Ejemplo n.º 1
0
    def _compute_ls(self, magnitude, time, ofac):
        fx, fy, nout, jmax, prob = lomb.fasper(time, magnitude, ofac, 100.)
        period = fx[jmax]
        T = 1.0 / period
        new_time = np.mod(time, 2 * T) / (2 * T)

        return T, new_time, prob, period
Ejemplo n.º 2
0
    def computePSD(self):
        if len(self.series) > 10:

            fx, fy, nout, jmax, prob = lomb.fasper(
                self.smpltime[self.idx_start:-1] / 1000,
                self.series[self.idx_start:-1] / 1000, 4., 2.)
            pwr = ( ( self.series[self.idx_start:-1]/1000-(self.series[self.idx_start:-1]/1000).mean())**2).sum() \
                    /(len(self.series[self.idx_start:-1])-1)
            fy = fy / (nout / (4.0 * pwr)) * 1000
            self.psd_mag = fy
            self.psd_freq = fx

            # Calculate frequencies power components VLF, LF and HF
            self.VLFpwr = 0
            self.LFpwr = 0
            self.HFpwr = 0
            for i, f in enumerate(self.psd_freq):
                if 0 < f <= 0.04:
                    self.VLFpwr += self.psd_mag[i]
                elif 0.04 < f <= 0.15:
                    self.LFpwr += self.psd_mag[i]
                elif 0.15 < f <= 0.4:
                    self.HFpwr += self.psd_mag[i]

            self.VLFpwr *= 1000
            self.LFpwr *= 1000
            self.HFpwr *= 1000
Ejemplo n.º 3
0
    def _components(self, magnitude, time, ofac):
        time = time - np.min(time)
        A, PH = [], []
        for i in range(3):

            wk1, wk2, nout, jmax, prob = lomb.fasper(time, magnitude, ofac,
                                                     100.)

            fundamental_Freq = wk1[jmax]
            Atemp, PHtemp = [], []
            omagnitude = magnitude

            for j in range(4):
                function_to_fit = self._yfunc_maker((j + 1) * fundamental_Freq)
                popt0, popt1, popt2 = curve_fit(function_to_fit, time,
                                                omagnitude)[0][:3]

                Atemp.append(np.sqrt(popt0**2 + popt1**2))
                PHtemp.append(np.arctan(popt1 / popt0))

                model = self._model(time, popt0, popt1, popt2,
                                    (j + 1) * fundamental_Freq)
                magnitude = np.array(magnitude) - model

            A.append(Atemp)
            PH.append(PHtemp)

        PH = np.asarray(PH)
        scaledPH = PH - PH[:, 0].reshape((len(PH), 1))

        return A, scaledPH
Ejemplo n.º 4
0
    def computePSD( self ):
        if len(self.series) > 10:

            fx, fy, nout, jmax, prob = lomb.fasper( self.smpltime[self.idx_start:-1]/1000,
                                                   self.series[self.idx_start:-1]/1000,
                                                   4., 2.)
            pwr = ( ( self.series[self.idx_start:-1]/1000-(self.series[self.idx_start:-1]/1000).mean())**2).sum() \
                    /(len(self.series[self.idx_start:-1])-1)
            fy = fy/(nout/(4.0*pwr))*1000
            self.psd_mag = fy
            self.psd_freq = fx

            # Calculate frequencies power components VLF, LF and HF
            self.VLFpwr = 0
            self.LFpwr = 0
            self.HFpwr = 0
            for i, f in enumerate( self.psd_freq ):
                if 0 < f <= 0.04:
                    self.VLFpwr += self.psd_mag[i]
                elif 0.04 < f <= 0.15:
                    self.LFpwr += self.psd_mag[i]
                elif 0.15 < f <= 0.4:
                    self.HFpwr += self.psd_mag[i]

            self.VLFpwr *= 1000
            self.LFpwr *= 1000
            self.HFpwr *= 1000
Ejemplo n.º 5
0
def fft(time, flux, ofac, hifac):
  # Do LNP Test (Lomb-Scargle Periodogram) ie FT
  freq,power, nout, jmax, prob = lomb.fasper(time, flux, ofac, hifac)
  convfactor = (1. / (60 * 60 * 24)) * (10 ** 6)
  uHzfreq = freq * convfactor #11.57, conversion c/d to mHz

  return uHzfreq, power
Ejemplo n.º 6
0
def spectral_features(lc):
    lc.remove_gaps()
    FIND_FREQUENCIES = 4
    time = numpy.array(lc.time)
    flux = numpy.array(lc.flux)
    # center the flux
    flux = (flux - numpy.mean(flux)) / (1.0 * numpy.std(flux))
    result = lomb.fasper(time, flux, 6.0, 6.0)
    # filter out weird frequencies
    spectral_results = filter(
        lambda elem: elem[0] < 0.55 and elem[0] > (2.0 / len(lc.time)),
        zip(result[0], result[1]))
    wavelengths = []
    for frequency in sorted(spectral_results, key=itemgetter(1), reverse=True):
        wavelength = int(round(1.0 / frequency[0]))
        # check if wavelength is approximately in array
        include = True
        for found_wavelength in wavelengths:
            if abs(found_wavelength - wavelength) <= 4:
                include = False
        if include:
            wavelengths.append(wavelength)
        if len(wavelengths) == FIND_FREQUENCIES:
            break
    if len(wavelengths) < FIND_FREQUENCIES:
        wavelengths += [0] * (FIND_FREQUENCIES - len(wavelengths))
    if len(wavelengths) < FIND_FREQUENCIES:
        wavelengths += [0] * (FIND_FREQUENCES - len(wavelengths))
    return wavelengths
Ejemplo n.º 7
0
def spectral_features(lc):
	FIND_FREQUENCIES = 4
	time = numpy.array(lc.time)
	flux = numpy.array(lc.flux)
	# center the flux
	flux = (flux - numpy.mean(flux)) / (1.0 * numpy.std(flux))
	result = lomb.fasper(time, flux, 6.0, 6.0)
	# filter out weird frequencies
	spectral_results = filter(lambda elem: elem[0] < 0.55 and elem[0] > (2.0 / len(lc.time)), zip(result[0], result[1]))
	wavelengths = []
	for frequency in sorted(spectral_results, key=itemgetter(1), reverse=True):
		wavelength = int(round(1.0 / frequency[0]))
		# check if wavelength is approximately in array
		include = True
		for found_wavelength in wavelengths:
			if abs(found_wavelength - wavelength) <= 4:
				include = False
		if include:
			wavelengths.append(wavelength)
		if len(wavelengths) == FIND_FREQUENCIES:
			break
	if len(wavelengths) < FIND_FREQUENCIES:
		wavelengths += [0] * (FIND_FREQUENCIES - len(wavelengths))
	if len(wavelengths) < FIND_FREQUENCIES:
		wavelengths += [0] * (FIND_FREQUENCES - len(wavelengths))
	return wavelengths
Ejemplo n.º 8
0
    def fit(self, data):
        magnitude = data[0]
        time = data[1]

        time = time - np.min(time)

        A = []
        PH = []
        scaledPH = []

        def model(x, a, b, c, Freq):
            return a * np.sin(2 * np.pi * Freq * x) + b * np.cos(
                2 * np.pi * Freq * x) + c

        for i in range(3):

            wk1, wk2, nout, jmax, prob = lomb.fasper(time, magnitude, 6., 100.)

            fundamental_Freq = wk1[jmax]

            # fit to a_i sin(2pi f_i t) + b_i cos(2 pi f_i t) + b_i,o

            # a, b are the parameters we care about
            # c is a constant offset
            # f is the fundamental Frequency
            def yfunc(Freq):
                def func(x, a, b, c):
                    return a * np.sin(2 * np.pi * Freq * x) + b * np.cos(
                        2 * np.pi * Freq * x) + c

                return func

            Atemp = []
            PHtemp = []
            popts = []

            for j in range(4):
                popt, pcov = curve_fit(yfunc((j + 1) * fundamental_Freq), time,
                                       magnitude)
                Atemp.append(np.sqrt(popt[0]**2 + popt[1]**2))
                PHtemp.append(np.arctan(popt[1] / popt[0]))
                popts.append(popt)

            A.append(Atemp)
            PH.append(PHtemp)

            for j in range(4):
                magnitude = np.array(magnitude) - model(
                    time, popts[j][0], popts[j][1], popts[j][2],
                    (j + 1) * fundamental_Freq)

        for ph in PH:
            scaledPH.append(np.array(ph) - ph[0])

        self.A = A
        self.PH = PH
        self.scaledPH = scaledPH

        self._value = A[0][0]
    def fit(self,data):

        global new_mjd
        global prob

        fx,fy, nout, jmax, prob  = lomb.fasper(self.mjd,data, 6., 100.)
        T = 1.0 / fx[jmax] 
        new_mjd = np.mod(self.mjd, 2*T) / (2*T);

        return T
Ejemplo n.º 10
0
    def fit(self, data):

        global new_mjd
        global prob

        fx, fy, nout, jmax, prob = lomb.fasper(self.mjd, data, 6., 100.)
        T = 1.0 / fx[jmax]
        new_mjd = np.mod(self.mjd, 2 * T) / (2 * T)

        return T
Ejemplo n.º 11
0
def lombscargle(rows, oversample=6, nyquist=5, keys=("MJD", "flux")):
    x = []
    y = []
    for row in rows:
        x.append(row[keys[0]])
        y.append(row[keys[1]])

    fx, fy, nout, jmax, prob = lomb.fasper(np.array(x), np.array(y), oversample, nyquist)

    return (zip(fx, fy), jmax)
    def fit(self, data):

        magnitude = data[0]
        time = data[1]

        fx, fy, nout, jmax, PeriodLS.prob = lomb.fasper(time, magnitude, self.ofac, 100.)
        period = fx[jmax]
        T = 1.0 / period
        PeriodLS.new_time = np.mod(time, 2 * T) / (2 * T)
        return T
Ejemplo n.º 13
0
    def fit(self, data):
        magnitude = data[0]
        time = data[1]

        time = time - np.min(time)

        global A
        global PH
        global scaledPH
        A = []
        PH = []
        scaledPH = []

        def model(x, a, b, c, Freq):
            return a*np.sin(2*np.pi*Freq*x)+b*np.cos(2*np.pi*Freq*x)+c

        for i in range(3):

            wk1, wk2, nout, jmax, prob = lomb.fasper(time, magnitude, 6., 100.)

            fundamental_Freq = wk1[jmax]

            # fit to a_i sin(2pi f_i t) + b_i cos(2 pi f_i t) + b_i,o

            # a, b are the parameters we care about
            # c is a constant offset
            # f is the fundamental Frequency
            def yfunc(Freq):
                def func(x, a, b, c):
                    return a*np.sin(2*np.pi*Freq*x)+b*np.cos(2*np.pi*Freq*x)+c
                return func

            Atemp = []
            PHtemp = []
            popts = []

            for j in range(4):
                popt, pcov = curve_fit(yfunc((j+1)*fundamental_Freq), time, magnitude)
                Atemp.append(np.sqrt(popt[0]**2+popt[1]**2))
                PHtemp.append(np.arctan(popt[1] / popt[0]))
                popts.append(popt)

            A.append(Atemp)
            PH.append(PHtemp)

            for j in range(4):
                magnitude = np.array(magnitude) - model(time, popts[j][0], popts[j][1], popts[j][2], (j+1)*fundamental_Freq)

        for ph in PH:
            scaledPH.append(np.array(ph) - ph[0])

        return A[0][0]
Ejemplo n.º 14
0
    def fit(self, data):

        magnitude = data[0]
        time = data[1]

        global new_time
        global prob
        global period

        fx, fy, nout, jmax, prob = lomb.fasper(time, magnitude, self.ofac, 100.)
        period = fx[jmax]
        T = 1.0 / period
        new_time = np.mod(time, 2 * T) / (2 * T)

        return T
Ejemplo n.º 15
0
    def fit(self, data):

        magnitude = data[0]
        time = data[1]

        global new_time
        global prob
        global period

        fx, fy, nout, jmax, prob = lomb.fasper(time, magnitude, self.ofac, 100.)
        period = fx[jmax]
        T = 1.0 / period
        new_time = np.mod(time, 2 * T) / (2 * T)

        return T
Ejemplo n.º 16
0
    def fit(self, data):

        magnitude = data[0]
        time = data[1]

        fx, fy, nout, jmax, prob = lomb.fasper(time, magnitude, self.ofac,
                                               100.)
        period = fx[jmax]
        T = 1.0 / period
        new_time = np.mod(time, 2 * T) / (2 * T)

        self.prob = prob
        self.new_time = new_time
        self.period = period

        self._value = T
Ejemplo n.º 17
0
    def computeLombPeriodogram(self):
        detrend = False

        lombx = self.smpltime[self.idx_start:-1] / 1000
        if detrend is True:
            # static component (we remove the dynamic component of the signal -> detrending)
            z_stat = self.detrendRRI()
            lomby = np.asarray(z_stat.H)[0][self.idx_start:-1] / 1000
        else:
            lomby = self.series[self.idx_start:-1]

        fx, fy, nout, jmax, prob = lomb.fasper(lombx, lomby, 4., 2.)
        pwr = ((lomby - lomby.mean())**2).sum() / (len(lomby) - 1)
        fy_smooth = np.array([])
        fx_smooth = np.array([])
        maxout = int(nout / 2)
        for i in xrange(0, maxout, 4):
            fy_smooth = np.append(fy_smooth,
                                  (fy[i] + fy[i + 1] + fy[i + 2] + fy[i + 3]) /
                                  (nout / (2.0 * pwr)))
            fx_smooth = np.append(fx_smooth, fx[i])
        fy_smooth = fy_smooth / 4 * 1e3

        # pwr = ( ( self.series[self.idx_start:-1]/1000-(self.series[self.idx_start:-1]/1000).mean())**2).sum() \
        #         /(len(self.series[self.idx_start:-1])-1)
        # fy = fy/(nout/(4.0*pwr))*1000

        self.psd_mag = fy
        self.psd_freq = fx

        # Calculate frequencies power components VLF, LF and HF
        self.VLFpwr = 0
        self.LFpwr = 0
        self.HFpwr = 0
        for i, f in enumerate(self.psd_freq):
            if 0 < f <= 0.04:
                self.VLFpwr += self.psd_mag[i]
            elif 0.04 < f <= 0.15:
                self.LFpwr += self.psd_mag[i]
            elif 0.15 < f <= 0.4:
                self.HFpwr += self.psd_mag[i]

        self.VLFpwr *= 1000
        self.LFpwr *= 1000
        self.HFpwr *= 1000
Ejemplo n.º 18
0
def calculate_periodic_features(mjd2, data2):
    A = []
    PH = []
    
    def model(x, a, b, c, freq):
         return a*np.sin(2*np.pi*freq*x)+b*np.cos(2*np.pi*freq*x)+c
        
    for i in range(3):
        wk1, wk2, nout, jmax, prob = lomb.fasper(mjd2, data2, 6., 100.)
    
        fundamental_freq = wk1[jmax]
        
        # fit to a_i sin(2pi f_i t) + b_i cos(2 pi f_i t) + b_i,o
        
        # a, b are the parameters we care about
        # c is a constant offset
        # f is the fundamental frequency
        def yfunc(freq):
            def func(x, a, b, c):
                return a*np.sin(2*np.pi*freq*x)+b*np.cos(2*np.pi*freq*x)+c
            return func
        
        Atemp = []
        PHtemp = []
        popts = []
        
        for j in range(4):
            popt, pcov = optimize.curve_fit(yfunc((j+1)*fundamental_freq), mjd2, data2)
            Atemp.append(np.sqrt(popt[0]**2+popt[1]**2))
            PHtemp.append(np.arctan(popt[1] / popt[0]))
            popts.append(popt)
        
        A.append(Atemp)
        PH.append(PHtemp)

        for j in range(4):
            data2 = np.array(data2) - model(mjd2, popts[j][0], popts[j][1], popts[j][2], (j+1)*fundamental_freq)
    
    scaledPH = []
    for ph in PH:
        scaledPH.append(np.array(ph) - ph[0])

    return A, PH, scaledPH
Ejemplo n.º 19
0
    def computeLombPeriodogram( self ):
        detrend = False

        lombx = self.smpltime[self.idx_start:-1]/1000
        if detrend is True:
            # static component (we remove the dynamic component of the signal -> detrending)
            z_stat = self.detrendRRI()
            lomby = np.asarray(z_stat.H)[0][self.idx_start:-1]/1000
        else:
            lomby = self.series[self.idx_start:-1]

        fx, fy, nout, jmax, prob = lomb.fasper(lombx,lomby, 4., 2.)
        pwr = ((lomby-lomby.mean())**2).sum()/(len(lomby)-1)
        fy_smooth = np.array([])
        fx_smooth = np.array([])
        maxout = int(nout/2)
        for i in xrange(0,maxout,4):
            fy_smooth = np.append(fy_smooth, (fy[i]+fy[i+1]+fy[i+2]+fy[i+3])/(nout/(2.0*pwr)))
            fx_smooth = np.append(fx_smooth, fx[i])
        fy_smooth = fy_smooth/4*1e3

