示例#1
0
文件: nxs.py 项目: mcvine/instruments
def getSqeHistogramFromMantidWS(reduced, outfile, qaxis=None, eaxis=None):
    from mantid import simpleapi as msa
    # if eaxis is not specified, use the data in reduced workspace
    if eaxis is None:
        Edim = reduced.getXDimension()
        emin = Edim.getMinimum()
        emax = Edim.getMaximum()
        de = Edim.getX(1) - Edim.getX(0)
        eaxis = emin, de, emax

    qmin, dq, qmax = qaxis
    nq = int(round((qmax - qmin) / dq))
    emin, de, emax = eaxis
    ne = int(round((emax - emin) / de))
    md = msa.ConvertToMD(
        InputWorkspace=reduced,
        QDimensions='|Q|',
        dEAnalysisMode='Direct',
        MinValues="%s,%s" % (qmin, emin),
        MaxValues="%s,%s" % (qmax, emax),
    )
    binned = msa.BinMD(
        InputWorkspace=md,
        AxisAligned=1,
        AlignedDim0="|Q|,%s,%s,%s" % (qmin, qmax, nq),
        AlignedDim1="DeltaE,%s,%s,%s" % (emin, emax, ne),
    )
    # convert to histogram
    import histogram as H, histogram.hdf as hh
    data = binned.getSignalArray().copy()
    err2 = binned.getErrorSquaredArray().copy()
    nev = binned.getNumEventsArray()
    data /= nev
    err2 /= (nev * nev)
    import numpy as np
    qaxis = H.axis('Q',
                   boundaries=np.arange(qmin, qmax + dq / 2., dq),
                   unit='1./angstrom')
    eaxis = H.axis('E',
                   boundaries=np.arange(emin, emax + de / 2., de),
                   unit='meV')
    hist = H.histogram('IQE', (qaxis, eaxis), data=data, errors=err2)
    if outfile.endswith('.nxs'):
        import warnings
        warnings.warn(
            "reduce function no longer writes iqe.nxs nexus file. it only writes iqe.h5 histogram file"
        )
        outfile = outfile[:-4] + '.h5'
    hh.dump(hist, outfile)
    return
示例#2
0
mantid.CopySample(InputWorkspace=PeaksLattice,
                  OutputWorkspace=ws,
                  CopyName='0',
                  CopyMaterial='0',
                  CopyEnvironment='0',
                  CopyShape='0',
                  CopyLattice=1)

# Convert to reciprocal space, in the sample frame
HKL = mantid.ConvertToDiffractionMDWorkspace(InputWorkspace=ws,
                                             OutputDimensions='HKL',
                                             LorentzCorrection='0',
                                             SplitInto='2',
                                             SplitThreshold='150')

# ------------------------------------------------------------------------------------------------------------------------------------------
# Part 4. Displaying

# Bin to a regular grid
Binned = mantid.BinMD(InputWorkspace=HKL,
                      AlignedDim0='[H,0,0], -15, 5, 150',
                      AlignedDim1='[0,K,0], -0, 10, 50',
                      AlignedDim2='[0,0,L], 0, 12,  150')

# Show in slice Viewer
sv = mantid.plotSlice(Binned,
                      xydim=('[H,0,0]', '[0,0,L]'),
                      slicepoint=[0, +9, 0],
                      colorscalelog=True)
sv.setColorMapBackground(0, 0, 0)
示例#3
0
def reduce(nxsfile,
           qaxis,
           outfile,
           use_ei_guess=False,
           ei_guess=None,
           eaxis=None,
           tof2E=True,
           ibnorm='ByCurrent'):
    """reduce a NeXus file to a I(Q,E) histogram using Mantid

    This is a wrapper of Mantid algorithms to reduce a NeXus file to IQE histogram.

    Parameters
    ----------

    nxsfile: str
        path to nxs file

    qaxis: 3-tuple of floats
        Momentum transfer axis. (Qmin, dQ, Qmax). unit: inverse angstrom

    outfile: str
        path to save nxs data

    use_ei_guess: boolean
        Use incident energy guess

    ei_guess: float
        Initial guess of incident energy (meV)

    eaxis: 3-tuple of floats
        Energy transfer axis. (Emin, dE, Emax). unit: meV

    tof2E: boolean
        Conversion from time of flight axis to energy axis or not.
        If the NeXus file is in time of flight, tof2E=True
        If the NeXus file is processed and in energy transfer, tof2E=False

