Ejemplo n.º 1
0
def test_flex_shift():
    # Dummy slf
    # Read spectra
    obj_spec = readspec(data_path('obj_lrisb_600_sky.fits'))
    arx_file = os.path.join(data.Paths.sky_spec, 'sky_LRISb_600.fits')
    arx_spec = readspec(arx_file)
    arx_lines = arc.detect_lines(arx_spec.flux.value)

    # Call
    flex_dict = flexure.spec_flex_shift(obj_spec,
                                        arx_spec,
                                        arx_lines,
                                        mxshft=60)

    #    # Apply
    #    from scipy import interpolate
    #    print(flex_dict['shift'])
    #    npix = len(obj_spec.wavelength)
    #    x = np.linspace(0., 1., npix)
    #    f = interpolate.interp1d(x, obj_spec.wavelength.value, bounds_error=False,
    #                             fill_value="extrapolate")
    #    new_wave = f(x+flex_dict['shift']/(npix-1))
    #
    #    from matplotlib import pyplot
    #    pyplot.plot(arx_spec.wavelength, arx_spec.flux)
    #    pyplot.plot(obj_spec.wavelength, obj_spec.flux)
    #    pyplot.plot(new_wave, obj_spec.flux)
    #    pyplot.show()
    assert np.abs(flex_dict['shift'] - 43.7) < 0.1
Ejemplo n.º 2
0
def plot_spec_and_models(spec_filename, models_filenames='all'):
    """Plots several models in on top of a single spectrum.

    Parameters
    ----------


    """
    if models_filenames == 'all':
        models = glob.glob("*_inspect.fits")
    else:
        models = models_filenames
    spec = readspec(spec_filename)
    models_specs = [readspec(model) for model in models]
    plt.figure()
    if spec.co_is_set:
        spec.normalize(co=spec.co)
    plt.plot(spec.wavelength, spec.flux, 'k', drawstyle='steps-mid')
    plt.plot(spec.wavelength, spec.sig, 'g', drawstyle='steps-mid')
    for model_s in models_specs:
        plt.plot(model_s.wavelength,
                 model_s.flux,
                 label=model_s.filename.split('_inspect')[0])
    plt.legend(ncol=5)
    plt.ylim(-0.2, 2.1)
Ejemplo n.º 3
0
def test_read_table():
    t = Table([(1, 2, 3), (1, 2, 3), (1, 2, 3)], names=['WAVE', 'FLUX', 'ERR'])
    spec = io.readspec(t)
    np.testing.assert_allclose(spec.wavelength[0].value, 1)
    np.testing.assert_allclose(spec.flux[0], 1)
    # Read table with non standard tags
    t = Table([(1, 2, 3), (1, 2, 3), (1, 2, 3)],
              names=['dumb_wave', 'dumb_flux', 'dumb_sig'])
    spec = io.readspec(t,
                       wave_tag='dumb_wave',
                       flux_tag='dumb_flux',
                       sig_tag='dumb_sig')
    np.testing.assert_allclose(spec.wavelength[0].value, 1)
    np.testing.assert_allclose(spec.flux[0], 1)
    # More..
    t = Table([(1, 2, 3), (1, 2, 3), (1, 2, 3)],
              names=['dumb_wave', 'dumb_flux', 'dumb_ivar'])
    spec = io.readspec(t,
                       wave_tag='dumb_wave',
                       flux_tag='dumb_flux',
                       ivar_tag='dumb_ivar')
    t = Table([(1, 2, 3), (1, 2, 3), (1, 2, 3)],
              names=['dumb_wave', 'dumb_flux', 'dumb_var'])
    spec = io.readspec(t,
                       wave_tag='dumb_wave',
                       flux_tag='dumb_flux',
                       var_tag='dumb_var')
Ejemplo n.º 4
0
def test_write_fits():
    spec = io.readspec(data_path('UM184_nF.fits'))

    # Write. Should be replaced with tempfile.TemporaryFile
    spec.write_to_fits(data_path('tmp.fits'))
    spec2 = io.readspec(data_path('tmp.fits'))
    # check a round trip works
    np.testing.assert_allclose(spec.dispersion, spec2.dispersion)
Ejemplo n.º 5
0
def abslines_from_VPfile(parfile,specfile=None,ra=None,dec=None):
    '''
    Takes a joebvp parameter file and builds a list of linetools AbsLines from the measurements therein.

    Parameters
    ----------
    parfile : str
        Name of the parameter file in the joebvp format
    ra : float, optional
        Right Ascension of the QSO in decimal degrees
    dec : float, optional
        Declination of the QSO in decimal degress

    Returns
    -------
    abslinelist: list
        List of AbsLine objects
    '''
    from linetools.spectralline import AbsLine
    from linetools.lists.linelist import LineList
    import astropy.units as u
    llist = LineList('ISM')
    if specfile!=None:
        spec=readspec(specfile) # Allow spectrum file to be declared in call
    linetab = ascii.read(parfile) # Read parameters from file
    linetab['restwave']=linetab['restwave']*u.AA
    abslinelist = [] # Initiate list to populate
    for i,row in enumerate(linetab):
        ### Check to see if errors for this line are defined
        colerr,berr,velerr=get_errors(linetab,i)
        ### Adjust velocity limits according to centroid errors and limits from file
        vcentmin = row['vel']-velerr
        vcentmax = row['vel']+velerr
        v1 = vcentmin + row['vlim1']
        v2 = vcentmax + row['vlim2']
        line=AbsLine(row['restwave']*u.AA, z=row['zsys'],closest=True, linelist=llist)
        vlims=[v1,v2]*u.km/u.s
        line.limits.set(vlims)
        ### Set other parameters
        line.attrib['logN'] = row['col']
        line.attrib['sig_logN'] = colerr
        line.attrib['b'] = row['bval'] * u.km/u.s
        line.attrib['sig_b'] = berr * u.km/u.s
        line.attrib['vel'] = row['vel'] * u.km/u.s
        ### Attach the spectrum to this AbsLine but check first to see if this one is same as previous
        if specfile==None:
            if i==0:
                spec=readspec(row['specfile'])
            elif row['specfile']!=linetab['specfile'][i-1]:
                spec=readspec(row['specfile'])
            else:
                pass
        line.analy['spec']=spec
        ### Add it to the list and go on
        abslinelist.append(line)
    return abslinelist
Ejemplo n.º 6
0
def main(*args, **kwargs):
    """ Runs the XSpecGui on an input file
    """
    import argparse

    parser = argparse.ArgumentParser(description='Parse')
    parser.add_argument("file", type=str, help="Spectral file")
    parser.add_argument("skyfile",
                        type=str,
                        help="Archived PYPIT sky file (e.g. paranal_sky.fits")
    parser.add_argument("--exten", type=int, help="FITS extension")
    parser.add_argument("--optimal",
                        default=False,
                        help="Show Optimal? Default is boxcar",
                        action="store_true")
    parser.add_argument("--scale_user",
                        default=1.,
                        type=float,
                        help="Scale user spectrum by a factor")

    pargs = parser.parse_args()
    from matplotlib import pyplot as plt

    # Extension
    exten = (pargs.exten if hasattr(pargs, 'exten') else 0)
    #scale = (pargs.scale_user if hasattr(pargs, 'scale_user') else 1.)

