            if now_node_count == next_level:
                print
                now_node_count = 0
                next_level *= 2
            if cur_node.left is not None:
                queue.enter(cur_node.left)

            if cur_node.right is not None:
                queue.enter(cur_node.right)
Ejemplo n.º 6
0
 def lws(self, from_node, to_node):
     """
     在有向无环带权图里面查找最长路径
     令list(s,t)是从s到t的最长带权路径。
     那么可以使用递归式表示这个问题
     list(s,t) = max(list(s,t-1))+list(t-1,t)(唯一)
     用动态规划自下而上解决,因为自上而下解决首先遇到的问题就是
     查找指向一个节点的节点在邻接表中比较困难
     :param from_node:
     :param to_node:
     :return:
     """
     __lws = {}
     # 为了计算方便,这里把开始节点到开始节点插入字典中,
     zero_edge = Edge(from_node, from_node)
     __lws[zero_edge] = 0
     graph_stack = Queue()
     graph_stack.enter(from_node)
     while not graph_stack.empty():
         cur_node = graph_stack.exit()
         cur_edge_list = self.__adj_list.get(cur_node)
         if cur_edge_list is None:
             print ",".join(map(lambda edge: str(edge), __lws.iteritems()))
             print ",".join(map(lambda edge: str(edge), __lws))
             return __lws[Edge(from_node, to_node)]
         for edge_end_node in cur_edge_list:
             graph_stack.enter(edge_end_node.key)
             last_weighted_length = __lws[Edge(from_node, cur_node)]
             cur_edge = Edge(from_node, edge_end_node.key)
             cur_weight_length = last_weighted_length + edge_end_node.weight
             # 如果不存在这个边,那么就插入
             if cur_edge not in __lws:
                 __lws[cur_edge] = cur_weight_length
             # 如果存在,那么就把最大值插入
             elif cur_weight_length > __lws[cur_edge]:
                 __lws[cur_edge] = cur_weight_length
     print ",".join(map(lambda edge: str(edge), __lws.iteritems()))
     print ",".join(map(lambda edge: str(edge), __lws))
     return __lws[Edge(from_node, to_node)]
Ejemplo n.º 7
0
 def lws(self, from_node, to_node):
     """
     在有向无环带权图里面查找最长路径
     令list(s,t)是从s到t的最长带权路径。
     那么可以使用递归式表示这个问题
     list(s,t) = max(list(s,t-1))+list(t-1,t)(唯一)
     用动态规划自下而上解决,因为自上而下解决首先遇到的问题就是
     查找指向一个节点的节点在邻接表中比较困难
     :param from_node:
     :param to_node:
     :return:
     """
     __lws = {}
     # 为了计算方便,这里把开始节点到开始节点插入字典中,
     zero_edge = Edge(from_node, from_node)
     __lws[zero_edge] = 0
     graph_stack = Queue()
     graph_stack.enter(from_node)
     while not graph_stack.empty():
         cur_node = graph_stack.exit()
         cur_edge_list = self.__adj_list.get(cur_node)
         if cur_edge_list is None:
             print ",".join(map(lambda edge: str(edge), __lws.iteritems()))
             print ",".join(map(lambda edge: str(edge), __lws))
             return __lws[Edge(from_node, to_node)]
         for edge_end_node in cur_edge_list:
             graph_stack.enter(edge_end_node.key)
             last_weighted_length = __lws[Edge(from_node, cur_node)]
             cur_edge = Edge(from_node, edge_end_node.key)
             cur_weight_length = last_weighted_length + edge_end_node.weight
             # 如果不存在这个边,那么就插入
             if cur_edge not in __lws:
                 __lws[cur_edge] = cur_weight_length
             # 如果存在,那么就把最大值插入
             elif cur_weight_length > __lws[cur_edge]:
                 __lws[cur_edge] = cur_weight_length
     print ",".join(map(lambda edge: str(edge), __lws.iteritems()))
     print ",".join(map(lambda edge: str(edge), __lws))
     return __lws[Edge(from_node, to_node)]
Ejemplo n.º 8
0
def test_empty_returning_false_when_not_empty():
    queue = Queue()
    queue.enqueue(1)

    assert_equal(queue.empty(), False)
Ejemplo n.º 9
0
def test_empty_returning_true_when_empty():
    queue = Queue()

    assert_equal(queue.empty(), True)