    ibnorm: str
        Incident beam normalization choice. Allowed values: None, ByCurrent, ToMonitor
        For more details, see http://docs.mantidproject.org/nightly/algorithms/DgsReduction-v1.html
    """
    from mantid.simpleapi import DgsReduction, SaveNexus, Load
    from mantid import mtd
    import mantid.simpleapi as msa
    if tof2E == 'guess':
        # XXX: this is a simple guess. all raw data files seem to have root "entry"
        cmd = 'h5ls %s' % nxsfile
        import subprocess as sp, shlex
        o = sp.check_output(shlex.split(cmd)).strip().split()[0]
        tof2E = o == 'entry'
    if tof2E:
        if use_ei_guess:
            DgsReduction(
                SampleInputFile=nxsfile,
                IncidentEnergyGuess=ei_guess,
                UseIncidentEnergyGuess=use_ei_guess,
                OutputWorkspace='reduced',
                EnergyTransferRange=eaxis,
                IncidentBeamNormalisation=ibnorm,
            )
        else:
            DgsReduction(
                SampleInputFile=nxsfile,
                OutputWorkspace='reduced',
                EnergyTransferRange=eaxis,
                IncidentBeamNormalisation=ibnorm,
            )
        reduced = mtd['reduced']
    else:
        reduced = Load(nxsfile)

    # get eaxis info from mtd workspace, if necessary
    if eaxis is None:
        Edim = reduced.getXDimension()
        emin = Edim.getMinimum()
        emax = Edim.getMaximum()
        de = Edim.getX(1) - Edim.getX(0)
        eaxis = emin, de, emax
    qmin, dq, qmax = qaxis
    nq = int((qmax - qmin + dq / 2.) / dq)
    emin, de, emax = eaxis
    ne = int((emax - emin + de / 2.) / de)
    #
    md = msa.ConvertToMD(
        InputWorkspace=reduced,
        QDimensions='|Q|',
        dEAnalysisMode='Direct',
        MinValues="%s,%s" % (qmin, emin),
        MaxValues="%s,%s" % (qmax, emax),
    )
    binned = msa.BinMD(
        InputWorkspace=md,
        AxisAligned=1,
        AlignedDim0="|Q|,%s,%s,%s" % (qmin, qmax, nq),
        AlignedDim1="DeltaE,%s,%s,%s" % (emin, emax, ne),
    )
    # create histogram
    import histogram as H, histogram.hdf as hh
    data = binned.getSignalArray().copy()
    err2 = binned.getErrorSquaredArray().copy()
    nev = binned.getNumEventsArray()
    data /= nev
    err2 /= (nev * nev)
    import numpy as np
    qaxis = H.axis('Q',
                   boundaries=np.arange(qmin, qmax + dq / 2., dq),
                   unit='1./angstrom')
    eaxis = H.axis('E',
                   boundaries=np.arange(emin, emax + de / 2., de),
                   unit='meV')
    hist = H.histogram('IQE', (qaxis, eaxis), data=data, errors=err2)
    if outfile.endswith('.nxs'):
        import warnings
        warnings.warn(
            "reduce function no longer writes iqe.nxs nexus file. it only writes iqe.h5 histogram file"
        )
        outfile = outfile[:-4] + '.h5'
    hh.dump(hist, outfile)
    return hist
示例#4
0
    def PyExec(self):
        self._runs = self.getProperty('RunNumbers').value
        self._vanfile = self.getProperty('Vanadium').value
        self._ecruns = self.getProperty('EmptyCanRunNumbers').value
        self._ebins = (self.getProperty('EnergyBins').value).tolist()
        self._qbins = (self.getProperty('MomentumTransferBins').value).tolist()
        self._snorm = self.getProperty('NormalizeSlices').value
        self._clean = self.getProperty('CleanWorkspaces').value
        wn_sqes = self.getPropertyValue("OutputWorkspace")

        # workspace names
        prefix = ''
        if self._clean:
            prefix = '__'
        # "wn" denotes workspace name
        wn_data = prefix + 'data'  # Accumulated data events
        wn_data_mon = prefix + 'data_monitors'  # Accumulated monitors for data
        wn_van = prefix + 'vanadium'  # White-beam vanadium
        wn_van_st = prefix + 'vanadium_S_theta'
        wn_reduced = prefix + 'reduced'  # data after DGSReduction
        wn_ste = prefix + 'S_theta_E'  # data after grouping by theta angle
        wn_sten = prefix + 'S_theta_E_normalized'
        wn_steni = prefix + 'S_theta_E_interp'
        wn_sqe = prefix + 'S_Q_E'
        wn_sqeb = prefix + 'S_Q_E_binned'
        wn_sqesn = prefix + wn_sqes + '_norm'
        # Empty can files
        wn_ec_data = prefix + 'ec_data'  # Accumulated empty can data
        wn_ec_data_mon = prefix + 'ec_data_monitors'  # Accumulated monitors for empty can
        wn_ec_reduced = prefix + 'ec_reduced'  # empty can data after DGSReduction
        wn_ec_ste = prefix + 'ec_S_theta_E'  # empty can data after grouping by theta angle