        # pwr = ( ( self.series[self.idx_start:-1]/1000-(self.series[self.idx_start:-1]/1000).mean())**2).sum() \
        #         /(len(self.series[self.idx_start:-1])-1)
        # fy = fy/(nout/(4.0*pwr))*1000

        self.psd_mag = fy
        self.psd_freq = fx

        # Calculate frequencies power components VLF, LF and HF
        self.VLFpwr = 0
        self.LFpwr = 0
        self.HFpwr = 0
        for i, f in enumerate( self.psd_freq ):
            if 0 < f <= 0.04:
                self.VLFpwr += self.psd_mag[i]
            elif 0.04 < f <= 0.15:
                self.LFpwr += self.psd_mag[i]
            elif 0.15 < f <= 0.4:
                self.HFpwr += self.psd_mag[i]

        self.VLFpwr *= 1000
        self.LFpwr *= 1000
        self.HFpwr *= 1000
Ejemplo n.º 20
0
def spot(time,flux,xdim,ydim,steps=10, ofac=8):
    
    #grid of times to run over
    grid = np.linspace(min(time),max(time),steps)
    for z in range(len(grid)-1):
        start = np.min(np.where(time >= grid[z]))
        stop  = np.max(np.where(time <  grid[z+1]))
        
        #arrays to store peak power
        pA = np.zeros([ydim,xdim,len(grid)-1])
        pB = np.zeros([ydim,xdim,len(grid)-1])
        
        #Calcuate peak power at period of each component
        for i in range(xdim):
            for j in range(ydim):
                flx = flux[:,j,i]
                t = time[start:stop]
                f = flx[start:stop]
                
                m,b = sp.polyfit(t, f, 1) #linear subtraction
                fit = f - (m*t + b)
                
                #periodogram
                freq, pwr, nout, jmax, prob = lomb.fasper(t, fit, ofac , 1.)
                per = 1.0/freq

                #peak power at each period
                pA[j,i,z] = max(pwr[(np.absolute(per - 0.26312) < 0.05)]) 
                pB[j,i,z] = max(pwr[(np.absolute(per - 0.70895) < 0.05)]) 
                
    pA = np.mean(pA, axis=2) #take average across timesteps
    pB = np.mean(pB, axis=2)

    pA = pA/np.max(pA) #normalize
    pB = pB/np.max(pB)

    return pA, pB
Ejemplo n.º 21
0
normal_obs = obs_vals - mean_obs_p
normal_obs = normal_obs / standard_deviation_obs_p

#Calculate variance of pre-processed obs data- should be 1 if normal
#standard_dev_obs = np.std(normal_var_2, dtype=np.float64)
#variance_obs = standard_dev_obs**2
#print 'Variance - pre-processed obs data= ', variance_obs

#Convert obs time array into numpy array
obs_time = np.array(obs_time)

#Define sampling frequency
samp_freq = 24

#Obs. lomb
fa, fb, nout, jmax, prob2 = lomb.fasper(obs_time, normal_obs, ofac, samp_freq)
#Divide output by sampling frequency
fb = fb / samp_freq
fb = np.log(fb)

#Reverse array for smoothing
reversed_fb = fb[::-1]
obs_periods = 1. / fa
reversed_obs_periods = obs_periods[::-1]

#Smooth using exponetial smoother, last 2 numbers inputted are: smoothing window & cut-off point
cut_obs_periods, smoothed_obs = modules.ema_keep_peaks(reversed_fb,
                                                       reversed_obs_periods,
                                                       40, 12000000)
smoothed_obs = np.exp(smoothed_obs)
Ejemplo n.º 22
0
    #ax.xaxis.set_ticks(ticks)
    #ax.yaxis.set_ticks([])
    plt.xlabel('Time (days)')
    plt.ylabel('Flux (mJy)')
    c = fname.split('_')[0]
    plt.title('{0} lightcurve'.format(c))
    ax = fig.add_subplot(gs[pltnum + 2])
    plt.xlabel('Wavelength (days)')
    plt.ylabel('Relative intensity')
    plt.title('{0} Periodogram'.format(c))

    time = numpy.array(time)
    flux = numpy.array(flux)
    # center the flux
    flux = (flux - numpy.mean(flux)) / (1.0 * numpy.std(flux))
    result = lomb.fasper(time, flux, 6.0, 0.5)
    FIND_FREQUENCIES = int(result[2])
    print FIND_FREQUENCIES
    # filter out weird frequencies
    spectral_results = filter(
        lambda elem: elem[0] < 0.55 and elem[0] > (2.0 / len(time)),
        zip(result[0], result[1]))
    wavelengths = []
    for frequency in sorted(spectral_results, key=itemgetter(1), reverse=True):
        wavelength = int(round(1.0 / frequency[0]))
        # check if wavelength is approximately in array
        include = True
        #for found_wavelength in wavelengths:
        #	if abs(found_wavelength[0] - wavelength) <= 4:
        #		include = False
        #if include:
Ejemplo n.º 23
0
def fft(time, flux, ofac, hifac):
    freq, power, nout, jmax, prob = lomb.fasper(time, flux, ofac, hifac)
    convfactor = (1. / (60 * 60 * 24)) * (10**6)
    uHzfreq = freq * convfactor  #11.57, conversion c/d to mHz
    return uHzfreq, power
Ejemplo n.º 24
0
from astropy.stats import LombScargle

#model = LombScargle(t, y*1e-3)
model = LombScargle(t, y)
power_ls = model.power(freqidays, method="fast", normalization="psd")
power_ls /= len(t)

#make LC, SC powspec
import lomb

osample = 10.
nyq = 283.
#nyq = 550

freq, amp, nout, jmax, prob = lomb.fasper(t, y, osample, 3.)
freq = 1000. * freq / 86.4
binn = freq[1] - freq[0]
fts = 2. * amp * np.var(y) / (np.sum(amp) * binn)
fts = scipy.ndimage.filters.gaussian_filter(fts, 4)
use = np.where(freq < nyq + 150)
freq = freq[use]
print(len(freq))
fts = fts[use]

#set up MCMC
rhotrue = 0.0264
rhosigma = 0.0008


def lnprob(params, y, gp):
Ejemplo n.º 25
0
def plot():

    try:
        names
    except NameError:
        # Readin the model output

        model, names = readfile("GEOS_v90103_4x5_CV_logs.npy",
                                "001")  #001 represents CVO
        # Processes the date
        year = (model[:, 0] // 10000)
        month = ((model[:, 0] - year * 10000) // 100)
        day = (model[:, 0] - year * 10000 - month * 100)

        hour = model[:, 1] // 100
        min = (model[:, 1] - hour * 100)

        doy=[ datetime.datetime(np.int(year[i]),np.int(month[i]),np.int(day[i]),\
                                np.int(hour[i]),np.int(min[i]),0)- \
              datetime.datetime(2006,1,1,0,0,0) \
              for i in range(len(year))]

        since2006 = [
            doy[i].days + doy[i].seconds / (24. * 60. * 60.)
            for i in range(len(doy))
        ]

#now read in the observations

    myfile = nappy.openNAFile('York_merge_Cape_verde_1hr_R1.na')
    myfile.readData()

    #ppy.openNAFile('York_merge_Cape_verde_1hr_R1.na')
    counter = 0
    fig = plt.figure(figsize=(20, 12))
    ax = plt.subplot(111)

    for species in species_list:
        #Gives species exact model tags for convenience
        print species
        if species == 'ISOPRENE':
            species = 'TRA_6'

        elif species == 'ACETONE':
            species = 'ACET'

        elif species == 'TEMP':
            species = 'GMAO_TEMP'

        elif species == 'SURFACE_PRES':
            species = 'GMAO_PSFC'

        elif species == 'WINDSPEED':
            species = 'GMAO_WIND'

        elif species == 'SURFACE_SOLAR_RADIATION':
            species = 'GMAO_RADSW'

        elif species == 'ABS_HUMIDITY':
            species = 'GMAO_ABSH'

        elif species == 'REL_HUMIDITY':
            species = 'GMAO_RHUM'

        model_cut_switch = 0
        obs_switch = 0
        ofac = 1
        if species == 'O3':
            print 'yes'
            Units = 'ppbV'
            first_label_pos = 3
            obs_data_name = 'Ozone mixing ratio (ppbV)_(Mean)'
            unit_cut = 1e9
            species_type = 'Conc.'
            actual_species_name = 'O3'

        elif species == 'CO':
            units = 'ppbV'
            first_label_pos = 1
            obs_data_name = 'CO mixing ratio (ppbV)_(Mean)'
            unit_cut = 1e9
            species_type = 'Conc.'
            actual_species_name = 'CO'
            ofac = 2.0001

        elif species == 'NO':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'NO mixing ratio (pptv)_(Mean)'
            unit_cut = 1e12
            species_type = 'Conc.'
            actual_species_name = 'NO'

        elif species == 'NO2':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'NO2 mixing ratio (pptv)_(Mean)'
            unit_cut = 1e12
            species_type = 'Conc.'
            actual_species_name = 'NO2'

        elif species == 'C2H6':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'ethane mixing ratio (pptV)_(Mean)'
            unit_cut = 1e12
            species_type = 'Conc.'
            actual_species_name = 'C2H6'

        elif species == 'C3H8':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'propane mixing ratio (pptV)_(Mean)'
            unit_cut = 1e12
            species_type = 'Conc.'
            actual_species_name = 'C3H8'

        elif species == 'DMS':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'dms mixing ratio (pptV)_(Mean)'
            unit_cut = 1e12
            species_type = 'Conc.'
            actual_species_name = 'DMS'

        elif species == 'TRA_6':  #Isoprene
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'Isoprene (pptv)_(Mean)'
            unit_cut = 1e12
            species_type = 'Conc.'

        elif species == 'ACET':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'acetone mixing ratio (pptV)_(Mean)'
            unit_cut = 1e12
            species_type = 'Conc.'
            actual_species_name = 'Acetone'

        elif species == 'GMAO_TEMP':  # Temp from met fields
            units = 'K'
            first_label_pos = 3
            obs_data_name = 'Air Temperature (degC) Campbell_(Mean)'
            unit_cut = 1
            species_type = 'Temp.'
            actual_species_name = 'Surface Temperature'
            obs_switch = 1

        elif species == 'GMAO_PSFC':  #Surface Pressure
            units = 'hPa'
            first_label_pos = 3
            obs_data_name = 'Atmospheric Pressure (hPa) Campbell_(Mean)'
            unit_cut = 1
            species_type = 'Pres.'
            actual_species_name = 'Surface Pressure'

        elif species == 'GMAO_WIND':  #Wind Speed extirpolated from UWND and VWND

            def read_diff_species():
                k = names.index('GMAO_UWND')
                i = names.index('GMAO_VWND')
                model_cut = np.sqrt((model[:, k]**2) + (model[:, i]**2))
                return model_cut

            units = r'$ms^{-1}$'
            first_label_pos = 3
            obs_data_name = 'Wind Speed (m/s) Campbell_(Mean)'
            unit_cut = 1
            species_type = 'Wind Speed'
            model_cut_switch = 1
            actual_species_name = 'Surface Windspeed'

        elif species == 'GMAO_RADSW':  #Sensible heat flux form surface
            units = r'$Wm^{-2}$'
            first_label_pos = 3
            obs_data_name = 'Solar Radiation (Wm-2) Campbell_(Mean)'
            unit_cut = 1
            species_type = 'Solar Radiation'
            actual_species_name = 'Surface Solar Radiation'

        elif species == 'GMAO_ABSH':  #Absolute Humidity
            units = 'molec/cm-3'
            first_label_pos = 3
            obs_data_name = ''
            unit_cut = 1
            species_type = 'Absolute Humidity'
            actual_species_name = 'Absolute Humidity'

        elif species == 'GMAO_RHUM':  #Relative Humidity
            units = '%'
            first_label_pos = 3
            obs_data_name = 'Relative Humidity (%) Campbell_(Mean)'
            unit_cut = 1
            species_type = 'Relative Humidity'
            actual_species_name = 'Relative Humidity'

        k_var1 = myfile["VNAME"].index(obs_data_name)

        # OK need to conver values from a list to a numpy array
        time = np.array(myfile['X'])
        if obs_switch == 0:
            var1 = np.array(myfile['V'][k_var1])
        elif obs_switch == 1:
            var1 = np.array(myfile['V'][k_var1]) + 273.15

        valids1 = var1 > 0

        time2 = time[valids1]

        var2 = var1[valids1]

        #Pre normalise obs data for lomb analysis
        standard_deviation_obs_p = np.std(var2)
        mean_obs_p = np.mean(var2)
        normal_var2 = var2 - mean_obs_p
        normal_var2 = normal_var2 / standard_deviation_obs_p

        #Calculate variance of pre-processed obs data- should be 1 if normal
        #standard_dev_obs = np.std(normal_var_2, dtype=np.float64)
        #variance_obs = standard_dev_obs**2
        #print 'Variance - pre-processed obs data= ', variance_obs

        #Define sampling intervals
        samp_spacing = 1. / 24.

        #Convert model time array into numpy array
        since2006 = np.array(since2006)

        #Need to normalise model data also
        if model_cut_switch == 0:
            k = names.index(species)
            model_cut = model[:, k] * unit_cut
        if model_cut_switch == 1:
            model_cut = read_diff_species()
        standard_deviation_model_p = np.std(model_cut)
        mean_model_p = np.mean(model_cut)
        normal_model = model_cut - mean_model_p
        normal_model = normal_model / standard_deviation_model_p

        #Calculate variance of pre-processed model data- should be 1 if normal
        #standard_dev_model = np.std(normal_model, dtype=np.float64)
        #variance_model = standard_dev_model**2
        #print 'Variance - pre-processed model data= ', variance_model

        #Define sampling frequency
        samp_freq = 24

        #Lomb-scargle plot

        #Plot axis period lines and labels
        annotate_line_y = np.arange(1e-10, 1e4, 1)
        horiz_line_100 = np.arange(0, 2000, 1)
        freq_year = [345] * len(annotate_line_y)
        array_100 = [100] * len(horiz_line_100)
        plt.plot(freq_year, annotate_line_y, 'r--', alpha=0.4)
        plt.text(345, 5, '1 Year', fontweight='bold')
        plt.plot(horiz_line_100, array_100, 'r--', alpha=0.4)
        plt.text(1024, 80, '100%', fontweight='bold')

        #Obs lomb
        fa, fb, nout, jmax, prob = lomb.fasper(time2, normal_var2, ofac,
                                               samp_freq)
        obs_sig = fa, fb, nout, ofac
        #Divide output by sampling frequency
        fb = fb / samp_freq

        len_fb = len(fb)

        zeropad = np.zeros(10000)
        fb = np.concatenate((fb, zeropad))
        padded_obs_period = np.concatenate((fa, zeropad))

        obs_smoothed = konnoOhmachiSmoothing(fb,
                                             padded_obs_period,
                                             bandwidth=40,
                                             count=1,
                                             enforce_no_matrix=True,
                                             max_memory_usage=512,
                                             normalize=False)

        obs_smoothed = obs_smoothed[:len_fb]
        #Calculate Nyquist frequency, Si and Si x 2 for normalisation checks.
        #nyquist_freq_lomb_obs = frequencies[-1]
        #Si_lomb_obs = np.mean(fb)*nyquist_freq_lomb_obs
        #print nyquist_freq_lomb_obs, Si_lomb_obs, Si_lomb_obs*2

        #plot up
        #plt.loglog(1./fa, fb,'kx',markersize=2, label='Cape Verde Obs. ')

        #Model lomb
        fx, fy, nout, jmax, prob2 = lomb.fasper(since2006, normal_model, ofac,
                                                samp_freq)
        model_sig = fx, fy, nout, ofac
        #Divide output by sampling frequency
        fy = fy / samp_freq

        len_fy = len(fy)

        fy = np.concatenate((fy, zeropad))
        padded_model_period = np.concatenate((fx, zeropad))

        model_smoothed = konnoOhmachiSmoothing(fy,
                                               padded_model_period,
                                               bandwidth=40,
                                               count=1,
                                               enforce_no_matrix=True,
                                               max_memory_usage=512,
                                               normalize=False)

        model_smoothed = model_smoothed[:len_fy]
        #Calculate Nyquist frequency, Si and Si x 2 for normalisation checks.
        #nyquist_freq_lomb_model = frequencies[-1]
        #Si_lomb_model = np.mean(fy)*nyquist_freq_lomb_model
        #print nyquist_freq_lomb_model, Si_lomb_model, Si_lomb_model*2

        #plot up
        #plt.loglog(1./fx, fy, 'gx', alpha = 0.75,markersize=2, label='GEOS v9.01.03 4x5 ')

        obs_periods = 1. / fa
        model_periods = 1. / fx

        #Which dataset is shorter
        # obs longer than model
        if len(obs_smoothed) > len(model_smoothed):
            obs_smoothed = obs_smoothed[:len(model_smoothed)]
            freq_array = fx
            period_array = model_periods
    #model longer than obs
        if len(model_smoothed) > len(obs_smoothed):
            model_smoothed = model_smoothed[:len(obs_smoothed)]
            freq_array = fa
            period_array = obs_periods