    # Read spec keywords
    ikwargs = {}
    if pargs.optimal:
        ikwargs['wave_tag'] = 'opt_wave'
        ikwargs['flux_tag'] = 'opt_sky'
    else:
        ikwargs['wave_tag'] = 'box_wave'
        ikwargs['flux_tag'] = 'box_sky'

    # Load user file
    user_sky = readspec(pargs.file, exten=exten, **ikwargs)
    # Load sky spec
    arx_sky = readspec(sky_path + pargs.skyfile)

    # Plot
    plt.clf()
    plt.plot(user_sky.wavelength,
             user_sky.flux * pargs.scale_user,
             'k-',
             label='user')
    plt.plot(arx_sky.wavelength, arx_sky.flux, 'b-', label='archive')
    legend = plt.legend(loc='upper left',
                        scatterpoints=1,
                        borderpad=0.3,
                        handletextpad=0.3,
                        fontsize='small',
                        numpoints=1)
    plt.show()
Ejemplo n.º 7
0
def test_write_fits(spec, spec2):
    # Write. Should be replaced with tempfile.TemporaryFile
    spec.write_to_fits(data_path("tmp.fits"))
    specin = io.readspec(data_path("tmp.fits"))
    # check a round trip works
    np.testing.assert_allclose(spec.dispersion, specin.dispersion)
    # ESI
    spec2.write_to_fits(data_path("tmp2.fits"))
    specin2 = io.readspec(data_path("tmp2.fits"))
    # check a round trip works
    np.testing.assert_allclose(spec2.dispersion, specin2.dispersion)
Ejemplo n.º 8
0
def test_write_fits(spec, spec2):
    # Write. Should be replaced with tempfile.TemporaryFile
    spec.write_to_fits(data_path('tmp.fits'))
    specin = io.readspec(data_path('tmp.fits'))
    # check a round trip works
    np.testing.assert_allclose(spec.wavelength, specin.wavelength)
    # ESI
    spec2.write_to_fits(data_path('tmp2.fits'))
    specin2 = io.readspec(data_path('tmp2.fits'))
    # check a round trip works
    np.testing.assert_allclose(spec2.wavelength, specin2.wavelength)
Ejemplo n.º 9
0
def test_readwrite_metadata():
    spec = io.readspec(data_path('UM184_nF.fits'))
    d = {'a':1, 'b':'abc', 'c':3.2, 'd':np.array([1,2,3]),
         'e':dict(a=1,b=2)}
    spec.meta.update(d)
    spec.write_to_fits(data_path('tmp.fits'))
    spec2 = io.readspec(data_path('tmp.fits'))
    assert spec2.meta['a'] == d['a']
    assert spec2.meta['b'] == d['b']
    np.testing.assert_allclose(spec2.meta['c'], d['c'])
    np.testing.assert_allclose(spec2.meta['d'], d['d'])
    assert spec2.meta['e'] == d['e']
Ejemplo n.º 10
0
def test_readwrite_meta_as_dicts(spec):
    sp = XSpectrum1D.from_tuple((np.array([5,6,7]), np.ones(3), np.ones(3)*0.1))
    sp.meta['headers'][0] = dict(a=1, b='abc')
    sp2 = XSpectrum1D.from_tuple((np.array([8,9,10]), np.ones(3), np.ones(3)*0.1))
    sp2.meta['headers'][0] = dict(c=2, d='efg')
    spec = ltsu.collate([sp,sp2])
    # Write
    spec.write_to_fits(data_path('tmp.fits'))
    spec.write_to_hdf5(data_path('tmp.hdf5'))
    # Read and test
    newspec = io.readspec(data_path('tmp.hdf5'))
    assert newspec.meta['headers'][0]['a'] == 1
    assert newspec.meta['headers'][0]['b'] == 'abc'
    newspec2 = io.readspec(data_path('tmp.fits'))
    assert 'METADATA' in newspec2.meta['headers'][0].keys()
Ejemplo n.º 11
0
def test_hdf5(specm):
    import h5py
    # Write. Should be replaced with tempfile.TemporaryFile
    specm.write_to_hdf5(data_path('tmp.hdf5'))
    #
    specread = io.readspec(data_path('tmp.hdf5'))
    # check a round trip works
    np.testing.assert_allclose(specm.wavelength, specread.wavelength)
    # Add to existing file
    tmp2 = h5py.File(data_path('tmp2.hdf5'), 'w')
    foo = tmp2.create_group('boxcar')
    specm.add_to_hdf5(tmp2, path='/boxcar/')
    tmp2.close()
    # check a round trip works
    spec3 = io.readspec(data_path('tmp2.hdf5'), path='/boxcar/')
    np.testing.assert_allclose(specm.wavelength, spec3.wavelength)
Ejemplo n.º 12
0
def spec_plot(spec_fil,
              ID_path=None,
              ambig_fil=None,
              dwv=25.,
              outfil='tmp.pdf'):
    mpl.rcParams['font.family'] = 'stixgeneral'
    from matplotlib.backends.backend_pdf import PdfPages
    import matplotlib.gridspec as gridspec
    '''
    spec_fil: string
      Filename of spectrum
    outfil: string ('tmp.pdf')
      Filename for output
    dwv: float (25.)
      Ang per window
    '''

    npx = 1
    npy = 4

    # Read spectrum
    spec = lsio.readspec(spec_file)

    # Start plot
    pp = PdfPages(outfil)
Ejemplo n.º 13
0
def test_flex_shift():
    if not os.getenv('PYPIT'):
        pass
    else:
        # Dummy slf
        arut.dummy_settings()
        settings.argflag['reduce']['flexure']['maxshift'] = 50
        slf = arut.dummy_self()
        # Read spectra
        obj_spec = lsio.readspec(data_path('obj_lrisb_600_sky.fits'))
        arx_file = pypit.__path__[0]+'/data/sky_spec/sky_LRISb_600.fits'
        arx_spec = lsio.readspec(arx_file)
        # Call
        #msgs._debug['flexure'] = True
        flex_dict = arwave.flex_shift(slf, 1, obj_spec, arx_spec)
        assert np.abs(flex_dict['shift'] - 43.7) < 0.1
Ejemplo n.º 14
0
def coadd_cos_from_x1dfiles(filenames, wv_array=None, A_pix=0.01 * u.AA):
    spec_list = []
    #TODO: mask out x1d spectral regions with bad values.
    for filename in filenames:
        sp = readspec(filename)
        import pdb
        pdb.set_trace()
        # mask =
        spec_list += [sp]

    # spec_list contains all individual spectra
    specs = collate(spec_list)  # now all in a single XSpectrum1D object

    #rebin
    if wv_array is None:
        # bring them to a unique native wavelength grid using PYPIT
        A_pix = A_pix.to("AA").value
        cat_wave = arco.new_wave_grid(specs.data['wave'],
                                      wave_method='pixel',
                                      A_pix=A_pix)
    else:
        cat_wave = wv_array.to('AA').value

    specs = specs.rebin(cat_wave * u.AA,
                        all=True,
                        do_sig=True,
                        masking='none',
                        grow_bad_sig=True)