        # Save current configuration
        facility = config['default.facility']
        instrument = config['default.instrument']
        datasearch = config["datasearch.searcharchive"]
        # Allows searching for ARCS run numbers
        config['default.facility'] = 'SNS'
        config['default.instrument'] = 'ARCS'
        config["datasearch.searcharchive"] = "On"

        try:
            # Load the vanadium file, assumed to be preprocessed, meaning that
            # for every detector all events within a particular wide wavelength
            # range have been rebinned into a single histogram
            self._load(self._vanfile, wn_van)
            # Check for white-beam vanadium, true if the vertical chopper is absent (vChTrans==2)
            if api.mtd[wn_van].run().getProperty('vChTrans').value[0] != 2:
                raise ValueError("White-vanadium is required")

            # Load several event files into a single workspace. The nominal incident
            # energy should be the same to avoid difference in energy resolution
            self._load(self._runs, wn_data)

            # Load empty can event files, if present
            if self._ecruns:
                self._load(self._ecruns, wn_ec_data)

        finally:
            # Recover the default configuration
            config['default.facility'] = facility
            config['default.instrument'] = instrument
            config["datasearch.searcharchive"] = datasearch

        # Obtain incident energy as the mean of the nominal Ei values.
        # There is one nominal value for each run number.
        ws_data = sapi.mtd[wn_data]
        Ei = ws_data.getRun()['EnergyRequest'].getStatistics().mean
        Ei_std = ws_data.getRun()['EnergyRequest'].getStatistics(
        ).standard_deviation

        # Verify empty can runs were obtained at similar energy
        if self._ecruns:
            ws_ec_data = sapi.mtd[wn_ec_data]
            ec_Ei = ws_ec_data.getRun()['EnergyRequest'].getStatistics().mean
            if abs(Ei - ec_Ei) > Ei_std:
                raise RuntimeError(
                    'Empty can runs were obtained at a significant' +
                    ' different incident energy than the sample runs')

        # Obtain energy range. If user did not supply a triad
        # [Estart, Ewidth, Eend] but only Ewidth, then estimate
        # Estart and End from the nominal energies
        if len(self._ebins) == 1:
            ws_data = sapi.mtd[wn_data]
            Ei = ws_data.getRun()['EnergyRequest'].getStatistics().mean
            self._ebins.insert(0, -0.5 * Ei)  # prepend
            self._ebins.append(0.95 * Ei)  # append

        # Enforce that the elastic energy (E=0) lies in the middle of the
        # central bin with an appropriate small shift in the energy range
        Ei_min_reduced = self._ebins[0] / self._ebins[1]
        remainder = Ei_min_reduced - int(Ei_min_reduced)
        if remainder >= 0.0:
            erange_shift = self._ebins[1] * (0.5 - remainder)
        else:
            erange_shift = self._ebins[1] * (-0.5 - remainder)
        self._ebins[0] += erange_shift  # shift minimum energy
        self._ebins[-1] += erange_shift  # shift maximum energy

        # Convert to energy transfer. Normalize by proton charge.
        # The output workspace is S(detector-id,E)
        factor = 0.1  # use a finer energy bin than the one passed (self._ebins[1])
        Erange = '{0},{1},{2}'.format(self._ebins[0], factor * self._ebins[1],
                                      self._ebins[2])
        Ei_calc, T0 = sapi.GetEiT0atSNS(MonitorWorkspace=wn_data_mon,
                                        IncidentEnergyGuess=Ei)
        sapi.MaskDetectors(Workspace=wn_data,
                           MaskedWorkspace=wn_van)  # Use vanadium mask
        sapi.DgsReduction(SampleInputWorkspace=wn_data,
                          SampleInputMonitorWorkspace=wn_data_mon,
                          IncidentEnergyGuess=Ei_calc,
                          UseIncidentEnergyGuess=1,
                          TimeZeroGuess=T0,
                          EnergyTransferRange=Erange,
                          IncidentBeamNormalisation='ByCurrent',
                          OutputWorkspace=wn_reduced)

        if self._ecruns:
            sapi.MaskDetectors(Workspace=wn_ec_data, MaskedWorkspace=wn_van)
            sapi.DgsReduction(SampleInputWorkspace=wn_ec_data,
                              SampleInputMonitorWorkspace=wn_ec_data_mon,
                              IncidentEnergyGuess=Ei_calc,
                              UseIncidentEnergyGuess=1,
                              TimeZeroGuess=T0,
                              EnergyTransferRange=Erange,
                              IncidentBeamNormalisation='ByCurrent',
                              OutputWorkspace=wn_ec_reduced)

