Ejemplo n.º 1
0
    path_model_cell_out = tfm_data.def_check_create_path(
        path_model, n_out_cell_type)
    print(n_out_cell_type)

    # DESIGN P with dense

    # ### StandarScaler normalization - Fully connected - 100 dense
    print('Metabolic and Signaling with StandardScaler normalization - ' +
          str(df_weight_both.shape[0]) + ' gene - dense100')
    ss_dense_model, ss_dense_metric, ss_dense_hp = tfm_kt.TFM_KerasTunerExperiment(
        X_train_=array_train_X_ss,
        y_train_=array_train_y_ss,
        X_test_=array_test_X_ss,
        y_test_=array_test_y_ss,
        df_w_=pd.DataFrame(),
        bio_='dense_',
        design_name_='met_sig_SScaler_1_layer_100',
        directory_='met_sig_kt_ss_dense100',
        project_name_='kt_ss_dense_100_experiment_',
        second_layer=False,
        path_=path_hyperband_,
        epochs_=epochs_default,
        batch_size_=batch_size_default).build()

    # DESIGN A with 1-LAYER and 2-LAYER

    # ## with 1-LAYER
    # ### StandardScaler normalization - Pathways connection
    print('Metabolic and Signaling with StandardScaler normalization - ' +
          str(df_weight_both.shape[0]) + ' gene - pathways' +
          str(len(df_weight_metabolic_signaling.columns)))
    ss_a1_model, ss_a1_metric, ss_a1_hp = tfm_kt.TFM_KerasTunerExperiment(
Ejemplo n.º 2
0
    array_test_y_ss.append(np.array(y_test_ss))

    # ORIGINAL DATASET (9437 genes)

    # DESIGN P1 with 1-LAYER

    ### StandardScaler normalization - Fully connected - 100 dense
    print('Default with StandardScaler normalization - ' +
          str(df_paper.shape[1] - 1) + ' gene - dense100')
    ss_p1_model, _, ss_p1_hp = tfm_kt.TFM_KerasTunerExperiment(
        X_train_=array_train_X_ss,
        y_train_=array_train_y_ss,
        X_test_=array_test_X_ss,
        y_test_=array_test_y_ss,
        df_w_=pd.DataFrame(),
        bio_='dense_',
        design_name_='default_SScaler_1_layer_100_p1',
        directory_='kt_ss_p1_default',
        project_name_='kt_ss_p1_dense100_experiment_',
        second_layer=False,
        path_=path_hyperband_,
        epochs_=epochs_default,
        batch_size_=batch_size_default).build()

    # DESIGN P2 with 1-LAYER - signaling

    ### StandardScaler normalization - Fully (100 dense) + Partially (92 signaling pathway) connected - dense+pathway192
    print('Signaling with StandardScaler normalization - ' +
          str(df_paper.shape[1] - 1) + ' gene - pathways' +
          str(len(df_weight_paper_signaling_dense_pathway.columns)))
    ss_p2_sig_model, _, ss_p2_sig_hp = tfm_kt.TFM_KerasTunerExperiment(
        X_train_=array_train_X_ss,