    # estimate weights for coaddition (PYPYT)
    sn2, weights = arco.sn_weight(specs)

    # coaddition
    spec1d = arco.one_d_coadd(specs, weights)
    return spec1d
Ejemplo n.º 15
0
def model_profile(spec,
                  fitpars,
                  instr=None,
                  gratings=None,
                  lsfranges=None,
                  cen_wave=None,
                  lps=None,
                  slits=None):
    '''Produce Voigt profile model from parameters and instrumental setup for
    convolving proper line spread function.  Note

    Parameters
    ----------
    spec : string or XSpectrum1D
        The spectrum to be fitted with the input lines
    fitpars : list of lists
        The joebvp parameter array that includes line measurements
    instr : list of str, optional
        Instruments used to observe the spectral regions defined in lsfranges
    gratings : list of str, optional
        Gratings used for each spectral region defined in lsfranges
    lsfranges : array of size len(instr)x2
        Beginning and ending wavelengths of spectral ranges for each setup
    cen_wave : list of str, optional
        Central wavelength setting for each spectral region defined in lsfranges
    lps : list of str, optional
        Lifetime positions of detector (particularly for COS)
    slits : list of str, optional
        Slit setting for each spectral region defined in lsfranges

    Returns
    -------
    wavelength : Quantity
        Wavelength array from spec
    profile : array
        Voigt profile model

    '''

    ### Setup LSF parameters if provided
    if instr is not None:
        cfg.instr = instr
        cfg.lsfranges = lsfranges
        cfg.gratings = gratings
        cfg.cen_wave = cen_wave
        cfg.lps = lps
        cfg.slits = slits

    ### Deal with alternate input types
    if isinstance(spec, str):
        specobj = readspec(spec)
    else:
        specobj = spec

    makevoigt.get_lsfs()
    #import pdb; pdb.set_trace()
    cfg.wave = specobj.wavelength.value
    cfg.spectrum = specobj
    profile = makevoigt.cosvoigt(cfg.wave, fitpars)
    return specobj.wavelength, profile
Ejemplo n.º 16
0
def test_sep_files():
    spec = io.readspec(data_path('UM184_nF.fits'))
    idl = ascii.read(data_path('UM184.dat.gz'), names=['wave', 'flux', 'sig'])
    np.testing.assert_allclose(spec.wavelength.value, idl['wave'])
    np.testing.assert_allclose(spec.sig, idl['sig'], atol=2e-3, rtol=0)

    assert spec.wavelength.unit == u.Unit('AA')
Ejemplo n.º 17
0
def test_attrib():
    spec = io.readspec(data_path('UM184_nF.fits'))
    #
    np.testing.assert_allclose(spec.wvmin.value, 3056.6673905210096)
    np.testing.assert_allclose(spec.wvmax.value, 9205.255609841855)
    #assert spec.npix == 15024 -- With masking on
    assert spec.npix == 16582
Ejemplo n.º 18
0
def test_write_ascii(spec):
    # Write. Should be replaced with tempfile.TemporaryFile
    spec.write_to_ascii(data_path('tmp.ascii'))
    #
    specb = io.readspec(data_path('tmp.ascii'))
    # check a round trip works
    np.testing.assert_allclose(spec.wavelength, specb.wavelength)
Ejemplo n.º 19
0
def test_attrib():
    spec = io.readspec(data_path('UM184_nF.fits'))
    # 
    np.testing.assert_allclose(spec.wvmin.value, 3056.6673905210096)
    np.testing.assert_allclose(spec.wvmax.value, 9205.255609841855)
    #assert spec.npix == 15024 -- With masking on
    assert spec.npix == 16582
Ejemplo n.º 20
0
def test_write_ascii(spec):
    # Write. Should be replaced with tempfile.TemporaryFile
    spec.write_to_ascii(data_path("tmp.ascii"))
    #
    spec2 = io.readspec(data_path("tmp.ascii"))
    # check a round trip works
    np.testing.assert_allclose(spec.dispersion, spec2.dispersion)
Ejemplo n.º 21
0
def test_aodm_absline():
    # Init CIV 1548
    abslin = AbsLine('CIV 1548', z=2.9304)

    # Set spectrum
    abslin.analy['spec'] = lsio.readspec(
        data_path('UM184_nF.fits'))  # Fumagalli+13 MagE spectrum
    abslin.limits.set([6080.78, 6087.82] * u.AA)
    #abslin.analy['wvlim'] = [6080.78, 6087.82]*u.AA
    #
    abslin.measure_aodm()
    N, sig_N, flgN = [abslin.attrib[key] for key in ['N', 'sig_N', 'flag_N']]

    np.testing.assert_allclose(N.value, 76369981945649.38)
    assert N.unit == 1 / u.cm**2
    assert flgN == 1

    # Now velocity limits
    abslin.setz(2.92929)
    abslin.limits.set((-150., 150.) * u.km / u.s)
    #
    abslin.measure_aodm()
    N, sig_N, flgN = [abslin.attrib[key] for key in ['N', 'sig_N', 'flag_N']]
    np.testing.assert_allclose(N.value, 80410608889125.64)
    return
Ejemplo n.º 22
0
def compare_s2n(pp,lrdx_sciobj,pypit_boxfile, iso):
    '''Compare boxcar S/N
    '''
    # Read/Load
    pypit_boxspec = lsio.readspec(pypit_boxfile)
    # Read LowRedux
    sig = np.sqrt(lrdx_sciobj['MASK_BOX']/(lrdx_sciobj['SIVAR_BOX'] + (lrdx_sciobj['MASK_BOX']==0)))
    lwrdx_boxspec = XSpectrum1D.from_tuple( (lrdx_sciobj['WAVE_BOX'], lrdx_sciobj['FLUX_BOX'], sig) )

