def getSqeHistogramFromMantidWS(reduced, outfile, qaxis=None, eaxis=None): from mantid import simpleapi as msa # if eaxis is not specified, use the data in reduced workspace if eaxis is None: Edim = reduced.getXDimension() emin = Edim.getMinimum() emax = Edim.getMaximum() de = Edim.getX(1) - Edim.getX(0) eaxis = emin, de, emax qmin, dq, qmax = qaxis nq = int(round((qmax - qmin) / dq)) emin, de, emax = eaxis ne = int(round((emax - emin) / de)) md = msa.ConvertToMD( InputWorkspace=reduced, QDimensions='|Q|', dEAnalysisMode='Direct', MinValues="%s,%s" % (qmin, emin), MaxValues="%s,%s" % (qmax, emax), ) binned = msa.BinMD( InputWorkspace=md, AxisAligned=1, AlignedDim0="|Q|,%s,%s,%s" % (qmin, qmax, nq), AlignedDim1="DeltaE,%s,%s,%s" % (emin, emax, ne), ) # convert to histogram import histogram as H, histogram.hdf as hh data = binned.getSignalArray().copy() err2 = binned.getErrorSquaredArray().copy() nev = binned.getNumEventsArray() data /= nev err2 /= (nev * nev) import numpy as np qaxis = H.axis('Q', boundaries=np.arange(qmin, qmax + dq / 2., dq), unit='1./angstrom') eaxis = H.axis('E', boundaries=np.arange(emin, emax + de / 2., de), unit='meV') hist = H.histogram('IQE', (qaxis, eaxis), data=data, errors=err2) if outfile.endswith('.nxs'): import warnings warnings.warn( "reduce function no longer writes iqe.nxs nexus file. it only writes iqe.h5 histogram file" ) outfile = outfile[:-4] + '.h5' hh.dump(hist, outfile) return
mantid.CopySample(InputWorkspace=PeaksLattice, OutputWorkspace=ws, CopyName='0', CopyMaterial='0', CopyEnvironment='0', CopyShape='0', CopyLattice=1) # Convert to reciprocal space, in the sample frame HKL = mantid.ConvertToDiffractionMDWorkspace(InputWorkspace=ws, OutputDimensions='HKL', LorentzCorrection='0', SplitInto='2', SplitThreshold='150') # ------------------------------------------------------------------------------------------------------------------------------------------ # Part 4. Displaying # Bin to a regular grid Binned = mantid.BinMD(InputWorkspace=HKL, AlignedDim0='[H,0,0], -15, 5, 150', AlignedDim1='[0,K,0], -0, 10, 50', AlignedDim2='[0,0,L], 0, 12, 150') # Show in slice Viewer sv = mantid.plotSlice(Binned, xydim=('[H,0,0]', '[0,0,L]'), slicepoint=[0, +9, 0], colorscalelog=True) sv.setColorMapBackground(0, 0, 0)
def reduce(nxsfile, qaxis, outfile, use_ei_guess=False, ei_guess=None, eaxis=None, tof2E=True, ibnorm='ByCurrent'): """reduce a NeXus file to a I(Q,E) histogram using Mantid This is a wrapper of Mantid algorithms to reduce a NeXus file to IQE histogram. Parameters ---------- nxsfile: str path to nxs file qaxis: 3-tuple of floats Momentum transfer axis. (Qmin, dQ, Qmax). unit: inverse angstrom outfile: str path to save nxs data use_ei_guess: boolean Use incident energy guess ei_guess: float Initial guess of incident energy (meV) eaxis: 3-tuple of floats Energy transfer axis. (Emin, dE, Emax). unit: meV tof2E: boolean Conversion from time of flight axis to energy axis or not. If the NeXus file is in time of flight, tof2E=True If the NeXus file is processed and in energy transfer, tof2E=False ibnorm: str Incident beam normalization choice. Allowed values: None, ByCurrent, ToMonitor For more details, see http://docs.mantidproject.org/nightly/algorithms/DgsReduction-v1.html """ from mantid.simpleapi import DgsReduction, SaveNexus, Load from mantid import mtd import mantid.simpleapi as msa if tof2E == 'guess': # XXX: this is a simple guess. all raw data files seem to have root "entry" cmd = 'h5ls %s' % nxsfile import subprocess as sp, shlex o = sp.check_output(shlex.split(cmd)).strip().split()[0] tof2E = o == 'entry' if tof2E: if use_ei_guess: DgsReduction( SampleInputFile=nxsfile, IncidentEnergyGuess=ei_guess, UseIncidentEnergyGuess=use_ei_guess, OutputWorkspace='reduced', EnergyTransferRange=eaxis, IncidentBeamNormalisation=ibnorm, ) else: DgsReduction( SampleInputFile=nxsfile, OutputWorkspace='reduced', EnergyTransferRange=eaxis, IncidentBeamNormalisation=ibnorm, ) reduced = mtd['reduced'] else: reduced = Load(nxsfile) # get eaxis info from mtd workspace, if necessary if eaxis is None: Edim = reduced.getXDimension() emin = Edim.getMinimum() emax = Edim.getMaximum() de = Edim.getX(1) - Edim.getX(0) eaxis = emin, de, emax qmin, dq, qmax = qaxis nq = int((qmax - qmin + dq / 2.) / dq) emin, de, emax = eaxis ne = int((emax - emin + de / 2.) / de) # md = msa.ConvertToMD( InputWorkspace=reduced, QDimensions='|Q|', dEAnalysisMode='Direct', MinValues="%s,%s" % (qmin, emin), MaxValues="%s,%s" % (qmax, emax), ) binned = msa.BinMD( InputWorkspace=md, AxisAligned=1, AlignedDim0="|Q|,%s,%s,%s" % (qmin, qmax, nq), AlignedDim1="DeltaE,%s,%s,%s" % (emin, emax, ne), ) # create histogram import histogram as H, histogram.hdf as hh data = binned.getSignalArray().copy() err2 = binned.getErrorSquaredArray().copy() nev = binned.getNumEventsArray() data /= nev err2 /= (nev * nev) import numpy as np qaxis = H.axis('Q', boundaries=np.arange(qmin, qmax + dq / 2., dq), unit='1./angstrom') eaxis = H.axis('E', boundaries=np.arange(emin, emax + de / 2., de), unit='meV') hist = H.histogram('IQE', (qaxis, eaxis), data=data, errors=err2) if outfile.endswith('.nxs'): import warnings warnings.warn( "reduce function no longer writes iqe.nxs nexus file. it only writes iqe.h5 histogram file" ) outfile = outfile[:-4] + '.h5' hh.dump(hist, outfile) return hist
def PyExec(self): self._runs = self.getProperty('RunNumbers').value self._vanfile = self.getProperty('Vanadium').value self._ecruns = self.getProperty('EmptyCanRunNumbers').value self._ebins = (self.getProperty('EnergyBins').value).tolist() self._qbins = (self.getProperty('MomentumTransferBins').value).tolist() self._snorm = self.getProperty('NormalizeSlices').value self._clean = self.getProperty('CleanWorkspaces').value wn_sqes = self.getPropertyValue("OutputWorkspace") # workspace names prefix = '' if self._clean: prefix = '__' # "wn" denotes workspace name wn_data = prefix + 'data' # Accumulated data events wn_data_mon = prefix + 'data_monitors' # Accumulated monitors for data wn_van = prefix + 'vanadium' # White-beam vanadium wn_van_st = prefix + 'vanadium_S_theta' wn_reduced = prefix + 'reduced' # data after DGSReduction wn_ste = prefix + 'S_theta_E' # data after grouping by theta angle wn_sten = prefix + 'S_theta_E_normalized' wn_steni = prefix + 'S_theta_E_interp' wn_sqe = prefix + 'S_Q_E' wn_sqeb = prefix + 'S_Q_E_binned' wn_sqesn = prefix + wn_sqes + '_norm' # Empty can files wn_ec_data = prefix + 'ec_data' # Accumulated empty can data wn_ec_data_mon = prefix + 'ec_data_monitors' # Accumulated monitors for empty can wn_ec_reduced = prefix + 'ec_reduced' # empty can data after DGSReduction wn_ec_ste = prefix + 'ec_S_theta_E' # empty can data after grouping by theta angle # Save current configuration facility = config['default.facility'] instrument = config['default.instrument'] datasearch = config["datasearch.searcharchive"] # Allows searching for ARCS run numbers config['default.facility'] = 'SNS' config['default.instrument'] = 'ARCS' config["datasearch.searcharchive"] = "On" try: # Load the vanadium file, assumed to be preprocessed, meaning that # for every detector all events within a particular wide wavelength # range have been rebinned into a single histogram self._load(self._vanfile, wn_van) # Check for white-beam vanadium, true if the vertical chopper is absent (vChTrans==2) if api.mtd[wn_van].run().getProperty('vChTrans').value[0] != 2: raise ValueError("White-vanadium is required") # Load several event files into a single workspace. The nominal incident # energy should be the same to avoid difference in energy resolution self._load(self._runs, wn_data) # Load empty can event files, if present if self._ecruns: self._load(self._ecruns, wn_ec_data) finally: # Recover the default configuration config['default.facility'] = facility config['default.instrument'] = instrument config["datasearch.searcharchive"] = datasearch # Obtain incident energy as the mean of the nominal Ei values. # There is one nominal value for each run number. ws_data = sapi.mtd[wn_data] Ei = ws_data.getRun()['EnergyRequest'].getStatistics().mean Ei_std = ws_data.getRun()['EnergyRequest'].getStatistics( ).standard_deviation # Verify empty can runs were obtained at similar energy if self._ecruns: ws_ec_data = sapi.mtd[wn_ec_data] ec_Ei = ws_ec_data.getRun()['EnergyRequest'].getStatistics().mean if abs(Ei - ec_Ei) > Ei_std: raise RuntimeError( 'Empty can runs were obtained at a significant' + ' different incident energy than the sample runs') # Obtain energy range. If user did not supply a triad # [Estart, Ewidth, Eend] but only Ewidth, then estimate # Estart and End from the nominal energies if len(self._ebins) == 1: ws_data = sapi.mtd[wn_data] Ei = ws_data.getRun()['EnergyRequest'].getStatistics().mean self._ebins.insert(0, -0.5 * Ei) # prepend self._ebins.append(0.95 * Ei) # append # Enforce that the elastic energy (E=0) lies in the middle of the # central bin with an appropriate small shift in the energy range Ei_min_reduced = self._ebins[0] / self._ebins[1] remainder = Ei_min_reduced - int(Ei_min_reduced) if remainder >= 0.0: erange_shift = self._ebins[1] * (0.5 - remainder) else: erange_shift = self._ebins[1] * (-0.5 - remainder) self._ebins[0] += erange_shift # shift minimum energy self._ebins[-1] += erange_shift # shift maximum energy # Convert to energy transfer. Normalize by proton charge. # The output workspace is S(detector-id,E) factor = 0.1 # use a finer energy bin than the one passed (self._ebins[1]) Erange = '{0},{1},{2}'.format(self._ebins[0], factor * self._ebins[1], self._ebins[2]) Ei_calc, T0 = sapi.GetEiT0atSNS(MonitorWorkspace=wn_data_mon, IncidentEnergyGuess=Ei) sapi.MaskDetectors(Workspace=wn_data, MaskedWorkspace=wn_van) # Use vanadium mask sapi.DgsReduction(SampleInputWorkspace=wn_data, SampleInputMonitorWorkspace=wn_data_mon, IncidentEnergyGuess=Ei_calc, UseIncidentEnergyGuess=1, TimeZeroGuess=T0, EnergyTransferRange=Erange, IncidentBeamNormalisation='ByCurrent', OutputWorkspace=wn_reduced) if self._ecruns: sapi.MaskDetectors(Workspace=wn_ec_data, MaskedWorkspace=wn_van) sapi.DgsReduction(SampleInputWorkspace=wn_ec_data, SampleInputMonitorWorkspace=wn_ec_data_mon, IncidentEnergyGuess=Ei_calc, UseIncidentEnergyGuess=1, TimeZeroGuess=T0, EnergyTransferRange=Erange, IncidentBeamNormalisation='ByCurrent', OutputWorkspace=wn_ec_reduced) # Obtain maximum and minimum |Q| values, as well as dQ if none passed if len(self._qbins) < 3: if not self._qbins: # insert dQ if empty qbins. The minimal momentum transfer # is the result on an event where the initial energy was # Ei and the final energy was Ei+dE. dE = self._ebins[1] self._qbins.append( numpy.sqrt((Ei + dE) / ENERGY_TO_WAVEVECTOR) - numpy.sqrt(Ei / ENERGY_TO_WAVEVECTOR)) mins, maxs = sapi.ConvertToMDMinMaxLocal(wn_reduced, Qdimensions='|Q|', dEAnalysisMode='Direct') self._qbins.insert(0, mins[0]) # prepend minimum Q self._qbins.append(maxs[0]) # append maximum Q # Delete sample and empty can event workspaces to free memory. if self._clean: sapi.DeleteWorkspace(wn_data) if self._ecruns: sapi.DeleteWorkspace(wn_ec_data) # Convert to S(theta,E) ki = numpy.sqrt(Ei / ENERGY_TO_WAVEVECTOR) # If dE is the smallest energy transfer considered, # then dQ/ki is the smallest dtheta (in radians) dtheta = self._qbins[1] / ki * (180.0 / numpy.pi) # Use a finer dtheta that the nominal smallest value factor = 1. / 5 # a reasonable (heuristic) value dtheta *= factor # Fix: a very small dtheta (<0.15 degrees) prevents correct interpolation dtheta = max(0.15, dtheta) # Group detectors according to theta angle for the sample runs group_file_os_handle, group_file_name = mkstemp(suffix='.xml') group_file_handle = os.fdopen(group_file_os_handle, 'w') sapi.GenerateGroupingPowder(InputWorkspace=wn_reduced, AngleStep=dtheta, GroupingFilename=group_file_name) group_file_handle.close() sapi.GroupDetectors(InputWorkspace=wn_reduced, MapFile=group_file_name, OutputWorkspace=wn_ste) # Group detectors according to theta angle for the emtpy can run if self._ecruns: sapi.GroupDetectors(InputWorkspace=wn_ec_reduced, MapFile=group_file_name, OutputWorkspace=wn_ec_ste) # Subtract the empty can from the can+sample sapi.Minus(LHSWorkspace=wn_ste, RHSWorkspace=wn_ec_ste, OutputWorkspace=wn_ste) # Normalize by the vanadium intensity, but before that we need S(theta) # for the vanadium. Recall every detector has all energies into a single # bin, so we get S(theta) instead of S(theta,E) sapi.GroupDetectors(InputWorkspace=wn_van, MapFile=group_file_name, OutputWorkspace=wn_van_st) # Divide by vanadium. Make sure it is integrated in the energy domain sapi.Integration(wn_van_st, OutputWorkspace=wn_van_st) sapi.Divide(wn_ste, wn_van_st, OutputWorkspace=wn_sten) sapi.ClearMaskFlag(Workspace=wn_sten) # Temporary file generated by GenerateGroupingPowder to be removed os.remove(group_file_name) # no need for this file os.remove(os.path.splitext(group_file_name)[0] + ".par") max_i_theta = 0.0 min_i_theta = 0.0 # Linear interpolation for those theta values with low intensity # First, find minimum theta index with a non-zero histogram ws_sten = sapi.mtd[wn_sten] for i_theta in range(ws_sten.getNumberHistograms()): if ws_sten.dataY(i_theta).any(): min_i_theta = i_theta break # second, find maximum theta with a non-zero histogram for i_theta in range(ws_sten.getNumberHistograms() - 1, -1, -1): if ws_sten.dataY(i_theta).any(): max_i_theta = i_theta break # Scan a range of theta angles and apply interpolation to those theta angles # with considerably low intensity (gaps) delta_theta = max_i_theta - min_i_theta gaps = self._findGaps(wn_sten, int(min_i_theta + 0.1 * delta_theta), int(max_i_theta - 0.1 * delta_theta)) sapi.CloneWorkspace(InputWorkspace=wn_sten, OutputWorkspace=wn_steni) for gap in gaps: self._interpolate(wn_steni, gap) # interpolate this gap # Convert S(theta,E) to S(Q,E), then rebin in |Q| and E to MD workspace sapi.ConvertToMD(InputWorkspace=wn_steni, QDimensions='|Q|', dEAnalysisMode='Direct', OutputWorkspace=wn_sqe) Qmin = self._qbins[0] Qmax = self._qbins[-1] dQ = self._qbins[1] Qrange = '|Q|,{0},{1},{2}'.format(Qmin, Qmax, int((Qmax - Qmin) / dQ)) Ei_min = self._ebins[0] Ei_max = self._ebins[-1] dE = self._ebins[1] deltaErange = 'DeltaE,{0},{1},{2}'.format(Ei_min, Ei_max, int((Ei_max - Ei_min) / dE)) sapi.BinMD(InputWorkspace=wn_sqe, AxisAligned=1, AlignedDim0=Qrange, AlignedDim1=deltaErange, OutputWorkspace=wn_sqeb) # Slice the data by transforming to a Matrix2Dworkspace, # with deltaE along the vertical axis sapi.ConvertMDHistoToMatrixWorkspace( InputWorkspace=wn_sqeb, Normalization='NumEventsNormalization', OutputWorkspace=wn_sqes) # Ensure correct units sapi.mtd[wn_sqes].getAxis(0).setUnit("MomentumTransfer") sapi.mtd[wn_sqes].getAxis(1).setUnit("DeltaE") # Shift the energy axis, since the reported values should be the center # of the bins, instead of the minimum bin boundary ws_sqes = sapi.mtd[wn_sqes] Eaxis = ws_sqes.getAxis(1) e_shift = self._ebins[1] / 2.0 for i in range(Eaxis.length()): Eaxis.setValue(i, Eaxis.getValue(i) + e_shift) # Normalize each slice, if requested if self._snorm: sapi.Integration(InputWorkspace=wn_sqes, OutputWorkspace=wn_sqesn) sapi.Divide(LHSWorkspace=wn_sqes, RHSWorkspace=wn_sqesn, OutputWorkspace=wn_sqes) # Clean up workspaces from intermediate steps if self._clean: for name in (wn_van, wn_reduced, wn_ste, wn_van_st, wn_sten, wn_steni, wn_sqe, wn_sqeb, wn_sqesn, 'PreprocessedDetectorsWS'): if sapi.mtd.doesExist(name): sapi.DeleteWorkspace(name) # Ouput some info as a Notice in the log ebins = ', '.join(['{0:.2f}'.format(x) for x in self._ebins]) qbins = ', '.join(['{0:.2f}'.format(x) for x in self._qbins]) tbins = '{0:.2f} {1:.2f} {2:.2f}'.format(min_i_theta * dtheta, dtheta, max_i_theta * dtheta) message = '\n****** SOME OUTPUT INFORMATION ***' + \ '\nEnergy bins: ' + ebins + \ '\nQ bins: ' + qbins + \ '\nTheta bins: '+tbins kapi.logger.notice(message) self.setProperty("OutputWorkspace", sapi.mtd[wn_sqes])
# pylint: disable=invalid-name # Common names import mantid.simpleapi as mantid filename = 'fe_demo_30.sqw' ws_in = 'fe_demo_30' # Load an SQW file and internally convert to a Multidimensional event workspace (MDEW) if not mantid.mtd.doesExist(ws_in): mantid.LoadSQW(filename, OutputWorkspace=ws_in) # Bin the workspace in an axis aligned manner. Creates a Histogrammed MD workspace. mantid.BinMD(InputWorkspace=ws_in, OutputWorkspace='binned_axis_aligned', AxisAligned=True, AlignedDim0='Q_\\zeta,-1.5,5,100', AlignedDim1='Q_\\xi,-6,6,100', AlignedDim2='Q_\\eta,-6,6,100', AlignedDim3='E,0,150,30') # Bin the workpace using a coordinate transformation to rotate the output.. Creates a Histogrammed MD workspace. mantid.BinMD(InputWorkspace=ws_in, OutputWorkspace='binned_rotated', AxisAligned=False, BasisVector0='Qx,Ang,1,0.5,0,0,1,100', BasisVector1='Qy,Ang,-0.5,1,0,0,1,100', BasisVector2='Qz,Ang,0,0,1.25,0,1,100', Origin='0,0,0,0') # Save the MDEW workspace in the MDEW nexus format. mantid.SaveMD(ws_in, Filename='MDEW_fe_demo_30.nxs')
def PyExec(self): config['default.facility'] = 'SNS' config['default.instrument'] = 'ARCS' self._runs = self.getProperty('RunNumbers').value self._vanfile = self.getProperty('Vanadium').value self._ecruns = self.getProperty('EmptyCanRunNumbers').value self._ebins_str = self.getProperty('EnergyBins').value self._qbins_str = self.getProperty('MomentumTransferBins').value self._snorm = self.getProperty('NormalizeSlices').value self._clean = self.getProperty('CleanWorkspaces').value wn_sqes = self.getPropertyValue("OutputWorkspace") # workspace names prefix = '' if self._clean: prefix = '__' # Sample files wn_data = prefix + 'data' wn_van = prefix + 'vanadium' wn_reduced = prefix + 'reduced' wn_ste = prefix + 'S_theta_E' wn_van_st = prefix + 'vanadium_S_theta' wn_sten = prefix + 'S_theta_E_normalized' wn_steni = prefix + 'S_theta_E_normalized_interp' wn_sqe = prefix + 'S_Q_E' wn_sqeb = prefix + 'S_Q_E_binned' wn_sqesn = prefix + wn_sqes + '_norm' # Empty can files wn_ec_data = prefix + 'ec_data' wn_ec_reduced = prefix + 'ec_reduced' wn_ec_ste = prefix + 'ec_S_theta_E' datasearch = config["datasearch.searcharchive"] if datasearch != "On": config["datasearch.searcharchive"] = "On" # Load several event files into a sinle workspace. The nominal incident # energy should be the same to avoid difference in energy resolution api.Load(Filename=self._runs, OutputWorkspace=wn_data) # Load the vanadium file, assume to be preprocessed, meaning that # for every detector all events whithin a particular wide wavelength # range have been rebinned into a single histogram api.Load(Filename=self._vanfile, OutputWorkspace=wn_van) # Load empty can event files, if present if self._ecruns: api.Load(Filename=self._ecruns, OutputWorkspace=wn_ec_data) # Retrieve the mask from the vanadium workspace, and apply it to the data # (and empty can, if submitted) api.MaskDetectors(Workspace=wn_data, MaskedWorkspace=wn_van) if self._ecruns: api.MaskDetectors(Workspace=wn_ec_data, MaskedWorkspace=wn_van) # Obtain incident energy as the mean of the nominal Ei values. # There is one nominal value per events file. ws_data = api.mtd[wn_data] Ei = ws_data.getRun()['EnergyRequest'].getStatistics().mean Ei_std = ws_data.getRun()['EnergyRequest'].getStatistics( ).standard_deviation # Verify empty can runs were obtained at similar energy if self._ecruns: ws_ec_data = api.mtd[wn_ec_data] ec_Ei = ws_ec_data.getRun()['EnergyRequest'].getStatistics().mean if abs(Ei - ec_Ei) > Ei_std: raise RuntimeError( 'Empty can runs were obtained at a significant' + ' different incident energy than the sample runs') # Obtain energy range self._ebins = [ float(x) for x in re.compile(r'\d+[\.\d+]*').findall(self._ebins_str) ] if len(self._ebins) == 1: ws_data = api.mtd[wn_data] Ei = ws_data.getRun()['EnergyRequest'].getStatistics().mean self._ebins.insert(0, -0.5 * Ei) # prepend self._ebins.append(0.95 * Ei) # append # Enforce that the elastic energy (E=0) lies in the middle of the # central bin with an appropriate small shift in the energy range Ei_min_reduced = self._ebins[0] / self._ebins[1] remainder = Ei_min_reduced - int(Ei_min_reduced) if remainder >= 0.0: erange_shift = self._ebins[1] * (0.5 - remainder) else: erange_shift = self._ebins[1] * (-0.5 - remainder) self._ebins[0] += erange_shift # shift minimum energy self._ebins[-1] += erange_shift # shift maximum energy # Convert to energy transfer. Normalize by proton charge. # The output workspace is S(detector-id,E) factor = 0.1 # a fine energy bin Erange = '{0},{1},{2}'.format(self._ebins[0], factor * self._ebins[1], self._ebins[2]) api.DgsReduction(SampleInputWorkspace=wn_data, EnergyTransferRange=Erange, OutputWorkspace=wn_reduced) if self._ecruns: api.DgsReduction(SampleInputWorkspace=wn_ec_data, EnergyTransferRange=Erange, IncidentBeamNormalisation='ByCurrent', OutputWorkspace=wn_ec_reduced) # Obtain maximum and minimum |Q| values, as well as dQ if none passed self._qbins = [ float(x) for x in re.compile(r'\d+[\.\d+]*').findall(self._qbins_str) ] if len(self._qbins) < 3: if not self._qbins: # insert dQ if empty qbins dE = self._ebins[1] self._qbins.append( numpy.sqrt((Ei + dE) / ENERGY_TO_WAVEVECTOR) - numpy.sqrt(Ei / ENERGY_TO_WAVEVECTOR)) mins, maxs = api.ConvertToMDMinMaxLocal(wn_reduced, Qdimensions='|Q|', dEAnalysisMode='Direct') self._qbins.insert(0, mins[0]) # prepend minimum Q self._qbins.append(maxs[0]) # append maximum Q # Clean up the events files. They take a lot of space in memory api.DeleteWorkspace(wn_data) if self._ecruns: api.DeleteWorkspace(wn_ec_data) # Convert to S(theta,E) ki = numpy.sqrt(Ei / ENERGY_TO_WAVEVECTOR) factor = 1. / 5 # a reasonable (heuristic) value # If dE is the smallest energy transfer considered, # then dQ/ki is the smallest dtheta (in radians) dtheta = factor * self._qbins[1] / ki * (180.0 / numpy.pi) # very small dtheta (<0.15 degrees) prevents interpolation dtheta = max(0.15, dtheta) group_file_os_handle, group_file_name = mkstemp(suffix='.xml') group_file_handle = os.fdopen(group_file_os_handle, 'w') api.GenerateGroupingPowder(InputWorkspace=wn_reduced, AngleStep=dtheta, GroupingFilename=group_file_name) group_file_handle.close() api.GroupDetectors(InputWorkspace=wn_reduced, MapFile=group_file_name, OutputWorkspace=wn_ste) if self._ecruns: api.GroupDetectors(InputWorkspace=wn_ec_reduced, MapFile=group_file_name, OutputWorkspace=wn_ec_ste) # Substract the empty can from the can+sample api.Minus(LHSWorkspace=wn_ste, RHSWorkspace=wn_ec_ste, OutputWorkspace=wn_ste) # Normalize by the vanadium intensity, but before that we need S(theta) # for the vanadium. Recall every detector has all energies into a single # bin, so we get S(theta) instead of S(theta,E) api.GroupDetectors(InputWorkspace=wn_van, MapFile=group_file_name, OutputWorkspace=wn_van_st) os.remove(group_file_name) # no need for this file api.Divide(wn_ste, wn_van_st, OutputWorkspace=wn_sten) api.ClearMaskFlag(Workspace=wn_sten) max_i_theta = 0.0 min_i_theta = 0.0 # Linear interpolation # First, find minimum theta index with a non-zero histogram ws_sten = api.mtd[wn_sten] for i_theta in range(ws_sten.getNumberHistograms()): if ws_sten.dataY(i_theta).any(): min_i_theta = i_theta break # second, find maximum theta with a non-zero histogram for i_theta in range(ws_sten.getNumberHistograms() - 1, -1, -1): if ws_sten.dataY(i_theta).any(): max_i_theta = i_theta break # Scan the region [min_i_theta, max_i_theta] and apply interpolation to # theta angles with no signal whatsoever, S(theta*, E)=0.0 for all energies api.CloneWorkspace(InputWorkspace=wn_sten, OutputWorkspace=wn_steni) ws_steni = api.mtd[wn_steni] i_theta = 1 + min_i_theta while i_theta < max_i_theta: if not ws_steni.dataY(i_theta).any(): nonnull_i_theta_start = i_theta - 1 # angle index of