#calculate % of observations

#covariance_array = np.hstack((fb,fy))

        compare_powers = model_smoothed / obs_smoothed
        compare_powers = compare_powers * 100
        #compare_powers =  np.cov(covariance_array, y=None, rowvar=0, bias=0, ddof=None)
        #print compare_powers
        #window_size = 120
        #compare_powers = np.log(compare_powers)
        #compare_powers = movingaverage(compare_powers,window_size)
        #compare_powers = smooth(compare_powers,window_size)
        #compare_powers = 10**compare_powers

        #cut_powers = [y for x,y in zip(obs_periods,compare_powers) if x < end]
        #cut_periods = [x for x,y in zip(obs_periods,compare_powers) if x < end]
        #rest_powers = [y for x,y in zip(obs_periods,compare_powers) if  x >= end]
        #rest_cut_periods = [x for x,y in zip(obs_periods,compare_powers) if x >= end]
        #smooth(compare_powers,window_size,obs_periods,species,counter)
        #for i in rest_powers:
        #    compare_powers=np.append(compare_powers, i)
        #print compare_powers
        #for i in rest_cut_periods:
        #    cut_periods=np.append(cut_periods,i)
        #compare_powers = compare_powers.flatten()
        #compare_periods = combined_periods.flatten()
        #cut_periods = cut_periods.flatten()
        #print rest_cut_periods[-1]
        #print combined_periods[-1]

        #smoothed = konnoOhmachiSmoothing(compare_powers, freq_array, bandwidth=40, count=1,
        #          enforce_no_matrix=True, max_memory_usage=512,
        #          normalize=False)

        # xticks = [0.08,0.10,0.12,0.15,0.25,0.50,1,10,100,1000,5000]
        #ax.set_xticks(xticks)

        #ax.set_xticklabels(xticks)
        #locator = LinearLocator
        #ax.xaxis.set_major_locator(locator)

        #standard_deviation_analysis = np.std(compare_powers)
        #mean_analysis = np.mean(compare_powers)
        #normal_analysis = compare_powers-mean_analysis
        #normal_analysis = normal_analysis/standard_deviation_analysis

        ax.set_xscale('log', basex=10)
        ax.set_yscale('log', basey=10)

        plt.plot(period_array,
                 compare_powers,
                 color=colour_list[counter],
                 marker='x',
                 alpha=0.75,
                 markersize=2,
                 label=species)
        #ax.plot(rest_cut_periods, rest_powers , color=colour_list[counter], marker='x', alpha = 0.75, markersize=2, label = species)
        #percent1 = period_percent_diff(np.min(obs_periods),1,fb,fy,obs_periods,model_periods)
        #percent2 = period_percent_diff(1,2,fb,fy,obs_periods,model_periods)
        #percent3 = period_percent_diff(2,7,fb,fy,obs_periods,model_periods)

        plt.grid(True)
        ax.xaxis.set_major_formatter(FormatStrFormatter('%.i'))
        ax.yaxis.set_major_formatter(FormatStrFormatter('%.i'))
        leg = plt.legend(loc=4)
        leg.get_frame().set_alpha(0.4)
        #plt.text(1e-2, 3000,'Period: 2 hours to 1 day, a %% Diff. of: %.2f%%'  %(percent1),  fontweight='bold')
        #plt.text(1e-2, 500,'Period: 1 day to 2 days, a %% Diff. of: %.2f%%'  %(percent2),  fontweight='bold')
        #plt.text(1e-2, 90,'Period: 2 days to 7 days, a %% Diff. of: %.2f%%'  %(percent3),  fontweight='bold')
        plt.ylim(0.05, 10000)
        plt.xlabel('Period (Days)')
        plt.ylabel('Percent of Obs. PSD (%)')
        plt.title('% PSD of Model compared to Obs.')
        counter += 1


#plt.savefig('O3_capeverde_comparison_plots.ps', dpi = 200)

    plt.show()
Ejemplo n.º 26
0
def plot_quicklook(lc, ticid, breakpoints, target_list, save_data=True, outdir=None):

    if outdir is None:
        outdir = os.path.join(self.PACKAGEDIR, 'outputs')

    time, flux, flux_err = lc.time, lc.flux, lc.flux_err

    model = BoxLeastSquares(time, flux)
    results = model.autopower(0.16, minimum_period=2., maximum_period=21.)
    period = results.period[np.argmax(results.power)]
    t0 = results.transit_time[np.argmax(results.power)]
    depth = results.depth[np.argmax(results.power)]
    depth_snr = results.depth_snr[np.argmax(results.power)]

    '''
    Plot Filtered Light Curve
    -------------------------
    '''
    plt.subplot2grid((4,4),(1,0),colspan=2)

    plt.plot(time, flux, 'k', label="filtered")
    for val in breakpoints:
        plt.axvline(val, c='b', linestyle='dashed')
    plt.legend()
    plt.ylabel('Normalized Flux')
    plt.xlabel('Time')

    osample=5.
    nyq=283.

    # calculate FFT
    freq, amp, nout, jmax, prob = lomb.fasper(time, flux, osample, 3.)
    freq = 1000. * freq / 86.4
    bin = freq[1] - freq[0]
    fts = 2. * amp * np.var(flux * 1e6) / (np.sum(amp) * bin)

    use = np.where(freq < nyq + 150)
    freq = freq[use]
    fts = fts[use]

    # calculate ACF
    acf = np.correlate(fts, fts, 'same')
    freq_acf = np.linspace(-freq[-1], freq[-1], len(freq))

    fitT = build_ktransit_model(ticid=ticid, lc=lc, vary_transit=False)
    dur = _individual_ktransit_dur(fitT.time, fitT.transitmodel)

    freq = freq
    fts1 = fts/np.max(fts)
    fts2 = scipy.ndimage.filters.gaussian_filter(fts/np.max(fts), 5)
    fts3 = scipy.ndimage.filters.gaussian_filter(fts/np.max(fts), 50)

    '''
    Plot Periodogram
    ----------------
    '''
    plt.subplot2grid((4,4),(0,2),colspan=2,rowspan=4)
    plt.loglog(freq, fts/np.max(fts))
    plt.loglog(freq, scipy.ndimage.filters.gaussian_filter(fts/np.max(fts), 5), color='C1', lw=2.5)
    plt.loglog(freq, scipy.ndimage.filters.gaussian_filter(fts/np.max(fts), 50), color='r', lw=2.5)
    plt.axvline(283,-1,1, ls='--', color='k')
    plt.xlabel("Frequency [uHz]")
    plt.ylabel("Power")
    plt.xlim(10, 400)
    plt.ylim(1e-4, 1e0)

    # annotate with transit info
    font = {'family':'monospace', 'size':10}
    plt.text(10**1.04, 10**-3.50, f'depth = {depth:.4f}        ', fontdict=font).set_bbox(dict(facecolor='white', alpha=.9, edgecolor='none'))
    plt.text(10**1.04, 10**-3.62, f'depth_snr = {depth_snr:.4f}    ', fontdict=font).set_bbox(dict(facecolor='white', alpha=.9, edgecolor='none'))
    plt.text(10**1.04, 10**-3.74, f'period = {period:.3f} days    ', fontdict=font).set_bbox(dict(facecolor='white', alpha=.9, edgecolor='none'))
    plt.text(10**1.04, 10**-3.86, f't0 = {t0:.3f}            ', fontdict=font).set_bbox(dict(facecolor='white', alpha=.9, edgecolor='none'))
    try:
        # annotate with stellar params
        # won't work for TIC ID's not in the list
        if isinstance(ticid, str):
            ticid = int(re.search(r'\d+', str(ticid)).group())
        Gmag = target_list[target_list['ID'] == ticid]['GAIAmag'].values[0]
        Teff = target_list[target_list['ID'] == ticid]['Teff'].values[0]
        R = target_list[target_list['ID'] == ticid]['rad'].values[0]
        M = target_list[target_list['ID'] == ticid]['mass'].values[0]
        plt.text(10**1.7, 10**-3.50, rf"G mag = {Gmag:.3f} ", fontdict=font).set_bbox(dict(facecolor='white', alpha=.9, edgecolor='none'))
        plt.text(10**1.7, 10**-3.62, rf"Teff = {int(Teff)} K  ", fontdict=font).set_bbox(dict(facecolor='white', alpha=.9, edgecolor='none'))
        plt.text(10**1.7, 10**-3.74, rf"R = {R:.3f} $R_\odot$  ", fontdict=font).set_bbox(dict(facecolor='white', alpha=.9, edgecolor='none'))
        plt.text(10**1.7, 10**-3.86, rf"M = {M:.3f} $M_\odot$    ", fontdict=font).set_bbox(dict(facecolor='white', alpha=.9, edgecolor='none'))
    except:
        pass

    # plot ACF inset
    ax = plt.gca()
    axins = inset_axes(ax, width=2.0, height=1.4)
    axins.plot(freq_acf, acf)
    axins.set_xlim(1,25)
    axins.set_xlabel("ACF [uHz]")

    '''
    Plot BLS
    --------
    '''
    plt.subplot2grid((4,4),(2,0),colspan=2)

    plt.plot(results.period, results.power, "k", lw=0.5)
    plt.xlim(results.period.min(), results.period.max())
    plt.xlabel("period [days]")
    plt.ylabel("log likelihood")

    # Highlight the harmonics of the peak period
    plt.axvline(period, alpha=0.4, lw=4)
    for n in range(2, 10):
        plt.axvline(n*period, alpha=0.4, lw=1, linestyle="dashed")
        plt.axvline(period / n, alpha=0.4, lw=1, linestyle="dashed")

    phase = (t0 % period) / period
    foldedtimes = (((time - phase * period) / period) % 1)
    foldedtimes[foldedtimes > 0.5] -= 1
    foldtimesort = np.argsort(foldedtimes)
    foldfluxes = flux[foldtimesort]
    plt.subplot2grid((4,4), (3,0),colspan=2)
    plt.scatter(foldedtimes, flux, s=2)
    plt.plot(np.sort(foldedtimes), scipy.ndimage.filters.median_filter(foldfluxes, 40), lw=2, color='r', label=f'P={period:.2f} days, dur={dur:.2f} hrs')
    plt.xlabel('Phase')
    plt.ylabel('Flux')
    plt.xlim(-0.5, 0.5)
    plt.ylim(-0.0025, 0.0025)
    plt.legend(loc=0)

    fig = plt.gcf()
    fig.patch.set_facecolor('white')
    fig.suptitle(f'{ticid}', fontsize=14)
    fig.set_size_inches(10, 7)

    if save_data:
        np.savetxt(outdir+'/timeseries/'+str(ticid)+'.dat.ts', np.transpose([time, flux]), fmt='%.8f', delimiter=' ')
        np.savetxt(outdir+'/fft/'+str(ticid)+'.dat.ts.fft', np.transpose([freq, fts]), fmt='%.8f', delimiter=' ')
        with open(os.path.join(outdir,"transit_stats.txt"), "a+") as file:
            file.write(f"{ticid} {depth} {depth_snr} {period} {t0} {dur}\n")

    return fig
Ejemplo n.º 27
0
plt.title('HTAP Model %s V Time at %s' % (species, location))

#Define sampling frequency
samp_freq = 24

#Lomb-scargle plot
ax3 = fig.add_subplot(2, 1, 2)

#Plot axis period lines and labels
annotate_line_y = np.arange(1e-10, 1e4, 1)
freq_year = [345] * len(annotate_line_y)
plt.plot(freq_year, annotate_line_y, 'r--', alpha=0.4)
plt.text(345, 1e-7, '1 Year', fontweight='bold')

#Model lomb
freq_obs, power_obs, nout, jmax, prob = lomb.fasper(obs_time, obs_var, 1.,
                                                    samp_freq)
freq_obs_full, power_obs_full, nout, jmax, prob = lomb.fasper(
    time, obs_var_full, 1., samp_freq)
freq_camchem3311, power_camchem3311, nout, jmax, prob2 = lomb.fasper(
    camchem_3311_time, norm_camchem_3311_o3, 1., samp_freq)
freq_camchem3514, power_camchem3514, nout, jmax, prob2 = lomb.fasper(
    camchem_3514_time, norm_camchem_3514_o3, 1., samp_freq)
freq_cam_sr1, power_cam_sr1, nout, jmax, prob2 = lomb.fasper(
    cam_sr1_time, norm_cam_sr1_o3, 1., samp_freq)
freq_chaser, power_chaser, nout, jmax, prob2 = lomb.fasper(
    chaser_time, norm_chaser_o3, 1., samp_freq)
freq_frsgcuci, power_frsgcuci, nout, jmax, prob2 = lomb.fasper(
    frsgcuci_time, norm_frsgcuci_o3, 1., samp_freq)
freq_gemaq, power_gemaq, nout, jmax, prob2 = lomb.fasper(
    gemaq_time, norm_gemaq_o3, 1., samp_freq)
freq_geoschem, power_geoschem, nout, jmax, prob2 = lomb.fasper(
plt.title('HTAP Model %s V Time at %s'% (species,location))
 
#Define sampling frequency
samp_freq = 24

#Lomb-scargle plot
ax3= fig.add_subplot(2, 1, 2)

#Plot axis period lines and labels
annotate_line_y=np.arange(1e-10,1e4,1)
freq_year = [345]*len(annotate_line_y)
plt.plot(freq_year, annotate_line_y,'r--',alpha=0.4)
plt.text(345, 1e-7, '1 Year', fontweight='bold')

#Model lomb
freq_obs, power_obs, nout, jmax, prob = lomb.fasper(obs_time, obs_var, 1., samp_freq)
freq_obs_full, power_obs_full, nout, jmax, prob = lomb.fasper(time, obs_var_full, 1., samp_freq)
freq_camchem3311, power_camchem3311, nout, jmax, prob2 = lomb.fasper(camchem_3311_time,norm_camchem_3311_o3, 1., samp_freq)
freq_camchem3514, power_camchem3514, nout, jmax, prob2 = lomb.fasper(camchem_3514_time,norm_camchem_3514_o3, 1., samp_freq)
freq_cam_sr1, power_cam_sr1, nout, jmax, prob2 = lomb.fasper(cam_sr1_time,norm_cam_sr1_o3, 1., samp_freq)
freq_chaser, power_chaser, nout, jmax, prob2 = lomb.fasper(chaser_time,norm_chaser_o3, 1., samp_freq)
freq_frsgcuci, power_frsgcuci, nout, jmax, prob2 = lomb.fasper(frsgcuci_time,norm_frsgcuci_o3, 1., samp_freq)
freq_gemaq, power_gemaq, nout, jmax, prob2 = lomb.fasper(gemaq_time,norm_gemaq_o3, 1., samp_freq)
freq_geoschem, power_geoschem, nout, jmax, prob2 = lomb.fasper(geoschem_time,norm_geoschem_o3, 1., samp_freq)
freq_giss, power_giss, nout, jmax, prob2 = lomb.fasper(giss_time,norm_giss_o3, 1., samp_freq)
freq_giss_alt, power_giss_alt, nout, jmax, prob2 = lomb.fasper(giss_alt_time,norm_giss_alt_o3, 1., samp_freq)
freq_inca, power_inca, nout, jmax, prob2 = lomb.fasper(inca_time,norm_inca_o3, 1., samp_freq)
freq_llnl, power_llnl, nout, jmax, prob2 = lomb.fasper(llnl_time,norm_llnl_o3, 2.0001, samp_freq)
freq_mozart, power_mozart, nout, jmax, prob2 = lomb.fasper(mozart_time,norm_mozart_o3, 1., samp_freq)
freq_mozech, power_mozech, nout, jmax, prob2 = lomb.fasper(mozech_time,norm_mozech_o3, 1., samp_freq)
freq_oslo, power_oslo, nout, jmax, prob2 = lomb.fasper(oslo_time,norm_oslo_o3, 1., samp_freq)
Ejemplo n.º 29
0
def plot(species):