    # Plot
    plt.clf()
    fig = plt.figure(figsize=(16,7))
    fig.suptitle("Instr={:s}, Setup={:s} :: Boxcar S/N for {:s} :: PYPIT ({:s})".format(iso[0], iso[1], iso[2], pypit.version), fontsize=18.)
    ax = plt.gca()
    ymax = np.median(pypit_boxspec.flux)*2.
    # PYPIT
    gdpy = pypit_boxspec.sig > 0.
    pys2n =  pypit_boxspec.flux[gdpy]/pypit_boxspec.sig[gdpy]
    ax.plot(pypit_boxspec.dispersion[gdpy],pys2n, 'k-', drawstyle='steps', label='PYPIT')
    # LowRedux
    gdlx = lwrdx_boxspec.sig > 0.
    ax.plot(lwrdx_boxspec.dispersion[gdlx], lwrdx_boxspec.flux[gdlx]/lwrdx_boxspec.sig[gdlx], 
            '-', color='blue', label='LowRedux')
    # Axes
    ax.set_xlim(np.min(pypit_boxspec.dispersion.value), np.max(pypit_boxspec.dispersion.value))
    ax.set_ylim(0.,np.median(pys2n)*2.)
    ax.set_xlabel('Wavelength',fontsize=17.)
    ax.set_ylabel('S/N per pixel',fontsize=17.)
    # Legend
    legend = plt.legend(loc='upper right', borderpad=0.3,
                handletextpad=0.3, fontsize='x-large')
    # Finish
    plt.tight_layout(pad=0.2,h_pad=0.,w_pad=0.1,rect=[0, 0.03, 1, 0.95])
    pp.savefig(bbox_inches='tight')
    plt.close()
Ejemplo n.º 23
0
 def init_conti_full(self):
     print("Initializing the continuum")
     spec = self.spec_widg.orig_spec
     spec.select = self.model_spec  # Just in case, but this should already be the case
     # Full Model (LLS+continuum)
     self.full_model = XSpectrum1D.from_tuple(
         (spec.wavelength, np.ones(len(spec.wavelength))))
     self.conti_dict = pycc.init_conti_dict(
         Norm=float(np.median(spec.flux.value)),
         piv_wv=1215. * (1 + self.zqso),
         #piv_wv2=915.*(1+zqso),
         igm='True')
     # Read Telfer and apply IGM
     if self.template is not None:
         tspec = lsi.readspec(self.template)
         # assume wavelengths
         tspec = XSpectrum1D.from_tuple(
             (tspec.wavelength.value * (1 + self.zqso), tspec.flux.value))
     else:
         tspec = pycq.get_telfer_spec(
             zqso=self.zqso, igm=(self.conti_dict['igm'] == 'True'))
         # Rebin
         self.continuum = tspec.rebin(spec.wavelength)
         # Reset pivot wave
         self.conti_dict['piv_wv'] = 915. * (1 + self.zqso)
         #self.conti_dict['piv_wv'] = 1215.*(1+zqso)
         #self.conti_dict['piv_wv2'] = 915.*(1+zqso)
     self.base_continuum = self.continuum.flux
     self.update_conti()
     self.spec_widg.continuum = self.continuum
Ejemplo n.º 24
0
def test_hi_lya():
    # Simple system (without an absline)
    dla1 = DLASystem.from_json(
        data_path('J010311.38+131616.7_z2.309_ESI.json'))
    dla1.zabs = 4.
    dla1.NHI = 21.
    dla2 = DLASystem.from_json(
        data_path('J010311.38+131616.7_z2.309_ESI.json'))
    dla2.zabs = 3.5
    dla2.NHI = 20.5
    spec_fil = linetools.__path__[0] + '/spectra/tests/files/PH957_f.fits'
    spec = lsio.readspec(spec_fil)
    # Just lya
    model, lya_lines = pyasu.hi_model([dla1, dla2], spec, lya_only=True)
    ipx = np.argmin(np.abs(spec.wavelength.value - (1 + dla1.zabs) * 1215.67))
    assert model.flux[ipx].value < 1e-4
    ipx2 = np.argmin(
        np.abs(spec.wavelength.value - (1 + dla1.zabs) * 1025.7222))
    assert model.flux[ipx2].value > 0.99
    # Lyman series
    model2, lyman_lines = pyasu.hi_model([dla1, dla2], spec)
    assert len(lyman_lines) > 10
    assert model2.flux[ipx2].value < 1e-4
    # LLS
    model3, lyman_lines = pyasu.hi_model([dla1, dla2], spec, add_lls=True)
    assert model3.flux[0].value < 1e-4
Ejemplo n.º 25
0
def coadd_cos_from_x1dfiles(filenames, wv_array=None, A_pix=0.01*u.AA):
    spec_list = []
    #TODO: mask out x1d spectral regions with bad values.
    for filename in filenames:
        sp = readspec(filename)
        import pdb; pdb.set_trace()
        # mask =
        spec_list += [sp]

    # spec_list contains all individual spectra
    specs = collate(spec_list)  # now all in a single XSpectrum1D object

    #rebin
    if wv_array is None:
        # bring them to a unique native wavelength grid using PYPIT
        A_pix = A_pix.to("AA").value
        cat_wave = arco.new_wave_grid(specs.data['wave'], wave_method='pixel', A_pix=A_pix)
    else:
        cat_wave = wv_array.to('AA').value

    specs = specs.rebin(cat_wave*u.AA, all=True, do_sig=True, masking='none',grow_bad_sig=True)

    # estimate weights for coaddition (PYPYT)
    sn2, weights = arco.sn_weight(specs)

    # coaddition
    spec1d = arco.one_d_coadd(specs, weights)
    return spec1d
Ejemplo n.º 26
0
def test_coadd_stis_from_x1dfiles(plot=False):
    spec_old = readspec("./data/m5zng1_stis/m5zng1_stis.fits")

    # co-add independently of old
    filenames = glob.glob("./data/m5zng1_stis/o6n*_x1d.fits")
    spec_new = coadd.coadd_stis_from_x1dfiles(filenames, wv_array=None)

    spec_new_rebinned = spec_new.rebin(spec_old.wavelength,
                                       do_sig=True,
                                       grow_bad_sig=True)
    if plot:
        plt.plot(spec_old.wavelength,
                 spec_old.flux,
                 drawstyle='steps-mid',
                 color='k')
        plt.plot(spec_old.wavelength,
                 spec_old.sig,
                 drawstyle='steps-mid',
                 color='g')
        plt.plot(spec_new.wavelength,
                 spec_new.flux,
                 drawstyle='steps-mid',
                 color='b')
        plt.plot(spec_new.wavelength,
                 spec_new.sig,
                 drawstyle='steps-mid',
                 color='y')

    spec_new.write_to_fits("new.fits")
Ejemplo n.º 27
0
def mk_comp(ctype,vlim=[-300.,300]*u.km/u.s,add_spec=False, use_rand=True,
            add_trans=False, zcomp=2.92939, b=20*u.km/u.s):
    # Read a spectrum Spec
    if add_spec:
        xspec = lsio.readspec(lt_path+'/spectra/tests/files/UM184_nF.fits')
    else:
        xspec = None
    # AbsLines
    if ctype == 'HI':
        all_trans = ['HI 1215', 'HI 1025']
    elif ctype == 'SiII':
        all_trans = ['SiII 1260', 'SiII 1304', 'SiII 1526', 'SiII 1808']
        if add_trans:
            all_trans += ['SiII 1193']
    abslines = []
    for trans in all_trans:
        iline = AbsLine(trans, z=zcomp)
        if use_rand:
            rnd = np.random.rand()
        else:
            rnd = 0.
        iline.attrib['logN'] = 13.3 + rnd
        iline.attrib['sig_logN'] = 0.15
        iline.attrib['flag_N'] = 1
        iline.attrib['b'] = b
        iline.analy['spec'] = xspec
        iline.limits.set(vlim)
        _,_ = ltaa.linear_clm(iline.attrib)  # Loads N, sig_N
        abslines.append(iline)
    # Component
    abscomp = AbsComponent.from_abslines(abslines)
    return abscomp, abslines
Ejemplo n.º 28
0
def test_write_ascii(spec):
    # Write. Should be replaced with tempfile.TemporaryFile
    spec.write_to_ascii(data_path('tmp.ascii'))
    #
    specb = io.readspec(data_path('tmp.ascii'))
    # check a round trip works
    np.testing.assert_allclose(spec.wavelength, specb.wavelength)
Ejemplo n.º 29
0
def test_hdf5(specm):
    import h5py
    # Write. Should be replaced with tempfile.TemporaryFile
    specm.write_to_hdf5(data_path('tmp.hdf5'))
    #
    specread = io.readspec(data_path('tmp.hdf5'))
    # check a round trip works
    np.testing.assert_allclose(specm.wavelength, specread.wavelength)
    # Add to existing file
    tmp2 = h5py.File(data_path('tmp2.hdf5'), 'w')
    foo = tmp2.create_group('boxcar')
    specm.add_to_hdf5(tmp2, path='/boxcar/')
    tmp2.close()
    # check a round trip works
    spec3 = io.readspec(data_path('tmp2.hdf5'), path='/boxcar/')
    np.testing.assert_allclose(specm.wavelength, spec3.wavelength)
Ejemplo n.º 30
0
def test_slice():
    spec = io.readspec(data_path('UM184_nF.fits'))
    spec2 = io.readspec(data_path('PH957_f.fits'))
    spec3 = spec2.copy()
    # Collate to make a multispec spectrum
    mspec = lsu.collate([spec, spec2, spec3])
    # Array
    newspec = mspec[np.array([0, 1])]
    # Test
    assert newspec.nspec == 2
    assert not newspec.co_is_set
    # Int
    newspec2 = mspec[1]
    assert newspec2.nspec == 1
    # Slice
    newspec3 = mspec[0:2]
    assert newspec3.nspec == 2
Ejemplo n.º 31
0
def test_gauss_smooth():
    spec = io.readspec(data_path('UM184_nF.fits'))