        # Obtain maximum and minimum |Q| values, as well as dQ if none passed
        if len(self._qbins) < 3:
            if not self._qbins:
                # insert dQ if empty qbins. The minimal momentum transfer
                # is the result on an event where the initial energy was
                # Ei and the final energy was Ei+dE.
                dE = self._ebins[1]
                self._qbins.append(
                    numpy.sqrt((Ei + dE) / ENERGY_TO_WAVEVECTOR) -
                    numpy.sqrt(Ei / ENERGY_TO_WAVEVECTOR))
            mins, maxs = sapi.ConvertToMDMinMaxLocal(wn_reduced,
                                                     Qdimensions='|Q|',
                                                     dEAnalysisMode='Direct')
            self._qbins.insert(0, mins[0])  # prepend minimum Q
            self._qbins.append(maxs[0])  # append maximum Q

        # Delete sample and empty can event workspaces to free memory.
        if self._clean:
            sapi.DeleteWorkspace(wn_data)
            if self._ecruns:
                sapi.DeleteWorkspace(wn_ec_data)

        # Convert to S(theta,E)
        ki = numpy.sqrt(Ei / ENERGY_TO_WAVEVECTOR)
        # If dE is the smallest energy transfer considered,
        # then dQ/ki is the smallest dtheta (in radians)
        dtheta = self._qbins[1] / ki * (180.0 / numpy.pi)
        # Use a finer dtheta that the nominal smallest value
        factor = 1. / 5  # a reasonable (heuristic) value
        dtheta *= factor
        # Fix: a very small dtheta (<0.15 degrees) prevents correct interpolation
        dtheta = max(0.15, dtheta)
        # Group detectors according to theta angle for the sample runs
        group_file_os_handle, group_file_name = mkstemp(suffix='.xml')
        group_file_handle = os.fdopen(group_file_os_handle, 'w')
        sapi.GenerateGroupingPowder(InputWorkspace=wn_reduced,
                                    AngleStep=dtheta,
                                    GroupingFilename=group_file_name)
        group_file_handle.close()
        sapi.GroupDetectors(InputWorkspace=wn_reduced,
                            MapFile=group_file_name,
                            OutputWorkspace=wn_ste)
        # Group detectors according to theta angle for the emtpy can run
        if self._ecruns:
            sapi.GroupDetectors(InputWorkspace=wn_ec_reduced,
                                MapFile=group_file_name,
                                OutputWorkspace=wn_ec_ste)
            # Subtract the empty can from the can+sample
            sapi.Minus(LHSWorkspace=wn_ste,
                       RHSWorkspace=wn_ec_ste,
                       OutputWorkspace=wn_ste)

        # Normalize by the vanadium intensity, but before that we need S(theta)
        # for the vanadium. Recall every detector has all energies into a single
        # bin, so we get S(theta) instead of S(theta,E)
        sapi.GroupDetectors(InputWorkspace=wn_van,
                            MapFile=group_file_name,
                            OutputWorkspace=wn_van_st)
        # Divide by vanadium. Make sure it is integrated in the energy domain
        sapi.Integration(wn_van_st, OutputWorkspace=wn_van_st)
        sapi.Divide(wn_ste, wn_van_st, OutputWorkspace=wn_sten)
        sapi.ClearMaskFlag(Workspace=wn_sten)

        # Temporary file generated by GenerateGroupingPowder to be removed
        os.remove(group_file_name)  # no need for this file
        os.remove(os.path.splitext(group_file_name)[0] + ".par")

        max_i_theta = 0.0
        min_i_theta = 0.0

        # Linear interpolation for those theta values with low intensity
        # First, find minimum theta index with a non-zero histogram
        ws_sten = sapi.mtd[wn_sten]

        for i_theta in range(ws_sten.getNumberHistograms()):
            if ws_sten.dataY(i_theta).any():
                min_i_theta = i_theta
                break
        # second, find maximum theta with a non-zero histogram
        for i_theta in range(ws_sten.getNumberHistograms() - 1, -1, -1):
            if ws_sten.dataY(i_theta).any():
                max_i_theta = i_theta
                break

        # Scan a range of theta angles and apply interpolation to those theta angles
        # with considerably low intensity (gaps)
        delta_theta = max_i_theta - min_i_theta
        gaps = self._findGaps(wn_sten, int(min_i_theta + 0.1 * delta_theta),
                              int(max_i_theta - 0.1 * delta_theta))
        sapi.CloneWorkspace(InputWorkspace=wn_sten, OutputWorkspace=wn_steni)
        for gap in gaps:
            self._interpolate(wn_steni, gap)  # interpolate this gap