    #Set model_cut switch to default 0, if want to do more complicated cuts from model field, specify model_cut_switch == 1 in species definitions
    #Vice versa with obs_switch
    model_cut_switch = 0
    obs_switch = 0
    ofac = 1
    if species == 'O3':
        units = 'ppbV'
        first_label_pos = 3
        obs_data_name = 'Ozone mixing ratio (ppbV)_(Mean)'
        unit_cut = 1e9
        species_type = 'Conc.'
        actual_species_name = 'O3'
        ofac = 2.0001

    elif species == 'CO':
        units = 'ppbV'
        first_label_pos = 1
        obs_data_name = 'CO mixing ratio (ppbV)_(Mean)'
        unit_cut = 1e9
        species_type = 'Conc.'
        actual_species_name = 'CO'
        ofac = 2.0001

    elif species == 'NO':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'NO mixing ratio (pptv)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'NO'

    elif species == 'NO2':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'NO2 mixing ratio (pptv)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'NO2'

    elif species == 'C2H6':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'ethane mixing ratio (pptV)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'C2H6'

    elif species == 'C3H8':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'propane mixing ratio (pptV)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'C3H8'

    elif species == 'DMS':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'dms mixing ratio (pptV)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'DMS'

    elif species == 'TRA_6':  #Isoprene
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'Isoprene (pptv)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'Isoprene'

    elif species == 'ACET':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'acetone mixing ratio (pptV)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'Acetone'

    elif species == 'GMAO_TEMP':  # Temp from met fields
        units = 'K'
        first_label_pos = 3
        obs_data_name = 'Air Temperature (degC) Campbell_(Mean)'
        unit_cut = 1
        species_type = 'Temp.'
        actual_species_name = 'Surface Temperature'
        obs_switch = 1

    elif species == 'GMAO_PSFC':  #Surface Pressure
        units = 'hPa'
        first_label_pos = 3
        obs_data_name = 'Atmospheric Pressure (hPa) Campbell_(Mean)'
        unit_cut = 1
        species_type = 'Pres.'
        actual_species_name = 'Surface Pressure'

    elif species == 'GMAO_WIND':  #Wind Speed extirpolated from UWND and VWND

        def read_diff_species():
            k = names.index('GMAO_UWND')
            i = names.index('GMAO_VWND')
            model_cut = np.sqrt((model[:, k]**2) + (model[:, i]**2))
            return model_cut

        units = r'$ms^{-1}$'
        first_label_pos = 3
        obs_data_name = 'Wind Speed (m/s) Campbell_(Mean)'
        unit_cut = 1
        species_type = 'Wind Speed'
        model_cut_switch = 1
        actual_species_name = 'Surface Windspeed'

    elif species == 'GMAO_RADSW':  #Sensible heat flux form surface
        units = r'$Wm^{-2}$'
        first_label_pos = 3
        obs_data_name = 'Solar Radiation (Wm-2) Campbell_(Mean)'
        unit_cut = 1
        species_type = 'Solar Radiation'
        actual_species_name = 'Surface Solar Radiation'

    elif species == 'GMAO_ABSH':  #Absolute Humidity
        units = 'molec/cm-3'
        first_label_pos = 3
        obs_data_name = ''
        unit_cut = 1
        species_type = 'Absolute Humidity'
        actual_species_name = 'Absolute Humidity'

    elif species == 'GMAO_RHUM':  #Relative Humidity
        units = '%'
        first_label_pos = 3
        obs_data_name = 'Relative Humidity (%) Campbell_(Mean)'
        unit_cut = 1
        species_type = 'Relative Humidity'
        actual_species_name = 'Relative Humidity'

#reads in the model data

    def readfile(filename, location):
        read = np.load(filename)
        names = read[0, 2:]
        locs = np.where(read[:, 1] == location)
        big = read[locs]
        valid_data = big[:, 2:]
        names = names.tolist()
        valid_data = np.float64(valid_data)

        return valid_data, names

    def readfile_gaw(filename, location):

        read = np.load(filename)
        names = read[0, 1:]
        locs = np.where(read[:, 0] == location)
        big = read[locs]
        print big
        valid_data = big[:, 1:]
        names = names.tolist()
        valid_data = np.float64(valid_data)

        return valid_data, names

    try:
        names
    except NameError:
        # Readin the model output

        model, names = readfile("GEOS_v90103_nested_europe_GAW_logs.npy",
                                "112")  #112 represents Mace Head
        model2, gaw_names = readfile_gaw("gaw_logs_O3.npy", "112")

        # Processes the date
        year = (model[:, 0] // 10000)
        month = ((model[:, 0] - year * 10000) // 100)
        day = (model[:, 0] - year * 10000 - month * 100)

        hour = model[:, 1] // 100
        min = (model[:, 1] - hour * 100)

        doy=[ datetime.datetime(np.int(year[i]),np.int(month[i]),np.int(day[i]),\
                                np.int(hour[i]),np.int(min[i]),0)- \
              datetime.datetime(2006,1,1,0,0,0) \
              for i in range(len(year))]

        since2006 = [
            doy[i].days + doy[i].seconds / (24. * 60. * 60.)
            for i in range(len(doy))
        ]

        # Processes the gaw baseline date
        year = (model2[:, 0] // 10000)
        month = ((model2[:, 0] - year * 10000) // 100)
        day = (model2[:, 0] - year * 10000 - month * 100)

        hour = model2[:, 1] // 100
        min = (model2[:, 1] - hour * 100)

        doy=[ datetime.datetime(np.int(year[i]),np.int(month[i]),np.int(day[i]),\
                                np.int(hour[i]),np.int(min[i]),0)- \
              datetime.datetime(2006,1,1,0,0,0) \
              for i in range(len(year))]

        since2006_gaw = [
            doy[i].days + doy[i].seconds / (24. * 60. * 60.)
            for i in range(len(doy))
        ]

#now read in the observations

    date, time, vals = NOAA_data_reader_mace_head('O3_mace_head_ppbV.txt')

    # OK need to conver values from a list to a numpy array

    valid = vals >= 0
    vals = vals[valid]
    date = date[valid]
    time = time[valid]

    # Processes the date
    year = (date // 10000)
    month = ((date - year * 10000) // 100)
    day = (date - year * 10000 - month * 100)

    hour = time // 100
    min = (time - hour * 100)

    doy=[ datetime.datetime(np.int(year[i]),np.int(month[i]),np.int(day[i]),\
                                np.int(hour[i]),np.int(min[i]),0)- \
              datetime.datetime(2006,1,1,0,0,0) \
              for i in range(len(year))]

    since2006_obs = [
        doy[i].days + doy[i].seconds / (24. * 60. * 60.)
        for i in range(len(doy))
    ]

    since2006_obs = np.array(since2006_obs)
    since2006_obs_gaw = since2006_obs

    valids2 = since2006_obs <= np.max(since2006)
    since2006_obs = since2006_obs[valids2]
    var3 = vals[valids2]

    valids3 = since2006_obs >= np.min(since2006)
    since2006_obs = since2006_obs[valids3]
    var4 = var3[valids3]

    #Pre normalise obs data for lomb analysis
    standard_deviation_obs_p = np.std(var4)
    mean_obs_p = np.mean(var4)
    normal_var2 = var4 - mean_obs_p
    normal_var2 = normal_var2 / standard_deviation_obs_p

    #Pre normalise obs data for lomb analysis
    standard_deviation_obs_p_gaw = np.std(vals)
    mean_obs_p_gaw = np.mean(vals)
    normal_var2_gaw = vals - mean_obs_p_gaw
    normal_var2_gaw = normal_var2_gaw / standard_deviation_obs_p_gaw

    print 'obs', normal_var2_gaw
    #Calculate variance of pre-processed obs data- should be 1 if normal
    #standard_dev_obs = np.std(normal_var_2, dtype=np.float64)
    #variance_obs = standard_dev_obs**2
    #print 'Variance - pre-processed obs data= ', variance_obs

    #Define sampling intervals
    samp_spacing = 1. / 24.

    #Convert model time array into numpy array
    since2006 = np.array(since2006)
    since2006_gaw = np.array(since2006_gaw)
    #Need to normalise model data also
    if model_cut_switch == 0:
        k = names.index(species)
        model_cut = model[:, k] * unit_cut
        print 'model cut', model_cut
    if model_cut_switch == 1:
        model_cut = read_diff_species()
    standard_deviation_model_p = np.std(model_cut)
    mean_model_p = np.mean(model_cut)
    normal_model = model_cut - mean_model_p
    normal_model = normal_model / standard_deviation_model_p
    print 'normal model', normal_model

    #Need to normalise model baseline data also
    j = gaw_names.index(species)
    model_cut_gaw = model2[:, j] * unit_cut
    standard_deviation_model_p_gaw = np.std(model_cut_gaw)
    mean_model_p_gaw = np.mean(model_cut_gaw)
    normal_model_gaw = model_cut_gaw - mean_model_p_gaw
    normal_model_gaw = normal_model_gaw / standard_deviation_model_p_gaw

    #print normal_model_gaw
    #Calculate variance of pre-processed model data- should be 1 if normal
    #standard_dev_model = np.std(normal_model, dtype=np.float64)
    #variance_model = standard_dev_model**2
    #print 'Variance - pre-processed model data= ', variance_model

    #Plot them all up.
    fig = plt.figure(figsize=(20, 12))
    fig.patch.set_facecolor('white')
    #Plot up standard conc. v time plot
    #ax1= fig.add_subplot(2, 1, 1)
    #fig.subplots_adjust(hspace=0.3)
    #plt.plot(since2006_obs,var4, color='black', label='Mace Head Obs.')
    #plt.plot(since2006, model_cut, color='green', label='GEOS v9.01.03 Nested Europe ')
    #plt.grid(True)
    #leg=plt.legend(loc=first_label_pos)
    #leg.get_frame().set_alpha(0.4)
    #plt.xlabel('Time (Days since 2006)')
    #print units
    #plt.ylabel('%s (%s)' % (species_type,units))
    #plt.title('%s V Time' % (actual_species_name))

    #Define sampling frequency
    samp_freq = 24

    #Lomb-scargle plot
    ax = fig.add_subplot(1, 1, 1)

    #Plot axis period lines and labels
    annotate_line_y = np.arange(1e-10, 1e4, 1)
    freq_year = [345] * len(annotate_line_y)
    plt.plot(freq_year, annotate_line_y, 'r--', alpha=0.4)
    plt.text(345, 1e-10, '1 Year', fontweight='bold')

    #Obs lomb
    fa, fb, nout, jmax, prob = lomb.fasper(since2006_obs, normal_var2, ofac,
                                           samp_freq)
    #Divide output by sampling frequency
    fb = fb / samp_freq
    fb = np.log(fb)

    reversed_fb = fb[::-1]
    obs_periods = 1. / fb
    reversed_obs_periods = obs_periods[::-1]
    obs_periods, obs_smoothed = ema(reversed_fb, reversed_obs_periods, 150, 20)
    #obs_smoothed=savitzky_golay(fb, window_size=301, order=1)
    obs_smoothed = np.exp(obs_smoothed)

    #Obs lomb
    fa_gaw, fb_gaw, nout, jmax, prob = lomb.fasper(since2006_obs_gaw,
                                                   normal_var2_gaw, ofac,
                                                   samp_freq)
    #Divide output by sampling frequency
    fb_gaw = fb_gaw / samp_freq
    fb_gaw = np.log(fb_gaw)

    reversed_fb_gaw = fb_gaw[::-1]
    obs_periods_gaw = 1. / fb_gaw
    reversed_obs_periods_gaw = obs_periods_gaw[::-1]
    obs_periods_gaw, obs_smoothed_gaw = ema(reversed_fb_gaw,
                                            reversed_obs_periods_gaw, 150, 20)
    #obs_smoothed_gaw=savitzky_golay(fb_gaw, window_size=301, order=1)
    obs_smoothed_gaw = np.exp(obs_smoothed_gaw)
    print 'obs_after_smooth', obs_smoothed_gaw
    #Calculate Nyquist frequency, Si and Si x 2 for normalisation checks.
    #nyquist_freq_lomb_obs = frequencies[-1]
    #Si_lomb_obs = np.mean(fb)*nyquist_freq_lomb_obs
    #print nyquist_freq_lomb_obs, Si_lomb_obs, Si_lomb_obs*2

    #plot up
    #plt.loglog(1./fa, fb,'kx',markersize=2, label='Mace Head Obs. ')

    #Model lomb
    #print type(normal_model)
    fx, fy, nout, jmax, prob2 = lomb.fasper(since2006, normal_model, ofac,
                                            samp_freq)
    #Divide output by sampling frequency
    fy = fy / samp_freq
    fy = np.log(fy)

    reversed_fy = fy[::-1]
    model_periods = 1. / fx
    reversed_model_periods = model_periods[::-1]
    model_periods, model_smoothed = ema(reversed_fy, reversed_model_periods,
                                        150, 20)
    #model_smoothed=savitzky_golay(fy, window_size=301, order=1)
    model_smoothed = np.exp(model_smoothed)

    #gaw basline lomb
    #print type(normal_model_gaw)
    #print normal_model_gaw
    fx_gaw, fy_gaw, nout, jmax, prob2 = lomb.fasper(since2006_gaw,
                                                    normal_model_gaw, ofac,
                                                    samp_freq)
    #Divide output by sampling frequency
    fy_gaw = fy_gaw / samp_freq
    fy_gaw = np.log(fy_gaw)

    reversed_fy_gaw = fy_gaw[::-1]
    model_periods_gaw = 1. / fx_gaw
    reversed_model_periods_gaw = model_periods_gaw[::-1]
    model_periods_gaw, model_smoothed_gaw = ema(reversed_fy_gaw,
                                                reversed_model_periods_gaw,
                                                150, 20)
    #model_smoothed_gaw=savitzky_golay(fy_gaw, window_size=301, order=1)
    model_smoothed_gaw = np.exp(model_smoothed_gaw)
    print 'model_after_smooth', model_smoothed_gaw
    #print model_smoothed_gaw

    #Calculate Nyquist frequency, Si and Si x 2 for normalisation checks.
    #nyquist_freq_lomb_model = frequencies[-1]
    #Si_lomb_model = np.mean(fy)*nyquist_freq_lomb_model
    #print nyquist_freq_lomb_model, Si_lomb_model, Si_lomb_model*2

    #plot up
    #print obs_smoothed
    #print model_smoothed
    #Which dataset is shorter
    # obs longer than model
    if len(obs_smoothed) > len(model_smoothed):
        print 'yes'
        obs_smoothed = obs_smoothed[:len(model_smoothed)]
        period_array = model_smoothed

#period_array = model_periods[:len(model_smoothed)]
#model longer than obs
    elif len(model_smoothed) >= len(obs_smoothed):
        print 'yes'
        model_smoothed = model_smoothed[:len(obs_smoothed)]
        period_array = obs_smoothed
        #period_array = obs_periods[:len(obs_smoothed)]

    if len(obs_smoothed_gaw) > len(model_smoothed_gaw):
        print 'yes'
        obs_smoothed_gaw = obs_smoothed_gaw[:len(model_smoothed_gaw)]
        period_array = model_periods_gaw
        #period_array_gaw = model_periods_gaw[:len(model_smoothed_gaw)]
    #model longer than obs
    elif len(model_smoothed_gaw) >= len(obs_smoothed_gaw):
        print 'gaw'
        model_smoothed_gaw = model_smoothed_gaw[:len(obs_smoothed_gaw)]
        #period_array_gaw = obs_periods_gaw[:len(obs_smoothed_gaw)]
        period_array = obs_periods_gaw

    print 'model_smoothed', model_smoothed_gaw
    print 'obs_smoothed', obs_smoothed_gaw
    #calculate % of observations

    #covariance_array = np.hstack((fb,fy))

    compare_powers = model_smoothed / obs_smoothed
    compare_powers = compare_powers * 100

    compare_powers_gaw = model_smoothed_gaw / obs_smoothed_gaw
    compare_powers_gaw = compare_powers_gaw * 100

    #print compare_powers_gaw

    ax.set_xscale('log', basex=10)
    ax.set_yscale('log', basey=10)

    plt.plot(period_array,
             compare_powers,
             color='green',
             marker='x',
             alpha=0.75,
             markersize=2,
             label='O3 % Diff Spatial correction.')
    plt.plot(period_array_gaw,
             compare_powers_gaw,
             color='black',
             marker='x',
             alpha=0.3,
             markersize=2,
             label='O3 % Diff Baseline.')
    plt.grid(True)
    ax.xaxis.set_major_formatter(FormatStrFormatter('%.i'))
    ax.yaxis.set_major_formatter(FormatStrFormatter('%.i'))
    leg = plt.legend(loc=4, prop={'size': 21})
    leg.get_frame().set_alpha(0.4)
    plt.xlim(0.05, 1e1)
    plt.ylim(0.1, 1000)
    plt.xlabel('Period (Days)', fontsize=21)
    plt.ylabel('Percent of Obs. PSD (%)', fontsize=21)
    plt.title('% PSD of Model compared to Obs.', fontsize=21)

    #percent1 = period_percent_diff(np.min(obs_periods),1,fb,fy,obs_periods,model_periods)
    #percent2 = period_percent_diff(1,2,fb,fy,obs_periods,model_periods)
    #percent3 = period_percent_diff(2,7,fb,fy,obs_periods,model_periods)

    #plt.grid(True)
    #leg=plt.legend(loc=7)
    #leg.get_frame().set_alpha(0.4)
    #plt.text(1e-2, 3000,'Period: 2 hours to 1 day, a %% Diff. of: %.2f%%'  %(percent1),  fontweight='bold')
    #plt.text(1e-2, 500,'Period: 1 day to 2 days, a %% Diff. of: %.2f%%'  %(percent2),  fontweight='bold')
    #plt.text(1e-2, 90,'Period: 2 days to 7 days, a %% Diff. of: %.2f%%'  %(percent3),  fontweight='bold')
    #plt.ylim(1e-10,1e4)
    #plt.xlabel('Period (Days)')
    #plt.ylabel(r'PSD $(ppb^{2}/days^{-1})$')
    #plt.title('Lomb-Scargle %s Power V Period' % actual_species_name)

    #plt.savefig('O3_capeverde_comparison_plots.ps', dpi = 200)

    plt.show()
Ejemplo n.º 30
0
def ran_trials(file0,
               nperm=4,
               ofac=10.,
               lowfreq=0,
               hifreq=1e9,
               hifac=1.0,
               metrics=[lambda x: x, lambda x: x**2.]):
    '''
    Determine bootstrap significance threshold for FT of given data.
        