    # Smooth
    smth_spec = spec.gauss_smooth(4.)
    # Test
    np.testing.assert_allclose(smth_spec.flux[3000].value, 0.8288110494613)
    assert smth_spec.flux.unit == spec.flux.unit
Ejemplo n.º 32
0
def test_relvel():
    spec = io.readspec(data_path('UM184_nF.fits'))

    # Velocity
    velo = spec.relative_vel(5000.*u.AA)
    # Test
    np.testing.assert_allclose(velo[6600].value, -3716.441360213781)
    assert velo.unit == (u.km/u.s)
Ejemplo n.º 33
0
def specr():
    # Replace bad pixels (for rebinning)
    data = io.readspec(data_path('UM184_nF.fits'), masking='edges')
    sig = data.sig.value
    bad_pix = sig <= 0.
    sig[bad_pix] = 1.
    data.sig = sig
    return data
Ejemplo n.º 34
0
def test_readwrite_meta_as_dicts(spec):
    sp = XSpectrum1D.from_tuple((np.array([5, 6,
                                           7]), np.ones(3), np.ones(3) * 0.1))
    sp.meta['headers'][0] = dict(a=1, b='abc')
    sp2 = XSpectrum1D.from_tuple(
        (np.array([8, 9, 10]), np.ones(3), np.ones(3) * 0.1))
    sp2.meta['headers'][0] = dict(c=2, d='efg')
    spec = ltsu.collate([sp, sp2])
    # Write
    spec.write_to_fits(data_path('tmp.fits'))
    spec.write_to_hdf5(data_path('tmp.hdf5'))
    # Read and test
    newspec = io.readspec(data_path('tmp.hdf5'))
    assert newspec.meta['headers'][0]['a'] == 1
    assert newspec.meta['headers'][0]['b'] == 'abc'
    newspec2 = io.readspec(data_path('tmp.fits'))
    assert 'METADATA' in newspec2.meta['headers'][0].keys()
Ejemplo n.º 35
0
def specr():
    # Replace bad pixels (for rebinning)
    data = io.readspec(data_path('UM184_nF.fits'), masking='edges')
    sig = data.sig.value
    bad_pix = sig <= 0.
    sig[bad_pix] = 1.
    data.sig = sig
    return data
Ejemplo n.º 36
0
def test_slice():
    spec = io.readspec(data_path('UM184_nF.fits'))
    spec2 = io.readspec(data_path('PH957_f.fits'))
    spec3 = spec2.copy()
    # Collate to make a multispec spectrum
    mspec = lsu.collate([spec,spec2,spec3])
    # Array
    newspec = mspec[np.array([0,1])]
    # Test
    assert newspec.nspec == 2
    assert not newspec.co_is_set
    # Int
    newspec2 = mspec[1]
    assert newspec2.nspec == 1
    # Slice
    newspec3 = mspec[0:2]
    assert newspec3.nspec == 2
Ejemplo n.º 37
0
    def __init__(self,specfilename,parfilename=None,wave1=None,wave2=None,numchunks=8,parent=None):
        QtWidgets.QMainWindow.__init__(self, parent)
        #super(Main,self).__init__()
        self.setupUi(self)

        ### Initialize stuff
        self.line_dict = {}
        self.fitpars = None
        self.parinfo = None
        self.linecmts = None
        self.wave1 = wave1
        self.wave2 = wave2
        self.numchunks = numchunks
        self.spls = []
        self.labeltog = 1
        self.pixtog = 0
        self.restog = 1
        self.fitconvtog = 0
        self.lastclick=1334.

        ### Read in spectrum and list of lines to fit
        self.specfilename=specfilename
        self.spectrum = readspec(specfilename)
        self.wave=self.spectrum.wavelength.value
        self.normflux=self.spectrum.flux/self.spectrum.co
        self.normsig=self.spectrum.sig/self.spectrum.co
        cfg.spectrum = self.spectrum
        cfg.wave=self.wave
        cfg.normflux=self.normflux
        cfg.filename=self.specfilename

        if not parfilename==None:
            self.initialpars(parfilename)


        ### Connect signals to slots
        self.fitButton.clicked.connect(self.fitlines)
        self.fitConvBox.clicked.connect(self.togfitconv)
        self.boxLineLabel.clicked.connect(self.toglabels)
        self.boxFitpix.clicked.connect(self.togfitpix)
        self.boxResiduals.clicked.connect(self.togresiduals)
        self.loadParsButton.clicked.connect(self.openParFileDialog)
        self.addLineButton.clicked.connect(self.addLineDialog)
        self.writeParsButton.clicked.connect(self.writeParFileDialog)
        self.writeModelButton.clicked.connect(self.writeModelFileDialog)
        self.writeModelCompButton.clicked.connect(self.writeModelCompFileDialog)
        self.quitButton.clicked.connect(self.quitGui)

        ### Initialize spectral plots
        fig=Figure(figsize=(5,3))
        self.fig=fig
        self.initplot(fig)

        ### Initialize side plot
        sidefig=Figure(figsize=(5.85,3.75))
        self.sidefig = sidefig
        self.addsidempl(self.sidefig)
        self.sideplot(self.lastclick)  #Dummy initial cenwave setting
Ejemplo n.º 38
0
    def __init__(self,specfilename,parfilename=None,wave1=None,wave2=None,numchunks=8,parent=None):
        QtWidgets.QMainWindow.__init__(self, parent)
        #super(Main,self).__init__()
        self.setupUi(self)

        ### Initialize stuff
        self.line_dict = {}
        self.fitpars = None
        self.parinfo = None
        self.linecmts = None
        self.wave1 = wave1
        self.wave2 = wave2
        self.numchunks = numchunks
        self.spls = []
        self.labeltog = 1
        self.pixtog = 0
        self.restog = 1
        self.fitconvtog = 0
        self.lastclick=1334.

        ### Read in spectrum and list of lines to fit
        self.specfilename=specfilename
        self.spectrum = readspec(specfilename)
        self.wave=self.spectrum.wavelength.value
        self.normflux=self.spectrum.flux/self.spectrum.co
        self.normsig=self.spectrum.sig/self.spectrum.co
        cfg.spectrum = self.spectrum
        cfg.wave=self.wave
        cfg.normflux=self.normflux
        cfg.filename=self.specfilename

        if not parfilename==None:
            self.initialpars(parfilename)


        ### Connect signals to slots
        self.fitButton.clicked.connect(self.fitlines)
        self.fitConvBox.clicked.connect(self.togfitconv)
        self.boxLineLabel.clicked.connect(self.toglabels)
        self.boxFitpix.clicked.connect(self.togfitpix)
        self.boxResiduals.clicked.connect(self.togresiduals)
        self.loadParsButton.clicked.connect(self.openParFileDialog)
        self.addLineButton.clicked.connect(self.addLineDialog)
        self.writeParsButton.clicked.connect(self.writeParFileDialog)
        self.writeModelButton.clicked.connect(self.writeModelFileDialog)
        self.writeModelCompButton.clicked.connect(self.writeModelCompFileDialog)
        self.quitButton.clicked.connect(self.quitGui)

        ### Initialize spectral plots
        fig=Figure()
        self.fig=fig
        self.initplot(fig)

        ### Initialize side plot
        sidefig=Figure(figsize=(5.25,2))
        self.sidefig = sidefig
        self.addsidempl(self.sidefig)
        self.sideplot(self.lastclick)  #Dummy initial cenwave setting
Ejemplo n.º 39
0
def read_spec(row):
    # Filename
    coord = SkyCoord(ra=row['RA_GROUP'], dec=row['DEC_GROUP'], unit='deg')
    filename = 'J{:s}{:s}.txt'.format(coord.ra.to_string(unit=u.hour,sep='',pad=True)[0:4],
                              coord.dec.to_string(sep='',pad=True,alwayssign=True)[0:5])
    # Read
    spec = lsio.readspec(path+filename)
    # Return
    return filename, spec
Ejemplo n.º 40
0
def test_addnoise():
    spec = io.readspec(data_path('UM184_nF.fits'))
    #
    spec.add_noise(seed=12)
    np.testing.assert_allclose(spec.flux[1000], 0.44806158542633057)

    # With S/N input
    spec.add_noise(seed=19,s2n=10.)
    np.testing.assert_allclose(spec.flux[1000], 0.24104823059199412)
Ejemplo n.º 41
0
def test_rebin():
    spec = io.readspec(data_path('UM184_nF.fits'))
    # Rebin
    new_wv = np.arange(3000., 9000., 5) * u.AA
    newspec = spec.rebin(new_wv)
    # Test

    np.testing.assert_allclose(newspec.flux[1000], 0.9999280967617779)
    assert newspec.flux.unit == u.dimensionless_unscaled
Ejemplo n.º 42
0
def json_eqw(json_file, fits_file, outfile, overwrite=False):
    ion_name = []
    restwave = []
    col = []
    col_err = []
    flag = []
    zcomp = []
    if not os.path.isfile(json_file):
        return np.array(ion_name), np.array(restwave), np.array(col), \
            np.array(col_err), np.array(flag), np.array(zcomp)

    if not os.path.isfile(outfile) or overwrite == True:
        out = open(outfile, 'w')
        out.write('#ion_name, restwave, logN, logN_err, flag_N, zcomp\n')

        with open(json_file) as data_file:
            igmg_dict = json.load(data_file)

        comp_list = []
        for ii, key in enumerate(igmg_dict['cmps'].keys()):
            comp = AbsComponent.from_dict(igmg_dict['cmps'][key],
                                          chk_sep=False,
                                          chk_data=False,
                                          chk_vel=False)
            comp_list += [comp]

        spec = readspec(fits_file)
        for i, cc in enumerate(comp_list):
            for j, al in enumerate(cc._abslines):
                al.analy['spec'] = spec
                al.measure_ew()
                al.measure_aodm()

                ion_name.append(al.ion_name)
                restwave.append(al.wrest.value)
                col.append(al.attrib['logN'])
                sig_logN = al.attrib['sig_logN']
                if np.isnan(sig_logN):
                    sig_logN = 0.0
                col_err.append(sig_logN)
                flag.append(al.attrib['flag_N'])
                zcomp.append(al.z)

                out.write('%s\t%f\t%e\t%e\t%d\t%0.6f\n'%(al.ion_name, al.wrest.value, \
                     al.attrib['logN'], sig_logN, al.attrib['flag_N'], al.z))
        out.close()
    if os.path.isfile(outfile) and len(open(outfile).readlines()) > 1:
        ion_name = np.loadtxt(outfile,
                              unpack=True,
                              skiprows=1,
                              usecols=0,
                              dtype='str')
        restwave, col, col_err, flag, zcomp = \
            np.loadtxt(outfile, unpack = True, skiprows = 1, usecols =  (1, 2, 3, 4, 5))

    return np.array(ion_name), np.array(restwave), np.array(col), np.array(
        col_err), np.array(flag), np.array(zcomp)
Ejemplo n.º 43
0
def compare_skyspec(pp,sciobj,pypit_skyboxfile, iso):
    '''Compare traces
    Parameters:
    ----------
    pp: Pdf obj
    sciobj: Table
      LowRedux sciobj table 
    iso: tuple
      instr, setup, obj strings
    '''
    # Load
    pypit_skyspec = lsio.readspec(pypit_skyboxfile) 
    #
    lwrdx_skywv = sciobj['WAVE_BOX']
    lwrdx_skyfx = sciobj['SKY_BOX']
    lwrdx_skywv = arwv.vactoair(lwrdx_skywv*u.AA)
    #
    plt.clf()
    plt.figure(figsize=(16,8))
    gs = gridspec.GridSpec(2, 1)
    # Full
    ax = plt.subplot(gs[0])
    # PYPIT
    ax.plot(pypit_skyspec.dispersion, pypit_skyspec.flux, 'k-', label='PYPIT', drawstyle='steps')
    # LowRedux
    ax.plot(lwrdx_skywv, lwrdx_skyfx/(2.*sciobj['BOX_RAD']), '-', color='blue', label='LowRedux')
    # Axes
    ax.set_xlim(np.min(pypit_skyspec.dispersion.value),np.max(pypit_skyspec.dispersion.value))
    ax.set_ylim(0.,np.max(pypit_skyspec.flux))
    ax.set_xlabel('Wavelength',fontsize=17.)
    ax.set_ylabel('Sky (Counts/pix)',fontsize=17.)
    # Legend
    legend = plt.legend(loc='upper left', borderpad=0.3,
                handletextpad=0.3, fontsize='x-large')

    # ZOOM
    axz = plt.subplot(gs[1])
    # PYPIT
    axz.plot(pypit_skyspec.dispersion, pypit_skyspec.flux, 'k-', label='PYPIT', drawstyle='steps-mid')
    # LowRedux
    axz.plot(lwrdx_skywv, lwrdx_skyfx/(2.*sciobj['BOX_RAD']), '-', color='blue', label='LowRedux')
    # Axes
    zlim = np.array([7200., 7700.])*u.AA
    axz.set_xlim(zlim.value)
    ymx = np.max( pypit_skyspec.flux[np.where((pypit_skyspec.dispersion>zlim[0])&(pypit_skyspec.dispersion<zlim[1]))])
    axz.set_ylim(0.,ymx)
    axz.set_xlabel('Wavelength',fontsize=17.)
    axz.set_ylabel('Sky (Counts/pix)',fontsize=17.)
    # Legend
    legend = plt.legend(loc='upper right', borderpad=0.3,
                handletextpad=0.3, fontsize='x-large')
    ax.set_title("Instr={:s}, Setup={:s} :: Sky Spectra for {:s} :: PYPIT ({:s})".format(iso[0], iso[1], iso[2], pypit.version), fontsize=18.)

