Ejemplo n.º 1
0
Nd= 0
Md= 0 # Absolute value of the design bending moment.
Vd= 0 # Absolute value of effective design shear (clause 42.2.2).
Td= 0 # Torque design value.
z= 10 # Lever arm.
AsPas= 1/4 # Area of passive longitudinal reinforcement anchored at a distance greater than the effective depth of the section.
AsAct= 1/8 # Area of active (prestressed) longitudinal reinforcement anchored at a distance greater than the effective depth of the section.
Es= 1000 # Elastic modulus of the steel de la reinforcement pasiva (AQUI FICTICIO).
Ep= 2000 # Elastic modulus of the steel de la reinforcement activa (AQUI FICTICIO).
Fp= 0 # Prestressing force in the cross-section (positive if in tension).
Ae= 0.01 # Area enclosed by the mid-line of the effective hollow area.
ue= 1 # Perimeter of the mid-line of the effective hollow area.

Md= 10
epsilonX01= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue)
ratio1= abs(epsilonX01-1e-3)/1e-3
Md= 0
Vd= 1
epsilonX02= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue)
ratio2= abs(epsilonX02-2e-3)/2e-3
Vd= 0
Td= 0.02
epsilonX03= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue)
ratio3= abs(epsilonX03-1e-3)/1e-3
Td= 0
Nd= -1
epsilonX04= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue)
ratio4= abs(epsilonX04)
Nd= 2
epsilonX05= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue)
Ejemplo n.º 2
0
Nd= 1224e3 #Design axial internal force.
Md= 0 #Bending moment design value
Vd= 125e3 #Effective design shear (clause 42.2.2).
Td= 0 #Torque design value.
d= 0.55 #Effective depth.
z= 0.9*d #Lever arm.
Asl= 9.425e-4
AsAct= 0 #reinforcement area activa
AsTrsv= math.pi*(6e-3/2)**2*4/0.2 #reinforcement area transversal
Es= 200e9 #Elastic modulus of the steel de la reinforcement pasiva.
Ep= Es #Elastic modulus of the steel de la reinforcement activa.
Fp= 0 #Prestressing force on the cross-section (positive if in tension).
Ae= 0.01 #Area enclosed by the mid-line of the effective hollow area.
ue= 1 #Perimeter of the mid-line of the effective hollow area.
epsilonX= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,Asl,AsAct,Es,Ep,Fp,Ae,ue)
gammaC= 1.5
gammaS= 1.15
fck= 30e6
fcd= fck/gammaC
fyk= 500e6
fyd= fyk/gammaS
Ac= 0.4*0.6e-4
vChi= min(2,1+math.sqrt(200/(d*1000)))
Fcv= EHE_limit_state_checking.getFcvEHE08(0.15,fck,gammaC,0.4,d,vChi,0.0,Asl,0.0)
thetaE= EHE_limit_state_checking.getCrackAngleEHE08(Nd,Md,Vd,Td,z,Asl,AsAct,Es,Ep,Fp,Ae,ue)
theta= math.radians(45)
alpha= math.radians(90)
beta= EHE_limit_state_checking.getBetaVcuEHE08(theta,thetaE)
Vcu= EHE_limit_state_checking.getVcuEHE08(fck,fcd,gammaC,0,Ac,0.4,d,z,Asl,0.0,theta,Nd,Md,Vd,Td,Es,Ep,Fp,Ae,ue)
Vu1= EHE_limit_state_checking.getVu1EHE08(fck,fcd,0,Ac,0.4,d,alpha,theta)
Ejemplo n.º 3
0
Nd = 1224e3  # Design axial internal force.
Md = 0  # Bending moment design value
Vd = 125e3  # Effective design shear (clause 42.2.2).
Td = 0  # Torque design value.
d = 0.55  # Effective depth.
z = 0.9 * d  # Lever arm.
Asl = 9.425e-4
AsAct = 0  # reinforcement area activa
AsTrsv = math.pi * (6e-3 / 2)**2 * 4 / 0.2  # reinforcement area transversal
Es = 200e9  # Elastic modulus of the steel de la reinforcement pasiva.
Ep = Es  # Elastic modulus of the steel de la reinforcement activa.
Fp = 0  # Prestressing force on the cross-section (positive if in tension).
Ae = 0.01  # Area enclosed by the mid-line of the effective hollow area.
ue = 1  # Perimeter of the mid-line of the effective hollow area.
epsilonX = EHE_limit_state_checking.getEpsilonXEHE08(Nd, Md, Vd, Td, z, Asl,
                                                     AsAct, Es, Ep, Fp, Ae, ue)
gammaC = 1.5
gammaS = 1.15
fck = 30e6
fcd = fck / gammaC
fyk = 500e6
fyd = fyk / gammaS
Ac = 0.4 * 0.6e-4
vChi = min(2, 1 + math.sqrt(200 / (d * 1000)))
Fcv = EHE_limit_state_checking.getFcvEHE08(0.15, fck, gammaC, 0.4, d, vChi,
                                           0.0, Asl, 0.0)
thetaE = EHE_limit_state_checking.getCrackAngleEHE08(Nd, Md, Vd, Td, z, Asl,
                                                     AsAct, Es, Ep, Fp, Ae, ue)
theta = math.radians(45)
alpha = math.radians(90)
beta = EHE_limit_state_checking.getBetaVcuEHE08(theta, thetaE)
Ejemplo n.º 4
0
Nd= 0
Md= 0 #Absolute value of the design bending moment.
Vd= 0 #Absolute value of effective design shear (clause 42.2.2).
Td= 0 #Torque design value.
z= 10 #Lever arm.
AsPas= 1/4 #Area of passive longitudinal reinforcement anchored at a distance greater than the effective depth of the section.
AsAct= 1/8 #Area of active (prestressed) longitudinal reinforcement anchored at a distance greater than the effective depth of the section.
Es= 1000 #Elastic modulus of the steel de la reinforcement pasiva (AQUI FICTICIO).
Ep= 2000 #Elastic modulus of the steel de la reinforcement activa (AQUI FICTICIO).
Fp= 0 #Prestressing force in the cross-section (positive if in tension).
Ae= 0.01 #Area enclosed by the mid-line of the effective hollow area.
ue= 1 #Perimeter of the mid-line of the effective hollow area.

Md= 10
epsilonX01= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue)
ratio1= abs(epsilonX01-1e-3)/1e-3
Md= 0
Vd= 1
epsilonX02= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue)
ratio2= abs(epsilonX02-2e-3)/2e-3
Vd= 0
Td= 0.02
epsilonX03= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue)
ratio3= abs(epsilonX03-1e-3)/1e-3
Td= 0
Nd= -1
epsilonX04= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue)
ratio4= abs(epsilonX04)
Nd= 2
epsilonX05= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue)