path_model_cell_out = tfm_data.def_check_create_path( path_model, n_out_cell_type) print(n_out_cell_type) # DESIGN P with dense # ### StandarScaler normalization - Fully connected - 100 dense print('Metabolic and Signaling with StandardScaler normalization - ' + str(df_weight_both.shape[0]) + ' gene - dense100') ss_dense_model, ss_dense_metric, ss_dense_hp = tfm_kt.TFM_KerasTunerExperiment( X_train_=array_train_X_ss, y_train_=array_train_y_ss, X_test_=array_test_X_ss, y_test_=array_test_y_ss, df_w_=pd.DataFrame(), bio_='dense_', design_name_='met_sig_SScaler_1_layer_100', directory_='met_sig_kt_ss_dense100', project_name_='kt_ss_dense_100_experiment_', second_layer=False, path_=path_hyperband_, epochs_=epochs_default, batch_size_=batch_size_default).build() # DESIGN A with 1-LAYER and 2-LAYER # ## with 1-LAYER # ### StandardScaler normalization - Pathways connection print('Metabolic and Signaling with StandardScaler normalization - ' + str(df_weight_both.shape[0]) + ' gene - pathways' + str(len(df_weight_metabolic_signaling.columns))) ss_a1_model, ss_a1_metric, ss_a1_hp = tfm_kt.TFM_KerasTunerExperiment(
array_test_y_ss.append(np.array(y_test_ss)) # ORIGINAL DATASET (9437 genes) # DESIGN P1 with 1-LAYER ### StandardScaler normalization - Fully connected - 100 dense print('Default with StandardScaler normalization - ' + str(df_paper.shape[1] - 1) + ' gene - dense100') ss_p1_model, _, ss_p1_hp = tfm_kt.TFM_KerasTunerExperiment( X_train_=array_train_X_ss, y_train_=array_train_y_ss, X_test_=array_test_X_ss, y_test_=array_test_y_ss, df_w_=pd.DataFrame(), bio_='dense_', design_name_='default_SScaler_1_layer_100_p1', directory_='kt_ss_p1_default', project_name_='kt_ss_p1_dense100_experiment_', second_layer=False, path_=path_hyperband_, epochs_=epochs_default, batch_size_=batch_size_default).build() # DESIGN P2 with 1-LAYER - signaling ### StandardScaler normalization - Fully (100 dense) + Partially (92 signaling pathway) connected - dense+pathway192 print('Signaling with StandardScaler normalization - ' + str(df_paper.shape[1] - 1) + ' gene - pathways' + str(len(df_weight_paper_signaling_dense_pathway.columns))) ss_p2_sig_model, _, ss_p2_sig_hp = tfm_kt.TFM_KerasTunerExperiment( X_train_=array_train_X_ss,