    # Finish
    plt.tight_layout(pad=0.2,h_pad=0.,w_pad=0.1)
    pp.savefig(bbox_inches='tight')
    plt.close()
Ejemplo n.º 44
0
def main(*args, **kwargs):
    """ Runs the continuum fitter
    """
    import argparse

    parser = argparse.ArgumentParser(description='GUI to fit a continuum to a spectrum')
    parser.add_argument("file", type=str, help="Input spectral file (FITS, ASCII, etc.)")
    parser.add_argument("outfil", type=str, help="Output, normalized spectrum filename; FITS [can be the same]")
    parser.add_argument("--redshift", type=float, help="Redshift of the Source")
    parser.add_argument("--wchunk", type=float, help="Width of a 'chunk' (Ang)")
    parser.add_argument("--native", default=True, action='store_true', help="Do not mask input spectrum")
    parser.add_argument("--specdb", type=str, help="Input file is specdb.  Input (ra,dec,group) in this order without spaces")
    #parser.add_argument("-exten", type=int, help="FITS extension")

    pargs = parser.parse_args()


    from linetools.guis import specdbutils
    from linetools.spectra import io as lsio

    # Read spectrum
    if pargs.native:
        masking = 'none'
    else:
        masking = 'edges'

    # Load from simple file
    if pargs.specdb is None:
        xspec = lsio.readspec(pargs.file, masking=masking)
    else:
        # Load specdb
        spdb = specdbutils.load_specb(pargs.file)
        if spdb is None:
            print("You have not yet installed specdb!!")
            print("Exiting..")
            return
        # Parse
        ra,dec,group = pargs.specdb.split(',')
        # Load
        xspec = specdbutils.load_xspec(spdb, float(ra), float(dec), group=group, masking=masking)

    kwrds = {}
    if pargs.wchunk is not None:
        kwrds['dw'] = pargs.wchunk

    # Redshift
    if pargs.redshift is not None:
        kwrds['kind'] = 'QSO'
        kwrds['redshift'] = pargs.redshift

    # Run
    print("WARNING: QUIT with q keystroke, not by clicking to kill.")
    xspec.fit_continuum(**kwrds)

    # Output
    xspec.write_to_fits(pargs.outfil)
Ejemplo n.º 45
0
def test_readwrite_metadata(spec):
    d = {"a": 1, "b": "abc", "c": 3.2, "d": np.array([1, 2, 3]), "e": dict(a=1, b=2)}
    spec.meta.update(d)
    spec.write_to_fits(data_path("tmp.fits"))
    spec2 = io.readspec(data_path("tmp.fits"))
    assert spec2.meta["a"] == d["a"]
    assert spec2.meta["b"] == d["b"]
    np.testing.assert_allclose(spec2.meta["c"], d["c"])
    np.testing.assert_allclose(spec2.meta["d"], d["d"])
    assert spec2.meta["e"] == d["e"]
Ejemplo n.º 46
0
def test_box_smooth():
    spec = io.readspec(data_path('UM184_nF.fits'))

    # Smooth
    newspec3 = spec.box_smooth(3)
    np.testing.assert_allclose(newspec3.flux[4000], 0.9967582821846008)
    assert newspec3.flux.unit == u.dimensionless_unscaled

    newspec5 = spec.box_smooth(5)
    np.testing.assert_allclose(newspec5.flux[3000], 1.086308240890503)
Ejemplo n.º 47
0
    def from_file(self, ifile):
        ''' From file

        Parameters
        ----------
        ifile : str
          Filename
        '''
        slf = lsio.readspec(ifile)
        return slf
Ejemplo n.º 48
0
    def from_file(self, ifile, **kwargs):
        """ From file

        Parameters
        ----------
        ifile : str
          Filename
        """
        slf = lsio.readspec(ifile, **kwargs)
        return slf
Ejemplo n.º 49
0
def main(args):

    import os
    from pkg_resources import resource_filename

    from matplotlib import pyplot as plt

    from linetools.spectra.io import readspec

    # Path to archived sky spectra
    sky_path = os.path.join(resource_filename('pypeit', 'data'), 'sky_spec')

    # Extension
    exten = args.exten if hasattr(args, 'exten') else 0

    # Read spec keywords
    ikwargs = {}
    if args.optimal:
        ikwargs['wave_tag'] = 'opt_wave'
        ikwargs['flux_tag'] = 'opt_sky'
    else:
        ikwargs['wave_tag'] = 'box_wave'
        ikwargs['flux_tag'] = 'box_sky'

    # Load user file
    user_sky = readspec(args.file, exten=exten, **ikwargs)
    # Load sky spec
    arx_sky = readspec(sky_path + args.skyfile)

    # Plot
    plt.clf()
    plt.plot(user_sky.wavelength,
             user_sky.flux * args.scale_user,
             'k-',
             label='user')
    plt.plot(arx_sky.wavelength, arx_sky.flux, 'b-', label='archive')
    legend = plt.legend(loc='upper left',
                        scatterpoints=1,
                        borderpad=0.3,
                        handletextpad=0.3,
                        fontsize='small',
                        numpoints=1)
    plt.show()
Ejemplo n.º 50
0
def read_spec(row):
    # Filename
    coord = SkyCoord(ra=row['RA_GROUP'], dec=row['DEC_GROUP'], unit='deg')
    filename = 'J{:s}{:s}.txt'.format(
        coord.ra.to_string(unit=u.hour, sep='', pad=True)[0:4],
        coord.dec.to_string(sep='', pad=True, alwayssign=True)[0:5])
    # Read
    spec = lsio.readspec(path + filename)
    # Return
    return filename, spec
Ejemplo n.º 51
0
def test_model_abs():
    # Simple system (without an absline)
    dla = DLASystem.from_json(data_path('J010311.38+131616.7_z2.309_ESI.json'))
    spec_fil = linetools.__path__[0]+'/spectra/tests/files/PH957_f.fits'
    spec = lsio.readspec(spec_fil)
    model, lya_lines = dla.model_abs(spec)
    # import pdb; pdb.set_trace()
    # Check core
    ipx = np.argmin(np.abs(spec.wavelength.value-(1+dla.zabs)*1215.67))
    assert model.flux[ipx].value < 1e-4
Ejemplo n.º 52
0
def plotspec(args):
    """Plot spectrum files