        # Convert S(theta,E) to S(Q,E), then rebin in |Q| and E to MD workspace
        sapi.ConvertToMD(InputWorkspace=wn_steni,
                         QDimensions='|Q|',
                         dEAnalysisMode='Direct',
                         OutputWorkspace=wn_sqe)
        Qmin = self._qbins[0]
        Qmax = self._qbins[-1]
        dQ = self._qbins[1]
        Qrange = '|Q|,{0},{1},{2}'.format(Qmin, Qmax, int((Qmax - Qmin) / dQ))
        Ei_min = self._ebins[0]
        Ei_max = self._ebins[-1]
        dE = self._ebins[1]
        deltaErange = 'DeltaE,{0},{1},{2}'.format(Ei_min, Ei_max,
                                                  int((Ei_max - Ei_min) / dE))
        sapi.BinMD(InputWorkspace=wn_sqe,
                   AxisAligned=1,
                   AlignedDim0=Qrange,
                   AlignedDim1=deltaErange,
                   OutputWorkspace=wn_sqeb)

        # Slice the data by transforming to a Matrix2Dworkspace,
        # with deltaE along the vertical axis
        sapi.ConvertMDHistoToMatrixWorkspace(
            InputWorkspace=wn_sqeb,
            Normalization='NumEventsNormalization',
            OutputWorkspace=wn_sqes)

        # Ensure correct units
        sapi.mtd[wn_sqes].getAxis(0).setUnit("MomentumTransfer")
        sapi.mtd[wn_sqes].getAxis(1).setUnit("DeltaE")

        # Shift the energy axis, since the reported values should be the center
        # of the bins, instead of the minimum bin boundary
        ws_sqes = sapi.mtd[wn_sqes]
        Eaxis = ws_sqes.getAxis(1)
        e_shift = self._ebins[1] / 2.0
        for i in range(Eaxis.length()):
            Eaxis.setValue(i, Eaxis.getValue(i) + e_shift)

        # Normalize each slice, if requested
        if self._snorm:
            sapi.Integration(InputWorkspace=wn_sqes, OutputWorkspace=wn_sqesn)
            sapi.Divide(LHSWorkspace=wn_sqes,
                        RHSWorkspace=wn_sqesn,
                        OutputWorkspace=wn_sqes)

        # Clean up workspaces from intermediate steps
        if self._clean:
            for name in (wn_van, wn_reduced, wn_ste, wn_van_st, wn_sten,
                         wn_steni, wn_sqe, wn_sqeb, wn_sqesn,
                         'PreprocessedDetectorsWS'):
                if sapi.mtd.doesExist(name):
                    sapi.DeleteWorkspace(name)

        # Ouput some info as a Notice in the log
        ebins = ', '.join(['{0:.2f}'.format(x) for x in self._ebins])
        qbins = ', '.join(['{0:.2f}'.format(x) for x in self._qbins])
        tbins = '{0:.2f} {1:.2f} {2:.2f}'.format(min_i_theta * dtheta, dtheta,
                                                 max_i_theta * dtheta)
        message = '\n******  SOME OUTPUT INFORMATION ***' + \
                  '\nEnergy bins: ' + ebins + \
                  '\nQ bins: ' + qbins + \
                  '\nTheta bins: '+tbins
        kapi.logger.notice(message)

        self.setProperty("OutputWorkspace", sapi.mtd[wn_sqes])
示例#5
0
# pylint: disable=invalid-name
# Common names
import mantid.simpleapi as mantid

filename = 'fe_demo_30.sqw'
ws_in = 'fe_demo_30'

# Load an SQW file and internally convert to a Multidimensional event workspace (MDEW)
if not mantid.mtd.doesExist(ws_in):
    mantid.LoadSQW(filename, OutputWorkspace=ws_in)

# Bin the workspace in an axis aligned manner. Creates a Histogrammed MD workspace.
mantid.BinMD(InputWorkspace=ws_in,
             OutputWorkspace='binned_axis_aligned',
             AxisAligned=True,
             AlignedDim0='Q_\\zeta,-1.5,5,100',
             AlignedDim1='Q_\\xi,-6,6,100',
             AlignedDim2='Q_\\eta,-6,6,100',
             AlignedDim3='E,0,150,30')

# Bin the workpace using a coordinate transformation to rotate the output.. Creates a Histogrammed MD workspace.
mantid.BinMD(InputWorkspace=ws_in,
             OutputWorkspace='binned_rotated',
             AxisAligned=False,
             BasisVector0='Qx,Ang,1,0.5,0,0,1,100',
             BasisVector1='Qy,Ang,-0.5,1,0,0,1,100',
             BasisVector2='Qz,Ang,0,0,1.25,0,1,100',
             Origin='0,0,0,0')

# Save the MDEW workspace in the MDEW nexus format.
mantid.SaveMD(ws_in, Filename='MDEW_fe_demo_30.nxs')
示例#6
0
    def PyExec(self):
        config['default.facility'] = 'SNS'
        config['default.instrument'] = 'ARCS'
        self._runs = self.getProperty('RunNumbers').value
        self._vanfile = self.getProperty('Vanadium').value
        self._ecruns = self.getProperty('EmptyCanRunNumbers').value
        self._ebins_str = self.getProperty('EnergyBins').value
        self._qbins_str = self.getProperty('MomentumTransferBins').value
        self._snorm = self.getProperty('NormalizeSlices').value
        self._clean = self.getProperty('CleanWorkspaces').value
        wn_sqes = self.getPropertyValue("OutputWorkspace")

        # workspace names
        prefix = ''
        if self._clean:
            prefix = '__'
        # Sample files
        wn_data = prefix + 'data'
        wn_van = prefix + 'vanadium'
        wn_reduced = prefix + 'reduced'
        wn_ste = prefix + 'S_theta_E'
        wn_van_st = prefix + 'vanadium_S_theta'
        wn_sten = prefix + 'S_theta_E_normalized'
        wn_steni = prefix + 'S_theta_E_normalized_interp'
        wn_sqe = prefix + 'S_Q_E'
        wn_sqeb = prefix + 'S_Q_E_binned'
        wn_sqesn = prefix + wn_sqes + '_norm'
        # Empty can files
        wn_ec_data = prefix + 'ec_data'
        wn_ec_reduced = prefix + 'ec_reduced'
        wn_ec_ste = prefix + 'ec_S_theta_E'

        datasearch = config["datasearch.searcharchive"]
        if datasearch != "On":
            config["datasearch.searcharchive"] = "On"

        # Load several event files into a sinle workspace. The nominal incident
        # energy should be the same to avoid difference in energy resolution
        api.Load(Filename=self._runs, OutputWorkspace=wn_data)

        # Load the vanadium file, assume to be preprocessed, meaning that
        # for every detector all events whithin a particular wide wavelength
        # range have been rebinned into a single histogram
        api.Load(Filename=self._vanfile, OutputWorkspace=wn_van)

        # Load empty can event files, if present
        if self._ecruns:
            api.Load(Filename=self._ecruns, OutputWorkspace=wn_ec_data)

        # Retrieve the mask from the vanadium workspace, and apply it to the data
        # (and empty can, if submitted)
        api.MaskDetectors(Workspace=wn_data, MaskedWorkspace=wn_van)
        if self._ecruns:
            api.MaskDetectors(Workspace=wn_ec_data, MaskedWorkspace=wn_van)

        # Obtain incident energy as the mean of the nominal Ei values.
        # There is one nominal value per events file.
        ws_data = api.mtd[wn_data]
        Ei = ws_data.getRun()['EnergyRequest'].getStatistics().mean
        Ei_std = ws_data.getRun()['EnergyRequest'].getStatistics(
        ).standard_deviation

        # Verify empty can runs were obtained at similar energy
        if self._ecruns:
            ws_ec_data = api.mtd[wn_ec_data]
            ec_Ei = ws_ec_data.getRun()['EnergyRequest'].getStatistics().mean
            if abs(Ei - ec_Ei) > Ei_std:
                raise RuntimeError(
                    'Empty can runs were obtained at a significant' +
                    ' different incident energy than the sample runs')

        # Obtain energy range
        self._ebins = [
            float(x)
            for x in re.compile(r'\d+[\.\d+]*').findall(self._ebins_str)
        ]
        if len(self._ebins) == 1:
            ws_data = api.mtd[wn_data]
            Ei = ws_data.getRun()['EnergyRequest'].getStatistics().mean
            self._ebins.insert(0, -0.5 * Ei)  # prepend
            self._ebins.append(0.95 * Ei)  # append

        # Enforce that the elastic energy (E=0) lies in the middle of the
        # central bin with an appropriate small shift in the energy range
        Ei_min_reduced = self._ebins[0] / self._ebins[1]
        remainder = Ei_min_reduced - int(Ei_min_reduced)
        if remainder >= 0.0:
            erange_shift = self._ebins[1] * (0.5 - remainder)
        else:
            erange_shift = self._ebins[1] * (-0.5 - remainder)
        self._ebins[0] += erange_shift  # shift minimum energy
        self._ebins[-1] += erange_shift  # shift maximum energy

        # Convert to energy transfer. Normalize by proton charge.
        # The output workspace is S(detector-id,E)
        factor = 0.1  # a fine energy bin
        Erange = '{0},{1},{2}'.format(self._ebins[0], factor * self._ebins[1],
                                      self._ebins[2])
        api.DgsReduction(SampleInputWorkspace=wn_data,
                         EnergyTransferRange=Erange,
                         OutputWorkspace=wn_reduced)
        if self._ecruns:
            api.DgsReduction(SampleInputWorkspace=wn_ec_data,
                             EnergyTransferRange=Erange,
                             IncidentBeamNormalisation='ByCurrent',
                             OutputWorkspace=wn_ec_reduced)

        # Obtain maximum and minimum |Q| values, as well as dQ if none passed
        self._qbins = [
            float(x)
            for x in re.compile(r'\d+[\.\d+]*').findall(self._qbins_str)
        ]
        if len(self._qbins) < 3:
            if not self._qbins:
                # insert dQ if empty qbins
                dE = self._ebins[1]
                self._qbins.append(
                    numpy.sqrt((Ei + dE) / ENERGY_TO_WAVEVECTOR) -
                    numpy.sqrt(Ei / ENERGY_TO_WAVEVECTOR))
            mins, maxs = api.ConvertToMDMinMaxLocal(wn_reduced,
                                                    Qdimensions='|Q|',
                                                    dEAnalysisMode='Direct')
            self._qbins.insert(0, mins[0])  # prepend minimum Q
            self._qbins.append(maxs[0])  # append maximum Q

        # Clean up the events files. They take a lot of space in memory
        api.DeleteWorkspace(wn_data)
        if self._ecruns:
            api.DeleteWorkspace(wn_ec_data)

        # Convert to S(theta,E)
        ki = numpy.sqrt(Ei / ENERGY_TO_WAVEVECTOR)
        factor = 1. / 5  # a reasonable (heuristic) value
        # If dE is the smallest energy transfer considered,
        # then dQ/ki is the smallest dtheta (in radians)
        dtheta = factor * self._qbins[1] / ki * (180.0 / numpy.pi)
        # very small dtheta (<0.15 degrees) prevents interpolation
        dtheta = max(0.15, dtheta)
        group_file_os_handle, group_file_name = mkstemp(suffix='.xml')
        group_file_handle = os.fdopen(group_file_os_handle, 'w')
        api.GenerateGroupingPowder(InputWorkspace=wn_reduced,
                                   AngleStep=dtheta,
                                   GroupingFilename=group_file_name)
        group_file_handle.close()
        api.GroupDetectors(InputWorkspace=wn_reduced,
                           MapFile=group_file_name,
                           OutputWorkspace=wn_ste)
        if self._ecruns:
            api.GroupDetectors(InputWorkspace=wn_ec_reduced,
                               MapFile=group_file_name,
                               OutputWorkspace=wn_ec_ste)
            # Substract the empty can from the can+sample
            api.Minus(LHSWorkspace=wn_ste,
                      RHSWorkspace=wn_ec_ste,
                      OutputWorkspace=wn_ste)

        # Normalize by the vanadium intensity, but before that we need S(theta)
        # for the vanadium. Recall every detector has all energies into a single
        # bin, so we get S(theta) instead of S(theta,E)
        api.GroupDetectors(InputWorkspace=wn_van,
                           MapFile=group_file_name,
                           OutputWorkspace=wn_van_st)
        os.remove(group_file_name)  # no need for this file
        api.Divide(wn_ste, wn_van_st, OutputWorkspace=wn_sten)
        api.ClearMaskFlag(Workspace=wn_sten)

        max_i_theta = 0.0
        min_i_theta = 0.0

        # Linear interpolation
        # First, find minimum theta index with a non-zero histogram
        ws_sten = api.mtd[wn_sten]
        for i_theta in range(ws_sten.getNumberHistograms()):
            if ws_sten.dataY(i_theta).any():
                min_i_theta = i_theta
                break
        # second, find maximum theta with a non-zero histogram
        for i_theta in range(ws_sten.getNumberHistograms() - 1, -1, -1):
            if ws_sten.dataY(i_theta).any():
                max_i_theta = i_theta
                break
        # Scan the region [min_i_theta, max_i_theta] and apply interpolation to
        # theta angles with no signal whatsoever, S(theta*, E)=0.0 for all energies
        api.CloneWorkspace(InputWorkspace=wn_sten, OutputWorkspace=wn_steni)
        ws_steni = api.mtd[wn_steni]
        i_theta = 1 + min_i_theta
        while i_theta < max_i_theta:
            if not ws_steni.dataY(i_theta).any():
                nonnull_i_theta_start = i_theta - 1  # angle index of non-null histogram
                # scan until we find a non-null histogram
                while not ws_steni.dataY(i_theta).any():
                    i_theta += 1
                nonnull_i_theta_end = i_theta  # angle index of non-null histogram
                # The range [1+nonnull_i_theta_start, nonnull_i_theta_end]
                # contains only null-histograms. Interpolate!
                y_start = ws_steni.dataY(nonnull_i_theta_start)
                y_end = ws_steni.dataY(nonnull_i_theta_end)
                intercept = y_start
                slope = (y_end - y_start) / (nonnull_i_theta_end -
                                             nonnull_i_theta_start)
                for null_i_theta in range(1 + nonnull_i_theta_start,
                                          nonnull_i_theta_end):
                    ws_steni.dataY(null_i_theta)[:] = intercept + slope * (
                        null_i_theta - nonnull_i_theta_start)
            i_theta += 1

        # Convert S(theta,E) to S(Q,E), then rebin in |Q| and E to MD workspace
        api.ConvertToMD(InputWorkspace=wn_steni,
                        QDimensions='|Q|',
                        dEAnalysisMode='Direct',
                        OutputWorkspace=wn_sqe)
        Qmin = self._qbins[0]
        Qmax = self._qbins[-1]
        dQ = self._qbins[1]
        Qrange = '|Q|,{0},{1},{2}'.format(Qmin, Qmax, int((Qmax - Qmin) / dQ))
        Ei_min = self._ebins[0]
        Ei_max = self._ebins[-1]
        dE = self._ebins[1]
        deltaErange = 'DeltaE,{0},{1},{2}'.format(Ei_min, Ei_max,
                                                  int((Ei_max - Ei_min) / dE))
        api.BinMD(InputWorkspace=wn_sqe,
                  AxisAligned=1,
                  AlignedDim0=Qrange,
                  AlignedDim1=deltaErange,
                  OutputWorkspace=wn_sqeb)

        # Slice the data by transforming to a Matrix2Dworkspace, with deltaE along the vertical axis
        api.ConvertMDHistoToMatrixWorkspace(
            InputWorkspace=wn_sqeb,
            Normalization='NumEventsNormalization',
            OutputWorkspace=wn_sqes)

        # Shift the energy axis, since the reported values should be the center
        # of the bins, instead of the minimum bin boundary
        ws_sqes = api.mtd[wn_sqes]
        Eaxis = ws_sqes.getAxis(1)
        e_shift = self._ebins[1] / 2.0
        for i in range(Eaxis.length()):
            Eaxis.setValue(i, Eaxis.getValue(i) + e_shift)

        # Normalize each slice
        if self._snorm:
            api.Integration(InputWorkspace=wn_sqes, OutputWorkspace=wn_sqesn)
            api.Divide(LHSWorkspace=wn_sqes,
                       RHSWorkspace=wn_sqesn,
                       OutputWorkspace=wn_sqes)

        # Clean up workspaces from intermediate steps
        if self._clean:
            for name in (wn_van, wn_reduced, wn_ste, wn_van_st, wn_sten,
                         wn_steni, wn_sqe, wn_sqeb, wn_sqesn):
                api.DeleteWorkspace(name)
            if api.mtd.doesExist('PreprocessedDetectorsWS'):
                api.DeleteWorkspace('PreprocessedDetectorsWS')

        # Ouput some info
        message = '\n******  SOME OUTPUT INFORMATION ***' + \
                  '\nEnergy bins: ' + ', '.join(['{0:.2f}'.format(x) for x in self._ebins]) + \
                  '\nQ bins: ' + ', '.join(['{0:.2f}'.format(x) for x in self._qbins]) + \
                  '\nTheta bins: {0:.2f} {1:.2f} {2:.2f}'.format(min_i_theta * dtheta, dtheta, max_i_theta * dtheta)
        logger.notice(message)

        self.setProperty("OutputWorkspace", api.mtd[wn_sqes])
示例#7
0
                                        beta=60,
                                        gamma=60,
                                        NumInitial=25,
                                        Tolerance=0.12)
    print('\nNiggli cell found from FindUBUsingLatticeParameters:')

reportUnitCell(peaks_qLab)

mantid.IndexPeaks(PeaksWorkspace=peaks_qLab, Tolerance=0.12, RoundHKLs=1)

if use_fft or use_Niggli_lat_par:
    mantid.ShowPossibleCells(PeaksWorkspace=peaks_qLab, MaxScalarError='0.5')
    mantid.SelectCellOfType(PeaksWorkspace=peaks_qLab,
                            CellType='Cubic',
                            Centering='F',
                            Apply=True)

peaks_qLab_Integrated = mantid.IntegratePeaksMD(InputWorkspace=QLab,
                                                PeaksWorkspace=peaks_qLab,
                                                PeakRadius=0.2,
                                                BackgroundInnerRadius=0.3,
                                                BackgroundOuterRadius=0.4)

binned = mantid.BinMD(InputWorkspace=QLab,
                      AlignedDim0='Q_lab_x,-15,15,200',
                      AlignedDim1='Q_lab_y,-15,15,200',
                      AlignedDim2='Q_lab_z,-15,15,200')

print('The final result is:')
reportUnitCell(peaks_qLab)