    Keyword arguments:
    file0 -- filename of data to be shuffled and FTed (2 columns e.g. time,flux)
    nperm -- number of random shufflings of data to make, i.e., 1000 or 1e4 (default 4, for speed)
    ofac -- the FT oversampling factor (default 10.)
    lowfreq -- lower limit of frequency range (in Hz; doesn't save time but helps with interpretation).
    lowfreq -- upper limit of frequency range (in Hz; doesn't save time but helps with interpretation).
    hifac -- upper limit of the *calculated* frequency range (as fraction of the nyquist frequncy, [0-1]; default 1)
    metrics -- list of passed (lambda) functions that are evaluated along randomized FTs, the max values being recorded. 
    (default power and amplitude)
    
    Outputs:
    filename.ft -- FT of original data, and ft processed by all metrics
    filename.hist -- record of highest values of computed metric for each run.
    '''

    # If FT_orig = 1, then it will first compute and store an FT
    # of the original data set
    FT_orig = 1

    ofile0 = file0[0:-4]

    # All the time() calls is just to obsess about how long different
    # parts of the computations take

    # Read in origianl file
    t0 = datetime.datetime.now()
    print '\nReading in', file0, '...'
    vars = np.loadtxt(file0)
    t1 = datetime.datetime.now()
    print 'Elapsed time: ', t1 - t0, '\n'

    t = vars[:, 0]
    lc = vars[:, 1]

    # Force mean of light curve to be zero, and shift the time such that
    # the "mean" time is also zero
    t = t - 0.5 * (max(t) - min(t))
    lc = lc - np.mean(lc)

    # Compute FT (periodogram, actually) of unmodified data
    if FT_orig == 1:

        print 'Computing fast Lomb-Scargle periodogram of unmodified data.'
        print 'This could take a while...'
        fx0, fy0, amp0, nout, jmax, fap_vals, amp_probs, df = lomb.fasper(
            t, lc, ofac, hifac)
        t2 = datetime.datetime.now()
        print 'Elapsed time: ', t2 - t1, '\n'

        #print fap_vals
        #print amp_probs
        #fx0, fy0, nft  = ft_fix(fx0,fy0)
        fx0, amp0, nft = ft_fix(fx0, amp0)

        outarr = np.zeros((nft, 2 + len(metrics)))
        outarr[:, 0] = fx0
        outarr[:, 1] = amp0

        #run all metrics on ft
        for i, m in enumerate(metrics):
            outarr[:, 2 + i] = m(amp0, df)

        ofile1 = ofile0 + '.ft'
        nvals = len(fap_vals)
        stsig = ''
        for i in np.arange(nvals):
            stsig = stsig + '  {0:f}    {1:f}\n'.format(
                fap_vals[i], amp_probs[i])

        head = 'Significance levels ( {0} ) for amplitude from formal periodogram criteria: '.format(
            nvals
        ) + '\n    FAP       amplitude\n' + stsig + 'freq(hz)   amplitude'
        for i in range(len(metrics)):
            head += '     metric' + str(i)
        print 'Writing out FT to {0}...'.format(ofile1)
        np.savetxt(ofile1, outarr, header=head, fmt='%e')
        t3 = datetime.datetime.now()
        print 'Elapsed time: ', t3 - t2, '\n'

    head0 = 'Generated from {0} using lomb.fasper() with ofac= {1}, hifac= {2}, npts= {3}'.format(
        file0, ofac, hifac, len(t))
    #  pmaxvals = []
    #  amaxvals = []
    maxvals = []
    medvals = []

    print '\nRandomly shuffling data', nperm, 'times...\n'

    for i in np.arange(nperm):
        t3 = datetime.datetime.now()
        print 'Permutation {0}...'.format(i)
        lcper = permutation(lc)
        fx0, fy0, amp0, nout, jmax, fap_vals, amp_probs, df = lomb.fasper(
            t, lcper, ofac, hifac)
        t4 = datetime.datetime.now()
        thesemaxvals = []
        thesemedvals = []
        for m in metrics:
            processed = m(amp0, df)
            inrange = processed[np.where((fx0 > lowfreq) & (fx0 < hifreq))]
            thesemaxvals.append(np.max(inrange))
            thesemedvals.append(np.median(inrange))
#        pmaxvals.append(np.max(metrics[0](amp0)))
#        amaxvals.append(np.max(metrics[1](amp0)))
        maxvals.append(thesemaxvals)
        medvals.append(thesemedvals)
        print 'Elapsed time: ', t4 - t3, '\n'

    print 'Finished shuffling data', nperm, 'times\n'

    # print amaxvals
    #n=len(maxvals)
    maxvals = np.array(maxvals)
    medvals = np.array(medvals)
    ofile2 = ofile0 + '.hist'
    print 'Writing maximum,median values to', ofile2

    # Write out the peak amplitude and power for each shuffled data set
    head = 'Maximum, then median values from {0} randomly shuffled trials of {1}\n'.format(
        nperm, file0)
    head += 'Values from the following function definitions:\n'
    for i, m in enumerate(metrics):
        head += str(i + 1) + inspect.getsource(m) + '\n'
    np.savetxt(ofile2,
               np.concatenate((maxvals, medvals), 1),
               header=head,
               fmt='%e')

    print 'Total elapsed time: ', t4 - t0, '\n'
Ejemplo n.º 31
0
def fft(time, flux, ofac, hifac):
	freq,power, nout, jmax, prob = lomb.fasper(time, flux, ofac, hifac)
	convfactor = (1. / (60 * 60 * 24)) * (10 ** 6)
	uHzfreq = freq * convfactor #11.57, conversion c/d to mHz
	return uHzfreq, power
Ejemplo n.º 32
0
def plot():

    try:
        names
    except NameError:
# Readin the model output

        model , names = readfile("GEOS_logs.npy","001") #001 represents CVO
# Processes the date 
        year=(model[:,0]//10000)
        month=((model[:,0]-year*10000)//100)
        day=(model[:,0]-year*10000-month*100)

        hour=model[:,1]//100
        min=(model[:,1]-hour*100)

        doy=[ datetime.datetime(np.int(year[i]),np.int(month[i]),np.int(day[i]),\
                                np.int(hour[i]),np.int(min[i]),0)- \
              datetime.datetime(2006,1,1,0,0,0) \
              for i in range(len(year))]

        since2006=[doy[i].days+doy[i].seconds/(24.*60.*60.) for i in range(len(doy))]


#now read in the observations

    myfile=nappy.openNAFile('York_merge_Cape_verde_1hr_R1.na')
    myfile.readData()

#ppy.openNAFile('York_merge_Cape_verde_1hr_R1.na')
    counter = 0
    fig =plt.figure(figsize=(20,12)) 
    fig.patch.set_facecolor('white')
    ax = plt.subplot(111)
    
    for species in species_list:
    #Gives species exact model tags for convenience
        print species
        if species == 'ISOPRENE':
            species = 'TRA_6'

        elif species == 'ACETONE':
            species = 'ACET'

        elif species == 'TEMP':
            species = 'GMAO_TEMP'

        elif species == 'SURFACE_PRES':
            species = 'GMAO_PSFC'

        elif species == 'WINDSPEED':
            species = 'GMAO_WIND'

        elif species == 'SURFACE_SOLAR_RADIATION':
            species = 'GMAO_RADSW'

        elif species == 'ABS_HUMIDITY':
            species = 'GMAO_ABSH'

        elif species == 'REL_HUMIDITY':
            species = 'GMAO_RHUM'

        model_cut_switch = 0
        obs_switch = 0
        ofac = 1
        if species == 'O3':
            print 'yes'
            Units = 'ppbV'
            first_label_pos = 3
            obs_data_name = 'Ozone mixing ratio (ppbV)_(Mean)'
            unit_cut= 1e9
            species_type = 'Conc.'
            actual_species_name = 'O3'

        elif species == 'CO':
            units = 'ppbV'
            first_label_pos = 1
            obs_data_name = 'CO mixing ratio (ppbV)_(Mean)'
            unit_cut= 1e9
            species_type = 'Conc.'
            actual_species_name = 'CO'
            ofac = 2.0001

        elif species == 'NO':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'NO mixing ratio (pptv)_(Mean)'
            unit_cut= 1e12
            species_type = 'Conc.'
            actual_species_name = 'NO'

        elif species == 'NO2':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'NO2 mixing ratio (pptv)_(Mean)'
            unit_cut= 1e12
            species_type = 'Conc.'
            actual_species_name = 'NO2'

        elif species == 'C2H6':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'ethane mixing ratio (pptV)_(Mean)'
            unit_cut= 1e12
            species_type = 'Conc.'
            actual_species_name = 'C2H6'

        elif species == 'C3H8':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'propane mixing ratio (pptV)_(Mean)'
            unit_cut= 1e12
            species_type = 'Conc.'
            actual_species_name = 'C3H8'

        elif species == 'DMS':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'dms mixing ratio (pptV)_(Mean)'
            unit_cut= 1e12
            species_type = 'Conc.'
            actual_species_name = 'DMS'

        elif species == 'TRA_6':  #Isoprene
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'Isoprene (pptv)_(Mean)'
            unit_cut= 1e12
            species_type = 'Conc.'

        elif species == 'ACET':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'acetone mixing ratio (pptV)_(Mean)'
            unit_cut= 1e12
            species_type = 'Conc.'
            actual_species_name = 'Acetone'

        elif species == 'GMAO_TEMP': # Temp from met fields
            units = 'K'
            first_label_pos = 3
            obs_data_name = 'Air Temperature (degC) Campbell_(Mean)'
            unit_cut= 1
            species_type = 'Temp.'
            actual_species_name = 'Surface Temperature'
            obs_switch = 1

        elif species == 'GMAO_PSFC': #Surface Pressure
            units = 'hPa'
            first_label_pos = 3
            obs_data_name = 'Atmospheric Pressure (hPa) Campbell_(Mean)'
            unit_cut= 1
            species_type = 'Pres.'
            actual_species_name = 'Surface Pressure'


        elif species == 'GMAO_WIND': #Wind Speed extirpolated from UWND and VWND 
            def read_diff_species():
                k=names.index('GMAO_UWND')
                i=names.index('GMAO_VWND')
                model_cut=np.sqrt((model[:,k]**2)+(model[:,i]**2))
                return model_cut
            units = r'$ms^{-1}$'
            first_label_pos = 3
            obs_data_name = 'Wind Speed (m/s) Campbell_(Mean)'
            unit_cut= 1
            species_type = 'Wind Speed'
            model_cut_switch = 1
            actual_species_name = 'Surface Windspeed'

        elif species == 'GMAO_RADSW': #Sensible heat flux form surface       
            units = r'$Wm^{-2}$'
            first_label_pos = 3
            obs_data_name = 'Solar Radiation (Wm-2) Campbell_(Mean)'
            unit_cut= 1
            species_type = 'Solar Radiation'
            actual_species_name = 'Surface Solar Radiation'

        elif species == 'GMAO_ABSH': #Absolute Humidity       
            units = 'molec/cm-3'
            first_label_pos = 3
            obs_data_name = ''
            unit_cut= 1
            species_type = 'Absolute Humidity'
            actual_species_name = 'Absolute Humidity'

        elif species == 'GMAO_RHUM': #Relative Humidity       
            units = '%'
            first_label_pos = 3
            obs_data_name = 'Relative Humidity (%) Campbell_(Mean)'
            unit_cut= 1
            species_type = 'Relative Humidity'
            actual_species_name = 'Relative Humidity'




        k_var1=myfile["VNAME"].index(obs_data_name)


# OK need to conver values from a list to a numpy array
        time=np.array(myfile['X'])
        if obs_switch == 0:
            var1=np.array(myfile['V'][k_var1])
        elif obs_switch == 1:
            var1=np.array(myfile['V'][k_var1])+273.15

        valids1=var1 > 0

        time2=time[valids1]

        var2=var1[valids1]

#Pre normalise obs data for lomb analysis
        standard_deviation_obs_p = np.std(var2)
        mean_obs_p = np.mean(var2)
        normal_var2 = var2-mean_obs_p
        normal_var2 = normal_var2/standard_deviation_obs_p

#Calculate variance of pre-processed obs data- should be 1 if normal
    #standard_dev_obs = np.std(normal_var_2, dtype=np.float64)
    #variance_obs = standard_dev_obs**2
    #print 'Variance - pre-processed obs data= ', variance_obs

#Define sampling intervals
        samp_spacing = 1./24.

#Convert model time array into numpy array
        since2006=np.array(since2006)

#Need to normalise model data also
        if model_cut_switch == 0:
            k=names.index(species)
            print model[:,k]
            model_cut = model[:,k]*unit_cut
        if model_cut_switch == 1:
            model_cut = read_diff_species()
        

   #Add seasonal emission trend onto ethane.
        first_season = np.linspace(0,100,num=91,endpoint=True)
        second_season = first_season[::-1]
        third_season = np.linspace(0,-100, num=91, endpoint=True)
        fourth_season = third_season[::-1]
        fourth_season =np.append(fourth_season,0)


        n=0
        n_end=24
        step = 24
        season_index = 0
        new_model_cut=[]
        year_count = 0

        count=0
        while 1==1:
            if count <91:
                sliced = model_cut[n:n_end]
                season_value = first_season[season_index]
                sliced = [a+season_value for a in sliced]
                new_model_cut.append(sliced)
                n+=step
                n_end+=step
                #print 'season_1', count, season_index
                season_index+=1
                if season_index == 91:
                    season_index= 0

            elif count <182:
                sliced = model_cut[n:n_end]
                season_value = second_season[season_index]
                sliced = [a+season_value for a in sliced]
                new_model_cut.append(sliced)
                n+=step
                n_end+=step
                #print 'season_2', count, season_index
                season_index+=1
                if season_index == 91:
                    season_index= 0

            elif count < 273:
                sliced = model_cut[n:n_end]
                season_value = third_season[season_index]
                sliced = [a+season_value for a in sliced]
                new_model_cut.append(sliced)
                n+=step
                n_end+=step
                #print 'season_3', count, season_index
                season_index+=1
                if season_index == 91:
                    season_index= 0

            elif count < 365:
                sliced = model_cut[n:n_end]
                season_value = fourth_season[season_index]
                sliced = [a+season_value for a in sliced]
                new_model_cut.append(sliced)
                n+=step
                n_end+=step
                #print 'season_4', count, season_index
                season_index+=1

            else:
                count = 0
                year_count+=1
                season_index = 0
                continue

            if year_count == 6:
                break

            count+=1

        new_model_cut = reduce(lambda x,y: x+y,new_model_cut)

        standard_deviation_model_p = np.std(model_cut)
        mean_model_p = np.mean(model_cut)
        normal_model = model_cut-mean_model_p
        normal_model = normal_model/standard_deviation_model_p

        standard_deviation_model_p_corrected = np.std(new_model_cut)
        mean_model_p_corrected = np.mean(new_model_cut)
        normal_model_corrected = new_model_cut-mean_model_p_corrected
        normal_model_corrected = normal_model_corrected/standard_deviation_model_p_corrected

#Calculate variance of pre-processed model data- should be 1 if normal
    #standard_dev_model = np.std(normal_model, dtype=np.float64)
    #variance_model = standard_dev_model**2
    #print 'Variance - pre-processed model data= ', variance_model


#Define sampling frequency
        samp_freq = 24

#Lomb-scargle plot

#Plot axis period lines and labels
        #annotate_line_y=np.arange(1e-10,1e4,1)
        #horiz_line_100 =np.arange(0,2000,1)
        #freq_year = [345]*len(annotate_line_y)
        #array_100 = [100]*len(horiz_line_100)
        #plt.plot(freq_year, annotate_line_y,'r--',alpha=0.4)
        #plt.text(345, 5, '1 Year', fontweight='bold')
        #plt.plot(horiz_line_100, array_100,'r--',alpha=0.4)
        #plt.text(1024, 80, '100%', fontweight='bold')

#Obs lomb
        fa, fb, nout, jmax, prob = lomb.fasper(time2, normal_var2, ofac, samp_freq)
#Divide output by sampling frequency
        fb = fb/samp_freq
        fb = np.log(fb)
        obs_smoothed=savitzky_golay(fb, window_size=301, order=1)
        obs_smoothed = np.exp(obs_smoothed)
   
#Calculate Nyquist frequency, Si and Si x 2 for normalisation checks.
    #nyquist_freq_lomb_obs = frequencies[-1]
    #Si_lomb_obs = np.mean(fb)*nyquist_freq_lomb_obs
    #print nyquist_freq_lomb_obs, Si_lomb_obs, Si_lomb_obs*2 

#plot up
    #plt.loglog(1./fa, fb,'kx',markersize=2, label='Cape Verde Obs. ')