    Parameters
    ----------
    filenames : list of str
      Spectrum filenames
    """
    from linetools.spectra.io import readspec
    import warnings
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    warnings.simplefilter('ignore', mpl.mplDeprecation)
    
    spec_cache = {}

    fig = plt.figure(figsize=(10,5))
    fig.subplots_adjust(left=0.07, right=0.95, bottom=0.11)
    ax = fig.add_subplot(111)
    i = 0
    quit = False
    print("#### Use left and right arrow keys to navigate, 'Q' to quit ####")

    while quit is False:
        filename = args.filenames[i]
        if filename not in spec_cache:
            spec_cache[filename] = readspec(filename)
        sp = spec_cache[filename]
        ax.cla()
        sp.plot(show=False)
        ax.set_xlabel(str(sp.wavelength.unit))
        ax.set_title(filename)
        if args.redshift is not None:
            from linetools.lists.linelist import LineList
            ll = LineList('Strong')
            #import pdb ;pdb.set_trace()
            wlines = ll._data['wrest'] * (1 + args.redshift)
            y0, y1 = ax.get_ylim()
            ax.vlines(wlines.to(sp.wavelength.unit).value, y0, y1,
                      linestyle='dotted')

        while True:
            plt.waitforbuttonpress()
            if sp._plotter.last_keypress == 'right':
                i += 1
                i = min(i, len(args.filenames) - 1)
                # Note this only breaks out of the inner while loop
                break
            elif sp._plotter.last_keypress == 'left':
                i -= 1
                i = max(i, 0)
                break
            elif sp._plotter.last_keypress == 'Q':
                quit = True
                break
Ejemplo n.º 53
0
def test_sep_files():
    """ Separate flux/error files"""
    spec = io.readspec(data_path('UM184_nF.fits'))
    idl = ascii.read(data_path('UM184.dat.gz'), names=['wave', 'flux', 'sig'])
    #np.testing.assert_allclose(spec.wavelength.value, idl['wave'])
    np.testing.assert_allclose(spec.data['wave'][spec.select], idl['wave'])
    np.testing.assert_allclose(spec.data['sig'][spec.select],
                               idl['sig'],
                               atol=2e-3,
                               rtol=0)
    assert spec.wavelength.unit == u.Unit('AA')
Ejemplo n.º 54
0
def test_dla_XY():
    spec_fil = linetools.__path__[0]+'/spectra/tests/files/PH957_f.fits'
    spec = lsio.readspec(spec_fil)
    dla = DLASystem.from_json(data_path('J010311.38+131616.7_z2.309_ESI.json'))
    #
    dla.measure_aodm(spec=spec)
    dla.update_component_colm()
    dla.fill_ionN()
    dla.XY = RelAbund.from_ionclm_table((1,21.37,0.08), dla._ionN)
    tbl = dla.XY.table()
    assert len(tbl) == 8
Ejemplo n.º 55
0
def test_dla_XY():
    spec_fil = linetools.__path__[0]+'/spectra/tests/files/PH957_f.fits'
    spec = lsio.readspec(spec_fil)
    dla = DLASystem.from_json(data_path('J010311.38+131616.7_z2.309_ESI.json'))
    #
    dla.measure_aodm(spec=spec)
    dla.update_component_colm()
    dla.fill_ionN()
    dla.XY = RelAbund.from_ionclm_table((1,21.37,0.08), dla._ionN)
    tbl = dla.XY.table()
    assert len(tbl) == 8
Ejemplo n.º 56
0
def main(*args, **kwargs):
    """ Runs the XSpecGui on an input file
    """
    import argparse

    parser = argparse.ArgumentParser(description='Parse')
    parser.add_argument("file", type=str, help="Spectral file")
    parser.add_argument("skyfile", type=str, help="Archived PYPIT sky file (e.g. paranal_sky.fits")
    parser.add_argument("--exten", type=int, help="FITS extension")
    parser.add_argument("--optimal", default=False,
                        help="Show Optimal? Default is boxcar", action="store_true")
    parser.add_argument("--scale_user", default=1., type=float, help="Scale user spectrum by a factor")

    pargs = parser.parse_args()
    from matplotlib import pyplot as plt

    # Extension
    exten = (pargs.exten if hasattr(pargs, 'exten') else 0)
    #scale = (pargs.scale_user if hasattr(pargs, 'scale_user') else 1.)

    # Read spec keywords
    ikwargs = {}
    if pargs.optimal:
        ikwargs['wave_tag'] = 'opt_wave'
        ikwargs['flux_tag'] = 'opt_sky'
    else:
        ikwargs['wave_tag'] = 'box_wave'
        ikwargs['flux_tag'] = 'box_sky'

    # Load user file
    user_sky = readspec(pargs.file, exten=exten, **ikwargs)
    # Load sky spec
    arx_sky = readspec(sky_path+pargs.skyfile)

    # Plot
    plt.clf()
    plt.plot(user_sky.wavelength, user_sky.flux*pargs.scale_user, 'k-', label='user')
    plt.plot(arx_sky.wavelength, arx_sky.flux, 'b-', label='archive')
    legend = plt.legend(loc='upper left', scatterpoints=1, borderpad=0.3,
                        handletextpad=0.3, fontsize='small', numpoints=1)
    plt.show()
Ejemplo n.º 57
0
def combinespectfiles(spfile_a, spfile_b, file_ab):
    """ Coadd two spectra, and write output in a file

    Parameters
    ----------
    spfile_a : str
    spfile_b : str
       .fits files with spectra
    file_ab : str
       output .fits file with combined spectra

    Returns
    -------

    """
    from linetools.spectra import io as tio
    from linetools.spectra import utils as spltu
    file_a = tio.readspec(spfile_a)
    file_b = tio.readspec(spfile_b)
    spliced_sp = spltu.splice_two(file_b, file_a, chk_units=False)
    spliced_sp.write(file_ab)
Ejemplo n.º 58
0
def test_measurekin_absline():
    # Test Simple kinematics
    abslin = AbsLine('NiII 1741',z=2.307922)

    # Set spectrum
    abslin.analy['spec'] = lsio.readspec(data_path('PH957_f.fits'))
    abslin.limits.set([-70., 70.]*u.km/u.s)

    # Measure Kin
    abslin.measure_kin()
    np.testing.assert_allclose(abslin.attrib['kin']['Dv'].value, 75.)
    np.testing.assert_allclose(abslin.attrib['kin']['fedg'], 0.20005782376000183)
Ejemplo n.º 59
0
def main(*args, **kwargs):
    """ Runs the continuum fitter
    """
    import argparse

    parser = argparse.ArgumentParser(
        description='GUI to fit a continuum to a spectrum')
    parser.add_argument("file",
                        type=str,
                        help="Input spectral file (FITS, ASCII, etc.)")
    parser.add_argument(
        "outfil",
        type=str,
        help="Output, normalized spectrum filename; FITS [can be the same]")
    parser.add_argument("--redshift",
                        type=float,
                        help="Redshift of the Source")
    parser.add_argument("--wchunk",
                        type=float,
                        help="Width of a 'chunk' (Ang)")
    parser.add_argument("--native",
                        default=True,
                        action='store_true',
                        help="Do not mask input spectrum")
    #parser.add_argument("-exten", type=int, help="FITS extension")

    pargs = parser.parse_args()

    from linetools.guis.xspecgui import XSpecGui
    from linetools.spectra import io as lsio

    # Read spectrum
    if pargs.native:
        masking = 'none'
    else:
        masking = 'edges'
    xspec = lsio.readspec(pargs.file, masking=masking)

    kwrds = {}
    if pargs.wchunk is not None:
        kwrds['dw'] = pargs.wchunk

    # Redshift
    if pargs.redshift is not None:
        kwrds['kind'] = 'QSO'
        kwrds['redshift'] = pargs.redshift

    # Run
    print("WARNING: QUIT with q keystroke, not by clicking to kill.")
    xspec.fit_continuum(**kwrds)

    # Output
    xspec.write_to_fits(pargs.outfil)