non-null histogram # scan until we find a non-null histogram while not ws_steni.dataY(i_theta).any(): i_theta += 1 nonnull_i_theta_end = i_theta # angle index of non-null histogram # The range [1+nonnull_i_theta_start, nonnull_i_theta_end] # contains only null-histograms. Interpolate! y_start = ws_steni.dataY(nonnull_i_theta_start) y_end = ws_steni.dataY(nonnull_i_theta_end) intercept = y_start slope = (y_end - y_start) / (nonnull_i_theta_end - nonnull_i_theta_start) for null_i_theta in range(1 + nonnull_i_theta_start, nonnull_i_theta_end): ws_steni.dataY(null_i_theta)[:] = intercept + slope * ( null_i_theta - nonnull_i_theta_start) i_theta += 1 # Convert S(theta,E) to S(Q,E), then rebin in |Q| and E to MD workspace api.ConvertToMD(InputWorkspace=wn_steni, QDimensions='|Q|', dEAnalysisMode='Direct', OutputWorkspace=wn_sqe) Qmin = self._qbins[0] Qmax = self._qbins[-1] dQ = self._qbins[1] Qrange = '|Q|,{0},{1},{2}'.format(Qmin, Qmax, int((Qmax - Qmin) / dQ)) Ei_min = self._ebins[0] Ei_max = self._ebins[-1] dE = self._ebins[1] deltaErange = 'DeltaE,{0},{1},{2}'.format(Ei_min, Ei_max, int((Ei_max - Ei_min) / dE)) api.BinMD(InputWorkspace=wn_sqe, AxisAligned=1, AlignedDim0=Qrange, AlignedDim1=deltaErange, OutputWorkspace=wn_sqeb) # Slice the data by transforming to a Matrix2Dworkspace, with deltaE along the vertical axis api.ConvertMDHistoToMatrixWorkspace( InputWorkspace=wn_sqeb, Normalization='NumEventsNormalization', OutputWorkspace=wn_sqes) # Shift the energy axis, since the reported values should be the center # of the bins, instead of the minimum bin boundary ws_sqes = api.mtd[wn_sqes] Eaxis = ws_sqes.getAxis(1) e_shift = self._ebins[1] / 2.0 for i in range(Eaxis.length()): Eaxis.setValue(i, Eaxis.getValue(i) + e_shift) # Normalize each slice if self._snorm: api.Integration(InputWorkspace=wn_sqes, OutputWorkspace=wn_sqesn) api.Divide(LHSWorkspace=wn_sqes, RHSWorkspace=wn_sqesn, OutputWorkspace=wn_sqes) # Clean up workspaces from intermediate steps if self._clean: for name in (wn_van, wn_reduced, wn_ste, wn_van_st, wn_sten, wn_steni, wn_sqe, wn_sqeb, wn_sqesn): api.DeleteWorkspace(name) if api.mtd.doesExist('PreprocessedDetectorsWS'): api.DeleteWorkspace('PreprocessedDetectorsWS') # Ouput some info message = '\n****** SOME OUTPUT INFORMATION ***' + \ '\nEnergy bins: ' + ', '.join(['{0:.2f}'.format(x) for x in self._ebins]) + \ '\nQ bins: ' + ', '.join(['{0:.2f}'.format(x) for x in self._qbins]) + \ '\nTheta bins: {0:.2f} {1:.2f} {2:.2f}'.format(min_i_theta * dtheta, dtheta, max_i_theta * dtheta) logger.notice(message) self.setProperty("OutputWorkspace", api.mtd[wn_sqes])
beta=60, gamma=60, NumInitial=25, Tolerance=0.12) print('\nNiggli cell found from FindUBUsingLatticeParameters:') reportUnitCell(peaks_qLab) mantid.IndexPeaks(PeaksWorkspace=peaks_qLab, Tolerance=0.12, RoundHKLs=1) if use_fft or use_Niggli_lat_par: mantid.ShowPossibleCells(PeaksWorkspace=peaks_qLab, MaxScalarError='0.5') mantid.SelectCellOfType(PeaksWorkspace=peaks_qLab, CellType='Cubic', Centering='F', Apply=True) peaks_qLab_Integrated = mantid.IntegratePeaksMD(InputWorkspace=QLab, PeaksWorkspace=peaks_qLab, PeakRadius=0.2, BackgroundInnerRadius=0.3, BackgroundOuterRadius=0.4) binned = mantid.BinMD(InputWorkspace=QLab, AlignedDim0='Q_lab_x,-15,15,200', AlignedDim1='Q_lab_y,-15,15,200', AlignedDim2='Q_lab_z,-15,15,200') print('The final result is:') reportUnitCell(peaks_qLab)