#Model lomb
        fx, fy, nout, jmax, prob2 = lomb.fasper(since2006,normal_model, ofac, samp_freq)
#Divide output by sampling frequency
        fy = fy/samp_freq
        fy = np.log(fy) 
        model_smoothed=savitzky_golay(fy, window_size=301, order=1)   
        model_smoothed = np.exp(model_smoothed) 

#Model lomb
        fx, fy, nout, jmax, prob2 = lomb.fasper(since2006,normal_model_corrected, ofac, samp_freq)
#Divide output by sampling frequency
        fy_corrected = fy/samp_freq
        fy_corrected = np.log(fy)
        model_corrected_smoothed=savitzky_golay(fy_corrected, window_size=301, order=1)
        model_corrected_smoothed = np.exp(model_corrected_smoothed)
#Calculate Nyquist frequency, Si and Si x 2 for normalisation checks.
    #nyquist_freq_lomb_model = frequencies[-1]
    #Si_lomb_model = np.mean(fy)*nyquist_freq_lomb_model
    #print nyquist_freq_lomb_model, Si_lomb_model, Si_lomb_model*2 

#plot up
    #plt.loglog(1./fx, fy, 'gx', alpha = 0.75,markersize=2, label='GEOS v9.01.03 4x5 ')

        obs_periods = 1./fa
        model_periods = 1./fx


#Which dataset is shorter
    # obs longer than model
        if len(obs_smoothed) > len(model_smoothed):
            obs_smoothed = obs_smoothed[:len(model_smoothed)]
            freq_array = fx
            period_array = model_periods
    #model longer than obs
        if len(model_smoothed) > len(obs_smoothed):
            model_smoothed = model_smoothed[:len(obs_smoothed)]
            model_corrected_smoothed =  model_corrected_smoothed[:len(obs_smoothed)]
            freq_array = fa
            period_array = obs_periods

#calculate % of observations
    
        #covariance_array = np.hstack((fb,fy))
        
        compare_powers = model_smoothed/obs_smoothed 
        compare_powers =  compare_powers *100

        corrected_compare_powers = model_corrected_smoothed/obs_smoothed
        corrected_compare_powers =  corrected_compare_powers *100  

        ax.set_xscale('log', basex=10)
        ax.set_yscale('log', basey=10)
       
        #plt.plot(obs_periods,fb, color = 'k', marker='x', alpha = 0.75, markersize=2, label = 'Mace Head'  
       
        #plt.plot(period_array, corrected_compare_powers , color=colour_list[counter], marker='x', alpha = 0.75, markersize=2, label = species)
        plt.plot(period_array, compare_powers , color='black', marker='x', alpha = 0.75, markersize=2, label = species)
        #ax.plot(rest_cut_periods, rest_powers , color=colour_list[counter], marker='x', alpha = 0.75, markersize=2, label = species)  
  #percent1 = period_percent_diff(np.min(obs_periods),1,fb,fy,obs_periods,model_periods)
    #percent2 = period_percent_diff(1,2,fb,fy,obs_periods,model_periods)
    #percent3 = period_percent_diff(2,7,fb,fy,obs_periods,model_periods)
    
        plt.grid(True)
        ax.xaxis.set_major_formatter(FormatStrFormatter('%.i'))
        ax.yaxis.set_major_formatter(FormatStrFormatter('%.i'))
        leg=plt.legend(loc=4, prop={'size':21})
        leg.get_frame().set_alpha(0.4)
    #plt.text(1e-2, 3000,'Period: 2 hours to 1 day, a %% Diff. of: %.2f%%'  %(percent1),  fontweight='bold')
    #plt.text(1e-2, 500,'Period: 1 day to 2 days, a %% Diff. of: %.2f%%'  %(percent2),  fontweight='bold')
    #plt.text(1e-2, 90,'Period: 2 days to 7 days, a %% Diff. of: %.2f%%'  %(percent3),  fontweight='bold')
        plt.xlim(0.05,1e1)
        plt.ylim(0.001,1e3)
        plt.xlabel('Period (Days)', fontsize=21)
        plt.ylabel('Percent of Obs. PSD (%)', fontsize=21)
        plt.title('% PSD of Model compared to Obs.',fontsize=21)
        counter+=1
#plt.savefig('O3_capeverde_comparison_plots.ps', dpi = 200)
    
     
    plt.show()
Ejemplo n.º 33
0
        fb = fb/samp_freq
        print threading.activeCount()
        obs_smoothed = pool.map(konnoOhmachiSmoothing,(fb, fa, bandwidth=40, count=1,
                  enforce_no_matrix=True, max_memory_usage=512,
                  normalize=False))

#Calculate Nyquist frequency, Si and Si x 2 for normalisation checks.
    #nyquist_freq_lomb_obs = frequencies[-1]
    #Si_lomb_obs = np.mean(fb)*nyquist_freq_lomb_obs
    #print nyquist_freq_lomb_obs, Si_lomb_obs, Si_lomb_obs*2 

#plot up
    #plt.loglog(1./fa, fb,'kx',markersize=2, label='Cape Verde Obs. ')

#Model lomb
        fx, fy, nout, jmax, prob2 = lomb.fasper(since2006,normal_model, ofac, samp_freq)
        model_sig = fx, fy, nout, ofac
#Divide output by sampling frequency
        fy = fy/samp_freq


        model_smoothed = konnoOhmachiSmoothing(fy, fx, bandwidth=40, count=1,
                  enforce_no_matrix=True, max_memory_usage=512,
                  normalize=False)

#Calculate Nyquist frequency, Si and Si x 2 for normalisation checks.
    #nyquist_freq_lomb_model = frequencies[-1]
    #Si_lomb_model = np.mean(fy)*nyquist_freq_lomb_model
    #print nyquist_freq_lomb_model, Si_lomb_model, Si_lomb_model*2 

#plot up
Ejemplo n.º 34
0
def plot(species, location):

    #Set obs data for each location

    if location == 'Arrival_Heights':
        obsfile = 'arrival_heights_o3_hourly/o3*'
        loc_label = 'Arrival Heights'
        gaw_code = 010

    elif location == 'Barrow':
        obsfile = 'barrow_o3_hourly/o3*'
        loc_label = 'Barrow'
        gaw_code = 015

    elif location == 'Lauder':
        obsfile = 'lauder_o3_hourly/o3*'
        loc_label = 'Lauder'
        gaw_code = 106

    elif location == 'Mace_Head':
        obsfile = 'O3_mace_head_ppbV.txt'
        loc_label = 'Mace Head'
        gaw_code = 112

    elif location == 'Mauna_Loa':
        obsfile = 'mauna_loa_o3_hourly/o3*'
        loc_label = 'Mauna Loa'
        gaw_code = 116

    elif location == 'Niwot_Ridge':
        obsfile = 'niwot_ridge_o3_hourly/o3*'
        loc_label = 'Niwot Ridge'
        gaw_code = 132

    elif location == 'Ragged_Point':
        obsfile = 'ragged_point_o3_hourly/o3*'
        loc_label = 'Ragged Point'
        gaw_code = 152

    elif location == 'South_Pole':
        obsfile = 'south_pole_o3_hourly/o3*'
        loc_label = 'South Pole'
        gaw_code = 173

    elif location == 'Trinidad_Head':
        obsfile = 'trinidad_head_o3_hourly/o3*'
        loc_label = 'Trinidad Head'
        gaw_code = 189

    elif location == 'Tudor_Hill':
        obsfile = 'tudor_hill_o3_hourly/o3*'
        loc_label = 'Tudor Hill'
        gaw_code = 191

    elif location == 'Tutuila':
        obsfile = 'tutuila_o3_hourly/o3*'
        loc_label = 'Tutuila'
        gaw_code = 192

    #Set model_cut switch to default 0, if want to do more complicated cuts from model field, specify model_cut_switch == 1 in species definitions
    model_cut_switch = 0
    ofac = 1
    if species == 'O3':
        units = 'ppbV'
        first_label_pos = 3
        obs_data_name = 'Ozone mixing ratio (ppbV)_(Mean)'
        unit_cut = 1e9
        species_type = 'Conc.'
        actual_species_name = 'O3'
        ofac = 2.0001

    elif species == 'CO':
        units = 'ppbV'
        first_label_pos = 1
        obs_data_name = 'CO mixing ratio (ppbV)_(Mean)'
        unit_cut = 1e9
        species_type = 'Conc.'
        actual_species_name = 'CO'
        ofac = 2.0001

    elif species == 'NO':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'NO mixing ratio (pptv)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'NO'

    elif species == 'NO2':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'NO2 mixing ratio (pptv)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'NO2'

    elif species == 'C2H6':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'ethane mixing ratio (pptV)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'C2H6'

    elif species == 'C3H8':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'propane mixing ratio (pptV)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'C3H8'

    elif species == 'DMS':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'dms mixing ratio (pptV)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'DMS'

    elif species == 'TRA_6':  #Isoprene
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'Isoprene (pptv)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'Isoprene'

    elif species == 'ACET':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'acetone mixing ratio (pptV)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'Acetone'

    elif species == 'GMAO_TEMP':  # Temp from met fields
        units = 'K'
        first_label_pos = 1
        obs_data_name = 'Air Temperature (degC) Campbell_(Mean)'
        unit_cut = 1
        species_type = 'Temp.'
        actual_species_name = 'Surface Temperature'

    elif species == 'GMAO_PSFC':  #Surface Pressure
        units = 'hPa'
        first_label_pos = 1
        obs_data_name = 'Atmospheric Pressure (hPa) Campbell_(Mean)'
        unit_cut = 1
        species_type = 'Pres.'
        actual_species_name = 'Surface Pressure'

    elif species == 'GMAO_WIND':  #Wind Speed extirpolated from UWND and VWND

        def read_diff_species():
            k = names.index('GMAO_UWND')
            i = names.index('GMAO_VWND')
            model_cut = np.sqrt((model[:, k]**2) + (model[:, i]**2))
            return model_cut

        units = r'$ms^{-1}$'
        first_label_pos = 1
        obs_data_name = 'Wind Speed (m/s) Campbell_(Mean)'
        unit_cut = 1
        species_type = 'Wind Speed'
        model_cut_switch = 1
        actual_species_name = 'Surface Windspeed'

    elif species == 'GMAO_RADSW':  #Sensible heat flux form surface
        units = r'$Wm^{-2}$'
        first_label_pos = 1
        obs_data_name = 'Solar Radiation (Wm-2) Campbell_(Mean)'
        unit_cut = 1
        species_type = 'Solar Radiation'
        actual_species_name = 'Surface Solar Radiation'

    elif species == 'GMAO_ABSH':  #Absolute Humidity
        units = 'molec/cm-3'
        first_label_pos = 1
        obs_data_name = ''
        unit_cut = 1
        species_type = 'Absolute Humidity'
        actual_species_name = 'Absolute Humidity'

    elif species == 'GMAO_RHUM':  #Relative Humidity
        units = '%'
        first_label_pos = 1
        obs_data_name = 'Relative Humidity (%) Campbell_(Mean)'
        unit_cut = 1
        species_type = 'Relative Humidity'
        actual_species_name = 'Relative Humidity'

#do I need to read everything in
    try:
        names
    except NameError:
        # Readin the model output

        model = readfile("gaw_logs.npy", gaw_code)

        print model.shape
        print model

        # Processes the date
        year = (model[:, 1] // 10000)
        month = ((model[:, 1] - year * 10000) // 100)
        day = (model[:, 1] - year * 10000 - month * 100)

        hour = model[:, 2] // 100
        min = (model[:, 2] - hour * 100)

        doy=[ datetime.datetime(np.int(year[i]),np.int(month[i]),np.int(day[i]),\
                                np.int(hour[i]),np.int(min[i]),0)- \
              datetime.datetime(2006,1,1,0,0,0) \
              for i in range(len(year))]

        since2006 = [
            doy[i].days + doy[i].seconds / (24. * 60. * 60.)
            for i in range(len(doy))
        ]

#now read in the observations
    if location == 'Mace_Head':
        date, time, vals = NOAA_data_reader_mace_head(glob.glob(obsfile))
    else:
        date, time, vals = NOAA_data_reader(glob.glob(obsfile))
    valid = vals >= 0
    vals = vals[valid]
    date = date[valid]
    time = time[valid]
    print vals
    # Process NOAA obs time
    year = (date // 10000)
    month = ((date - year * 10000) // 100)
    day = (date - year * 10000 - month * 100)

    hour = time // 100
    min = (time - hour * 100)

    doy=[ datetime.datetime(np.int(year[i]),np.int(month[i]),np.int(day[i]),\
                                np.int(hour[i]),np.int(min[i]),0)- \
              datetime.datetime(2006,1,1,0,0,0) \
              for i in range(len(year))]

    since2006_2 = [
        doy[i].days + doy[i].seconds / (24. * 60. * 60.)
        for i in range(len(doy))
    ]

    #Pre normalise obs data for lomb analysis
    standard_deviation_obs_p = np.std(vals)
    mean_obs_p = np.mean(vals)
    normal_var2 = vals - mean_obs_p
    normal_var2 = normal_var2 / standard_deviation_obs_p

    #Calculate variance of pre-processed obs data- should be 1 if normal
    #standard_dev_obs = np.std(normal_var_2, dtype=np.float64)
    #variance_obs = standard_dev_obs**2
    #print 'Variance - pre-processed obs data= ', variance_obs

    #Define sampling intervals
    samp_spacing = 1. / 24.

    #Convert model time array into numpy array
    since2006 = np.array(since2006)
    since2006_2 = np.array(since2006_2)
    #Need to normalise model data also
    model_cut = model[:, 3] * unit_cut
    standard_deviation_model_p = np.std(model_cut)
    mean_model_p = np.mean(model_cut)
    normal_model = model_cut - mean_model_p
    normal_model = normal_model / standard_deviation_model_p

    #Calculate variance of pre-processed model data- should be 1 if normal
    #standard_dev_model = np.std(normal_model, dtype=np.float64)
    #variance_model = standard_dev_model**2
    #print 'Variance - pre-processed model data= ', variance_model

    #Plot them all up.
    fig = plt.figure(figsize=(20, 12))
    fig.patch.set_facecolor('white')
    ax = plt.subplot(111)
    #Plot up standard conc. v time plot
    #ax1= fig.add_subplot(2, 1, 1)
    #fig.subplots_adjust(hspace=0.3)
    #plt.plot(since2006_2,vals, color='black', label= '%s Obs.' % loc_label)
    #plt.plot(since2006, model_cut, color='green', label='GEOS v9.01.03 4x5 ')
    #plt.grid(True)
    #leg=plt.legend(loc=1)
    #leg.get_frame().set_alpha(0.4)
    #plt.xlabel('Time (Days since 2006)')
    #print units
    #plt.ylabel('%s (%s)' % (species_type,units))
    #plt.title('%s V Time' % (actual_species_name))

    #Define sampling frequency
    samp_freq = 24

    #Lomb-scargle plot
    #ax3= fig.add_subplot(2, 1, 2)

    #Plot axis period lines and labels
    annotate_line_y = np.arange(1e-10, 1e4, 1)
    horiz_line_100 = np.arange(0, 2000, 1)
    freq_year = [345] * len(annotate_line_y)
    array_100 = [100] * len(horiz_line_100)
    plt.plot(freq_year, annotate_line_y, 'r--', alpha=0.4)
    plt.text(345, 10, '1 Year', fontweight='bold')
    #plt.plot(horiz_line_100, array_100,'r--',alpha=0.4)
    #plt.text(0.05, 80, '100%', fontweight='bold')

    #Obs lomb
    fa, fb, nout, jmax, prob = lomb.fasper(since2006_2, normal_var2, ofac,
                                           samp_freq)
    #Divide output by sampling frequency
    fb = fb / samp_freq
    fb = np.log(fb)
    obs_smoothed = savitzky_golay(fb, window_size=301, order=1)
    obs_smoothed = np.exp(obs_smoothed)

    #nyquist_freq_lomb_obs = frequencies[-1]
    #Si_lomb_obs = np.mean(fb)*nyquist_freq_lomb_obs
    #print nyquist_freq_lomb_obs, Si_lomb_obs, Si_lomb_obs*2

    #plot up
    #plt.loglog(1./fa, fb,'kx',markersize=2, label='%s Obs. ' % loc_label)
    #Model lomb
    #print normal_model
    fx, fy, nout, jmax, prob2 = lomb.fasper(since2006, normal_model, ofac,
                                            samp_freq)
    #Divide output by sampling frequency
    fy = fy / samp_freq
    fy = np.log(fy)
    model_smoothed = savitzky_golay(fy, window_size=301, order=1)
    model_smoothed = np.exp(model_smoothed)
    #print model_smoothed
    #Calculate Nyquist frequency, Si and Si x 2 for normalisation checks.
    #nyquist_freq_lomb_model = frequencies[-1]
    #Si_lomb_model = np.mean(fy)*nyquist_freq_lomb_model
    #print nyquist_freq_lomb_model, Si_lomb_model, Si_lomb_model*2

    #plot up
    #plt.loglog(1./fx, fy, 'gx', alpha = 0.75,markersize=2, label='GEOS v9.01.03 4x5 ')
    #plt.loglog(1./fa, obs_smoothed, color = 'orangered', marker='x',linestyle='None',  alpha = 0.75,markersize=2, label='Smoothed Mace Head Obs. ')
    #plt.loglog(1./fx, model_smoothed, color = 'blue', marker='x', linestyle='None',  alpha = 0.75,markersize=2, label='Smoothed GEOS v9.01.03 4x5 ')

    obs_periods = 1. / fa
    model_periods = 1. / fx

    #Which dataset is shorter
    # obs longer than model
    if len(obs_smoothed) > len(model_smoothed):
        obs_smoothed = obs_smoothed[:len(model_smoothed)]
        freq_array = fx
        period_array = model_periods
    #model longer than obs
    if len(model_smoothed) > len(obs_smoothed):
        model_smoothed = model_smoothed[:len(obs_smoothed)]
        freq_array = fa
        period_array = obs_periods

#calculate % of observations

#covariance_array = np.hstack((fb,fy))

# print model_smoothed
    compare_powers = model_smoothed / obs_smoothed
    compare_powers = compare_powers * 100

    ax.set_xscale('log', basex=10)
    ax.set_yscale('log', basey=10)

    plt.plot(period_array,
             compare_powers,
             color='black',
             marker='x',
             alpha=0.75,
             markersize=2,
             label='O3 % Diff.')
    plt.grid(True)
    ax.xaxis.set_major_formatter(FormatStrFormatter('%.i'))
    ax.yaxis.set_major_formatter(FormatStrFormatter('%.i'))
    leg = plt.legend(loc=4, prop={'size': 21})
    leg.get_frame().set_alpha(0.4)
    plt.xlim(0.05, 1e1)
    plt.ylim(0.1, 1000)
    plt.xlabel('Period (Days)', fontsize=21)
    plt.ylabel('Percent of Obs. PSD (%)', fontsize=21)
    plt.title('% PSD of Model compared to Obs.', fontsize=21)

    #plt.savefig('O3_capeverde_comparison_plots.ps', dpi = 200)
    plt.show()
Ejemplo n.º 35
0
def plot():

    try:
        names
    except NameError:
# Readin the model output

        model , names = readfile("GEOS_v90103_4x5_CV_logs.npy","001") #001 represents CVO
# Processes the date 
        year=(model[:,0]//10000)
        month=((model[:,0]-year*10000)//100)
        day=(model[:,0]-year*10000-month*100)

        hour=model[:,1]//100
        min=(model[:,1]-hour*100)

        doy=[ datetime.datetime(np.int(year[i]),np.int(month[i]),np.int(day[i]),\
                                np.int(hour[i]),np.int(min[i]),0)- \
              datetime.datetime(2006,1,1,0,0,0) \
              for i in range(len(year))]

        since2006=[doy[i].days+doy[i].seconds/(24.*60.*60.) for i in range(len(doy))]


#now read in the observations

    myfile=nappy.openNAFile('York_merge_Cape_verde_1hr_R1.na')
    myfile.readData()

#ppy.openNAFile('York_merge_Cape_verde_1hr_R1.na')
    counter = 0
    fig =plt.figure(figsize=(20,12)) 
    ax = plt.subplot(111)
    
    for species in species_list:
    #Gives species exact model tags for convenience
        print species
        if species == 'ISOPRENE':
            species = 'TRA_6'

        elif species == 'ACETONE':
            species = 'ACET'

        elif species == 'TEMP':
            species = 'GMAO_TEMP'

        elif species == 'SURFACE_PRES':
            species = 'GMAO_PSFC'

        elif species == 'WINDSPEED':
            species = 'GMAO_WIND'

        elif species == 'SURFACE_SOLAR_RADIATION':
            species = 'GMAO_RADSW'

        elif species == 'ABS_HUMIDITY':
            species = 'GMAO_ABSH'

        elif species == 'REL_HUMIDITY':
            species = 'GMAO_RHUM'

        model_cut_switch = 0
        obs_switch = 0
        ofac = 1
        if species == 'O3':
            print 'yes'
            Units = 'ppbV'
            first_label_pos = 3
            obs_data_name = 'Ozone mixing ratio (ppbV)_(Mean)'
            unit_cut= 1e9
            species_type = 'Conc.'
            actual_species_name = 'O3'

        elif species == 'CO':
            units = 'ppbV'
            first_label_pos = 1
            obs_data_name = 'CO mixing ratio (ppbV)_(Mean)'
            unit_cut= 1e9
            species_type = 'Conc.'
            actual_species_name = 'CO'
            ofac = 2.0001

        elif species == 'NO':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'NO mixing ratio (pptv)_(Mean)'
            unit_cut= 1e12
            species_type = 'Conc.'
            actual_species_name = 'NO'

        elif species == 'NO2':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'NO2 mixing ratio (pptv)_(Mean)'
            unit_cut= 1e12
            species_type = 'Conc.'
            actual_species_name = 'NO2'

        elif species == 'C2H6':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'ethane mixing ratio (pptV)_(Mean)'
            unit_cut= 1e12
            species_type = 'Conc.'
            actual_species_name = 'C2H6'

        elif species == 'C3H8':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'propane mixing ratio (pptV)_(Mean)'
            unit_cut= 1e12
            species_type = 'Conc.'
            actual_species_name = 'C3H8'

        elif species == 'DMS':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'dms mixing ratio (pptV)_(Mean)'
            unit_cut= 1e12
            species_type = 'Conc.'
            actual_species_name = 'DMS'

        elif species == 'TRA_6':  #Isoprene
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'Isoprene (pptv)_(Mean)'
            unit_cut= 1e12
            species_type = 'Conc.'

        elif species == 'ACET':
            units = 'pptV'
            first_label_pos = 1
            obs_data_name = 'acetone mixing ratio (pptV)_(Mean)'
            unit_cut= 1e12
            species_type = 'Conc.'
            actual_species_name = 'Acetone'

        elif species == 'GMAO_TEMP': # Temp from met fields
            units = 'K'
            first_label_pos = 3
            obs_data_name = 'Air Temperature (degC) Campbell_(Mean)'
            unit_cut= 1
            species_type = 'Temp.'
            actual_species_name = 'Surface Temperature'
            obs_switch = 1

        elif species == 'GMAO_PSFC': #Surface Pressure
            units = 'hPa'
            first_label_pos = 3
            obs_data_name = 'Atmospheric Pressure (hPa) Campbell_(Mean)'
            unit_cut= 1
            species_type = 'Pres.'
            actual_species_name = 'Surface Pressure'


        elif species == 'GMAO_WIND': #Wind Speed extirpolated from UWND and VWND 
            def read_diff_species():
                k=names.index('GMAO_UWND')
                i=names.index('GMAO_VWND')
                model_cut=np.sqrt((model[:,k]**2)+(model[:,i]**2))
                return model_cut
            units = r'$ms^{-1}$'
            first_label_pos = 3
            obs_data_name = 'Wind Speed (m/s) Campbell_(Mean)'
            unit_cut= 1
            species_type = 'Wind Speed'
            model_cut_switch = 1
            actual_species_name = 'Surface Windspeed'

        elif species == 'GMAO_RADSW': #Sensible heat flux form surface       
            units = r'$Wm^{-2}$'
            first_label_pos = 3
            obs_data_name = 'Solar Radiation (Wm-2) Campbell_(Mean)'
            unit_cut= 1
            species_type = 'Solar Radiation'
            actual_species_name = 'Surface Solar Radiation'

        elif species == 'GMAO_ABSH': #Absolute Humidity       
            units = 'molec/cm-3'
            first_label_pos = 3
            obs_data_name = ''
            unit_cut= 1
            species_type = 'Absolute Humidity'
            actual_species_name = 'Absolute Humidity'

        elif species == 'GMAO_RHUM': #Relative Humidity       
            units = '%'
            first_label_pos = 3
            obs_data_name = 'Relative Humidity (%) Campbell_(Mean)'
            unit_cut= 1
            species_type = 'Relative Humidity'
            actual_species_name = 'Relative Humidity'




        k_var1=myfile["VNAME"].index(obs_data_name)


# OK need to conver values from a list to a numpy array
        time=np.array(myfile['X'])
        if obs_switch == 0:
            var1=np.array(myfile['V'][k_var1])
        elif obs_switch == 1:
            var1=np.array(myfile['V'][k_var1])+273.15

        valids1=var1 > 0

        time2=time[valids1]

        var2=var1[valids1]

#Pre normalise obs data for lomb analysis
        standard_deviation_obs_p = np.std(var2)
        mean_obs_p = np.mean(var2)
        normal_var2 = var2-mean_obs_p
        normal_var2 = normal_var2/standard_deviation_obs_p

#Calculate variance of pre-processed obs data- should be 1 if normal
    #standard_dev_obs = np.std(normal_var_2, dtype=np.float64)
    #variance_obs = standard_dev_obs**2
    #print 'Variance - pre-processed obs data= ', variance_obs

#Define sampling intervals
        samp_spacing = 1./24.

#Convert model time array into numpy array
        since2006=np.array(since2006)

#Need to normalise model data also
        if model_cut_switch == 0:
            k=names.index(species)
            model_cut = model[:,k]*unit_cut
        if model_cut_switch == 1:
            model_cut = read_diff_species()
        standard_deviation_model_p = np.std(model_cut)
        mean_model_p = np.mean(model_cut)
        normal_model = model_cut-mean_model_p
        normal_model = normal_model/standard_deviation_model_p

#Calculate variance of pre-processed model data- should be 1 if normal
    #standard_dev_model = np.std(normal_model, dtype=np.float64)
    #variance_model = standard_dev_model**2
    #print 'Variance - pre-processed model data= ', variance_model


#Define sampling frequency
        samp_freq = 24

#Lomb-scargle plot

#Plot axis period lines and labels
        annotate_line_y=np.arange(1e-10,1e4,1)
        horiz_line_100 =np.arange(0,2000,1)
        freq_year = [345]*len(annotate_line_y)
        array_100 = [100]*len(horiz_line_100)
        plt.plot(freq_year, annotate_line_y,'r--',alpha=0.4)
        plt.text(345, 5, '1 Year', fontweight='bold')
        plt.plot(horiz_line_100, array_100,'r--',alpha=0.4)
        plt.text(1024, 80, '100%', fontweight='bold')

#Obs lomb
        fa, fb, nout, jmax, prob = lomb.fasper(time2, normal_var2, ofac, samp_freq)
        obs_sig = fa, fb, nout, ofac
#Divide output by sampling frequency
        fb = fb/samp_freq
        print threading.activeCount()
        obs_smoothed = pool.map(konnoOhmachiSmoothing,(fb, fa, bandwidth=40, count=1,
                  enforce_no_matrix=True, max_memory_usage=512,
                  normalize=False))
Ejemplo n.º 36
0
def superplot(lc, ticid, breakpoints, target_list, save_data=False, outdir=None):
    """

    """

    time, flux, flux_err = lc.time, lc.flux, lc.flux_err

    model = BoxLeastSquares(time, flux)
    results = model.autopower(0.16, minimum_period=2., maximum_period=21.)
    period = results.period[np.argmax(results.power)]
    t0 = results.transit_time[np.argmax(results.power)]
    depth = results.depth[np.argmax(results.power)]
    depth_snr = results.depth_snr[np.argmax(results.power)]

    '''
    Plot Filtered Light Curve
    -------------------------
    '''
    plt.subplot2grid((8,16),(1,0),colspan=4, rowspan=1)

    plt.plot(time, flux, 'k', label="filtered")
    for val in breakpoints:
        plt.axvline(val, c='b', linestyle='dashed')
    plt.legend()
    plt.ylabel('Normalized Flux')
    plt.xlabel('Time')

    osample=5.
    nyq=283.

    # calculate FFT
    freq, amp, nout, jmax, prob = lomb.fasper(time, flux, osample, 3.)
    freq = 1000. * freq / 86.4
    bin = freq[1] - freq[0]
    fts = 2. * amp * np.var(flux * 1e6) / (np.sum(amp) * bin)

    use = np.where(freq < nyq + 150)
    freq = freq[use]
    fts = fts[use]

    # calculate ACF
    acf = np.correlate(fts, fts, 'same')
    freq_acf = np.linspace(-freq[-1], freq[-1], len(freq))

    fitT = build_ktransit_model(ticid=ticid, lc=lc, vary_transit=False)
    dur = _individual_ktransit_dur(fitT.time, fitT.transitmodel)

    freq = freq
    fts1 = fts/np.max(fts)
    fts2 = scipy.ndimage.filters.gaussian_filter(fts/np.max(fts), 5)
    fts3 = scipy.ndimage.filters.gaussian_filter(fts/np.max(fts), 50)

    '''
    Plot Periodogram
    ----------------
    '''
    plt.subplot2grid((8,16),(0,4),colspan=4,rowspan=4)
    plt.loglog(freq, fts/np.max(fts))
    plt.loglog(freq, scipy.ndimage.filters.gaussian_filter(fts/np.max(fts), 5), color='C1', lw=2.5)
    plt.loglog(freq, scipy.ndimage.filters.gaussian_filter(fts/np.max(fts), 50), color='r', lw=2.5)
    plt.axvline(283,-1,1, ls='--', color='k')
    plt.xlabel("Frequency [uHz]")
    plt.ylabel("Power")
    plt.xlim(10, 400)
    plt.ylim(1e-4, 1e0)

    # annotate with transit info
    font = {'family':'monospace', 'size':10}
    plt.text(10**1.04, 10**-3.50, f'depth = {depth:.4f}        ', fontdict=font).set_bbox(dict(facecolor='white', alpha=.9, edgecolor='none'))
    plt.text(10**1.04, 10**-3.62, f'depth_snr = {depth_snr:.4f}    ', fontdict=font).set_bbox(dict(facecolor='white', alpha=.9, edgecolor='none'))
    plt.text(10**1.04, 10**-3.74, f'period = {period:.3f} days    ', fontdict=font).set_bbox(dict(facecolor='white', alpha=.9, edgecolor='none'))
    plt.text(10**1.04, 10**-3.86, f't0 = {t0:.3f}            ', fontdict=font).set_bbox(dict(facecolor='white', alpha=.9, edgecolor='none'))
    try:
        # annotate with stellar params
        # won't work for TIC ID's not in the list
        if isinstance(ticid, str):
            ticid = int(re.search(r'\d+', str(ticid)).group())
        Gmag = target_list[target_list['ID'] == ticid]['GAIAmag'].values[0]
        Teff = target_list[target_list['ID'] == ticid]['Teff'].values[0]
        R = target_list[target_list['ID'] == ticid]['rad'].values[0]
        M = target_list[target_list['ID'] == ticid]['mass'].values[0]
        plt.text(10**1.7, 10**-3.50, rf"G mag = {Gmag:.3f} ", fontdict=font).set_bbox(dict(facecolor='white', alpha=.9, edgecolor='none'))
        plt.text(10**1.7, 10**-3.62, rf"Teff = {int(Teff)} K  ", fontdict=font).set_bbox(dict(facecolor='white', alpha=.9, edgecolor='none'))
        plt.text(10**1.7, 10**-3.74, rf"R = {R:.3f} $R_\odot$  ", fontdict=font).set_bbox(dict(facecolor='white', alpha=.9, edgecolor='none'))
        plt.text(10**1.7, 10**-3.86, rf"M = {M:.3f} $M_\odot$    ", fontdict=font).set_bbox(dict(facecolor='white', alpha=.9, edgecolor='none'))
    except:
        pass

    '''# plot ACF inset
    ax = plt.gca()
    axins = inset_axes(ax, width=2.0, height=1.4)
    axins.plot(freq_acf, acf)
    axins.set_xlim(1,25)
    axins.set_xlabel("ACF [uHz]")'''

    '''
    Plot BLS
    --------
    '''
    plt.subplot2grid((8,16),(2,0),colspan=4, rowspan=1)

    plt.plot(results.period, results.power, "k", lw=0.5)
    plt.xlim(results.period.min(), results.period.max())
    plt.xlabel("period [days]")
    plt.ylabel("log likelihood")

    # Highlight the harmonics of the peak period
    plt.axvline(period, alpha=0.4, lw=4)
    for n in range(2, 10):
        plt.axvline(n*period, alpha=0.4, lw=1, linestyle="dashed")
        plt.axvline(period / n, alpha=0.4, lw=1, linestyle="dashed")

    phase = (t0 % period) / period
    foldedtimes = (((time - phase * period) / period) % 1)
    foldedtimes[foldedtimes > 0.5] -= 1
    foldtimesort = np.argsort(foldedtimes)
    foldfluxes = flux[foldtimesort]
    plt.subplot2grid((8,16), (3,0),colspan=2)
    plt.scatter(foldedtimes, flux, s=2)
    plt.plot(np.sort(foldedtimes), scipy.ndimage.filters.median_filter(foldfluxes, 40), lw=2, color='r', label=f'P={period:.2f} days, dur={dur:.2f} hrs')
    plt.xlabel('Phase')
    plt.ylabel('Flux')
    plt.xlim(-0.5, 0.5)
    plt.ylim(-0.0025, 0.0025)
    plt.legend(loc=0)

    fig = plt.gcf()
    fig.patch.set_facecolor('white')
    fig.suptitle(f'{ticid}', fontsize=14)
    fig.set_size_inches(12, 10)

    if save_data:
        np.savetxt(outdir+'/timeseries/'+str(ticid)+'.dat.ts', np.transpose([time, flux]), fmt='%.8f', delimiter=' ')
        np.savetxt(outdir+'/fft/'+str(ticid)+'.dat.ts.fft', np.transpose([freq, fts]), fmt='%.8f', delimiter=' ')
        with open(os.path.join(outdir,"transit_stats.txt"), "a+") as file:
            file.write(f"{ticid} {depth} {depth_snr} {period} {t0} {dur}\n")

    """
    ---------------
    TRANSIT VETTING
    ---------------
    """
    tpf = get_cutout(ticid, cutout_size=11)
    ica_lcs = find_ica_components(tpf)

    fig = plt.subplot2grid((8,16),(0,8),colspan=4,rowspan=4)
    fig.patch.set_facecolor('white')

    tpf.plot(ax=fig, title='', show_colorbar=False)
    add_gaia_figure_elements(tpf, fig)

    fig = plt.subplot2grid((8,16),(2,8),colspan=4,rowspan=2)
    lc.fold(2*period, t0+period/2).scatter(ax=fig, c='k', label='Odd Transit')
    lc.fold(2*period, t0+period/2).bin(3).plot(ax=fig, c='C1', lw=2)
    plt.xlim(-.5, 0)
    rms = np.std(lc.flux)
    plt.ylim(-3*rms, rms)

    fig = plt.subplot2grid((8,16),(3,8),colspan=4,rowspan=2)
    lc.fold(2*period, t0+period/2).scatter(ax=fig, c='k', label='Even Transit')
    lc.fold(2*period, t0+period/2).bin(3).plot(ax=fig, c='C1', lw=2)
    plt.xlim(0, .5)
    plt.ylim(-3*rms, rms)

    fig = plt.subplot2grid((8,16),(0,12),colspan=4,rowspan=4)
    for i,ilc in enumerate(ica_lcs):
        scale = 1
        plt.plot(ilc + i*scale)
    plt.xlim(0, len(ica_lcs[0]))
    plt.ylim(-scale, len(ica_lcs)*scale)

    """
    STARRY MODEL
    ------------
    """
    from .utils import _fit

    x, y, yerr = lc.time, lc.flux, lc.flux_err
    model, static_lc = _fit(x, y, yerr, target_list=target_list)

    model_lc = lk.LightCurve(time=x, flux=static_lc)

    with model:
        period = model.map_soln['period'][0]
        t0 = model.map_soln['t0'][0]
        r_pl = model.map_soln['r_pl'] * 9.96
        a = model.map_soln['a'][0]
        b = model.map_soln['b'][0]

    try:
        r_star = target_list[target_list['ID'] == ticid]['rad'].values[0]
    except:
        r_star = 10.

    fig = plt.subplot2grid((8,16),(4,0),colspan=4,rowspan=2)
    '''
    Plot unfolded transit
    ---------------------
    '''
    lc.scatter(c='k', label='Corrected Flux')
    lc.bin(binsize=7).plot(c='b', lw=1.5, alpha=.75, label='binned')
    model_lc.plot(c='r', lw=2, label='Transit Model')
    plt.ylim([-.002, .002])
    plt.xlim([lc.time[0], lc.time[-1]])

    fig = plt.subplot2grid((8,16),(6,0),colspan=4,rowspan=2)
    '''
    Plot folded transit
    -------------------
    '''
    lc.fold(period, t0).scatter(c='k', label=rf'$P={period:.3f}, t0={t0:.3f}, '
                                                         'R_p={r_pl:.3f} R_J, b={b:.3f}')
    lc.fold(period, t0).bin(binsize=7).plot(c='b', alpha=.75, lw=2)
    model_lc.fold(period, t0).plot(c='r', lw=2)
    plt.xlim([-0.5, .5])
    plt.ylim([-.002, .002])
Ejemplo n.º 37
0
	#ax.xaxis.set_ticks(ticks)
	#ax.yaxis.set_ticks([])
	plt.xlabel('Time (days)')
	plt.ylabel('Flux (mJy)')
	c = fname.split('_')[0]
	plt.title('{0} lightcurve'.format(c))
	ax = fig.add_subplot(gs[pltnum + 2])
	plt.xlabel('Wavelength (days)')
	plt.ylabel('Relative intensity')
	plt.title('{0} Periodogram'.format(c))

	time = numpy.array(time)
	flux = numpy.array(flux)
	# center the flux
	flux = (flux - numpy.mean(flux)) / (1.0 * numpy.std(flux))
	result = lomb.fasper(time, flux, 6.0, 0.5)
	FIND_FREQUENCIES = int(result[2])
	print FIND_FREQUENCIES
	# filter out weird frequencies
	spectral_results = filter(lambda elem: elem[0] < 0.55 and elem[0] > (2.0 / len(time)), zip(result[0], result[1]))
	wavelengths = []
	for frequency in sorted(spectral_results, key=itemgetter(1), reverse=True):
		wavelength = int(round(1.0 / frequency[0]))
		# check if wavelength is approximately in array
		include = True
		#for found_wavelength in wavelengths:
		#	if abs(found_wavelength[0] - wavelength) <= 4:
		#		include = False
		#if include:
		if wavelength > 20:
			wavelengths.append([wavelength, frequency[1]])
Ejemplo n.º 38
0
def plot(species):

    #Set model_cut switch to default 0, if want to do more complicated cuts from model field, specify model_cut_switch == 1 in species definitions
    #Vice versa with obs_switch
    model_cut_switch = 0
    obs_switch = 0
    ofac = 1
    if species == 'O3':
        units = 'ppbV'
        first_label_pos = 3
        obs_data_name = 'Ozone mixing ratio (ppbV)_(Mean)'
        unit_cut = 1e9
        species_type = 'Conc.'
        actual_species_name = 'O3'

    elif species == 'CO':
        units = 'ppbV'
        first_label_pos = 1
        obs_data_name = 'CO mixing ratio (ppbV)_(Mean)'
        unit_cut = 1e9
        species_type = 'Conc.'
        actual_species_name = 'CO'
        ofac = 2.0001

    elif species == 'NO':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'NO mixing ratio (pptv)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'NO'

    elif species == 'NO2':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'NO2 mixing ratio (pptv)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'NO2'

    elif species == 'C2H6':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'ethane mixing ratio (pptV)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'C2H6'

    elif species == 'C3H8':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'propane mixing ratio (pptV)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'C3H8'

    elif species == 'DMS':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'dms mixing ratio (pptV)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'DMS'

    elif species == 'TRA_6':  #Isoprene
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'Isoprene (pptv)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'Isoprene'

    elif species == 'ACET':
        units = 'pptV'
        first_label_pos = 1
        obs_data_name = 'acetone mixing ratio (pptV)_(Mean)'
        unit_cut = 1e12
        species_type = 'Conc.'
        actual_species_name = 'Acetone'

    elif species == 'GMAO_TEMP':  # Temp from met fields
        units = 'K'
        first_label_pos = 3
        obs_data_name = 'Air Temperature (degC) Campbell_(Mean)'
        unit_cut = 1
        species_type = 'Temp.'
        actual_species_name = 'Surface Temperature'
        obs_switch = 1

    elif species == 'GMAO_PSFC':  #Surface Pressure
        units = 'hPa'
        first_label_pos = 3
        obs_data_name = 'Atmospheric Pressure (hPa) Campbell_(Mean)'
        unit_cut = 1
        species_type = 'Pres.'
        actual_species_name = 'Surface Pressure'

    elif species == 'GMAO_WIND':  #Wind Speed extirpolated from UWND and VWND

        def read_diff_species():
            k = names.index('GMAO_UWND')
            i = names.index('GMAO_VWND')
            model_cut = np.sqrt((model[:, k]**2) + (model[:, i]**2))
            return model_cut

        units = r'$ms^{-1}$'
        first_label_pos = 3
        obs_data_name = 'Wind Speed (m/s) Campbell_(Mean)'
        unit_cut = 1
        species_type = 'Wind Speed'
        model_cut_switch = 1
        actual_species_name = 'Surface Windspeed'

    elif species == 'GMAO_RADSW':  #Sensible heat flux form surface
        units = r'$Wm^{-2}$'
        first_label_pos = 3
        obs_data_name = 'Solar Radiation (Wm-2) Campbell_(Mean)'
        unit_cut = 1
        species_type = 'Solar Radiation'
        actual_species_name = 'Surface Solar Radiation'

    elif species == 'GMAO_ABSH':  #Absolute Humidity
        units = 'molec/cm-3'
        first_label_pos = 3
        obs_data_name = ''
        unit_cut = 1
        species_type = 'Absolute Humidity'
        actual_species_name = 'Absolute Humidity'

    elif species == 'GMAO_RHUM':  #Relative Humidity
        units = '%'
        first_label_pos = 3
        obs_data_name = 'Relative Humidity (%) Campbell_(Mean)'
        unit_cut = 1
        species_type = 'Relative Humidity'
        actual_species_name = 'Relative Humidity'

#reads in the model data

    def readfile(filename, location):
        read = np.load(filename)
        names = read[0, 2:]
        locs = np.where(read[:, 1] == location)
        big = read[locs]
        valid_data = big[:, 2:]
        names = names.tolist()
        valid_data = np.float64(valid_data)

        return valid_data, names

#do I need to read everything in

    try:
        names
    except NameError:
        # Readin the model output

        model, names = readfile("GEOS_v90103_4x5_CV_logs.npy", '001')
        # Processes the date
        year = (model[:, 0] // 10000)
        month = ((model[:, 0] - year * 10000) // 100)
        day = (model[:, 0] - year * 10000 - month * 100)

        hour = model[:, 1] // 100
        min = (model[:, 1] - hour * 100)

        doy=[ datetime.datetime(np.int(year[i]),np.int(month[i]),np.int(day[i]),\
                                np.int(hour[i]),np.int(min[i]),0)- \
              datetime.datetime(2006,1,1,0,0,0) \
              for i in range(len(year))]

        since2006 = [
            doy[i].days + doy[i].seconds / (24. * 60. * 60.)
            for i in range(len(doy))
        ]

#now read in the observations

    myfile = nappy.openNAFile('York_merge_Cape_verde_1hr_R1.na')
    myfile.readData()

    #ppy.openNAFile('York_merge_Cape_verde_1hr_R1.na')
    k_var1 = myfile["VNAME"].index(obs_data_name)

    # OK need to conver values from a list to a numpy array

    time = np.array(myfile['X'])

    if obs_switch == 0:
        var1 = np.array(myfile['V'][k_var1])
    elif obs_switch == 1:
        var1 = np.array(myfile['V'][k_var1]) + 273.15

    valids1 = var1 > 0

    time2 = time[valids1]

    var2 = var1[valids1]

    #Pre normalise obs data for lomb analysis
    standard_deviation_obs_p = np.std(var2)
    mean_obs_p = np.mean(var2)
    normal_var2 = var2 - mean_obs_p
    normal_var2 = normal_var2 / standard_deviation_obs_p

    #Calculate variance of pre-processed obs data- should be 1 if normal
    #standard_dev_obs = np.std(normal_var_2, dtype=np.float64)
    #variance_obs = standard_dev_obs**2
    #print 'Variance - pre-processed obs data= ', variance_obs

    #Define sampling intervals
    samp_spacing = 1. / 24.

    #Convert model time array into numpy array
    since2006 = np.array(since2006)

    #Convey instrument error on model sims
    #O3
    adjustment_factor = 1

    #Need to normalise model data also
    if model_cut_switch == 0:
        k = names.index(species)
        model_cut = model[:, k] * unit_cut
        model_cut = [a + random.normalvariate(0, 10) for a in model_cut]
    if model_cut_switch == 1:
        model_cut = read_diff_species()
        model_cut = [a + random.normalvariate(0, 10) for a in model_cut]
    standard_deviation_model_p = np.std(model_cut)
    mean_model_p = np.mean(model_cut)
    normal_model = model_cut - mean_model_p
    normal_model = normal_model / standard_deviation_model_p

    #Calculate variance of pre-processed model data- should be 1 if normal
    #standard_dev_model = np.std(normal_model, dtype=np.float64)
    #variance_model = standard_dev_model**2
    #print 'Variance - pre-processed model data= ', variance_model

    #Plot them all up.
    fig = plt.figure(figsize=(20, 12))

    #Plot up standard conc. v time plot
    ax1 = fig.add_subplot(2, 1, 1)
    fig.subplots_adjust(hspace=0.3)
    plt.plot(time2, var2, color='black', label='Cape Verde Obs.')
    plt.plot(since2006, model_cut, color='green', label='GEOS v9.01.03 4x5 ')
    plt.grid(True)
    leg = plt.legend(loc=first_label_pos)
    leg.get_frame().set_alpha(0.4)
    plt.xlabel('Time (Days since 2006)')
    print units
    plt.ylabel('%s (%s)' % (species_type, units))
    plt.title('%s V Time' % (actual_species_name))

    #Define sampling frequency
    samp_freq = 24

    #Lomb-scargle plot
    ax3 = fig.add_subplot(2, 1, 2)

    #Plot axis period lines and labels
    annotate_line_y = np.arange(1e-10, 1e4, 1)
    freq_year = [345] * len(annotate_line_y)
    plt.plot(freq_year, annotate_line_y, 'r--', alpha=0.4)
    plt.text(345, 1e-10, '1 Year', fontweight='bold')

    #Obs lomb
    fa, fb, nout, jmax, prob = lomb.fasper(time2, normal_var2, ofac, samp_freq)
    #Divide output by sampling frequency
    fb = fb / samp_freq

    #Calculate Nyquist frequency, Si and Si x 2 for normalisation checks.
    #nyquist_freq_lomb_obs = frequencies[-1]
    #Si_lomb_obs = np.mean(fb)*nyquist_freq_lomb_obs
    #print nyquist_freq_lomb_obs, Si_lomb_obs, Si_lomb_obs*2

    #plot up
    plt.loglog(1. / fa, fb, 'kx', markersize=2, label='Cape Verde Obs. ')

    #Model lomb
    fx, fy, nout, jmax, prob2 = lomb.fasper(since2006, normal_model, ofac,
                                            samp_freq)
    #Divide output by sampling frequency
    fy = fy / samp_freq

    #Calculate Nyquist frequency, Si and Si x 2 for normalisation checks.
    #nyquist_freq_lomb_model = frequencies[-1]
    #Si_lomb_model = np.mean(fy)*nyquist_freq_lomb_model
    #print nyquist_freq_lomb_model, Si_lomb_model, Si_lomb_model*2

    #plot up
    plt.loglog(1. / fx,
               fy,
               'gx',
               alpha=0.75,
               markersize=2,
               label='GEOS v9.01.03 4x5 ')

    #make index for high frequency measure of obs. and model PSD. Say is between min period(2 hours) and 1 day
    obs_periods = 1. / fa
    model_periods = 1. / fx

    percent1 = period_percent_diff(np.min(obs_periods), 1, fb, fy, obs_periods,
                                   model_periods)
    percent2 = period_percent_diff(1, 2, fb, fy, obs_periods, model_periods)
    percent3 = period_percent_diff(2, 7, fb, fy, obs_periods, model_periods)

    plt.grid(True)
    leg = plt.legend(loc=7)
    leg.get_frame().set_alpha(0.4)
    plt.text(1e-2,
             3000,
             'Period: 2 hours to 1 day, a %% Diff. of: %.2f%%' % (percent1),
             fontweight='bold')
    plt.text(1e-2,
             500,
             'Period: 1 day to 2 days, a %% Diff. of: %.2f%%' % (percent2),
             fontweight='bold')
    plt.text(1e-2,
             90,
             'Period: 2 days to 7 days, a %% Diff. of: %.2f%%' % (percent3),
             fontweight='bold')
    plt.ylim(1e-10, 1e4)
    plt.xlabel('Period (Days)')
    plt.ylabel(r'PSD $(ppb^{2}/days^{-1})$')
    plt.title('Lomb-Scargle %s Power V Period' % actual_species_name)

    #plt.savefig('O3_capeverde_comparison_plots.ps', dpi = 200)

    plt.show()
Ejemplo n.º 39
0
#		fft_phase[num] = np.pi + diff

#print 'mag sum', np.sum(fft_mag)

	
#wk1, wk2, a, ph = lomb_phase.lomb(a,waveform)  

#window = np.kaiser(len(waveform),5)
#window = signal.flattop(len(waveform), sym=False)
#window= np.hamming(len(waveform))
#waveform_mean = np.mean(waveform)
#waveform  = waveform - waveform_mean

#waveform = waveform*window

wk1,wk2, amp, l_phase = lomb.fasper(a,waveform)
lomb_periods = 1./wk1

#amp_corr = 1./(sum(window)/len(window))
#amp = amp * amp_corr

#window = signal.flattop(len(waveform), sym=False)

#test = waveform >= 0
#a = a[test]
#waveform = waveform[test]

#test = waveform >= 0
#a = a[test]
#waveform = waveform[test]