Nd= 0 Md= 0 # Absolute value of the design bending moment. Vd= 0 # Absolute value of effective design shear (clause 42.2.2). Td= 0 # Torque design value. z= 10 # Lever arm. AsPas= 1/4 # Area of passive longitudinal reinforcement anchored at a distance greater than the effective depth of the section. AsAct= 1/8 # Area of active (prestressed) longitudinal reinforcement anchored at a distance greater than the effective depth of the section. Es= 1000 # Elastic modulus of the steel de la reinforcement pasiva (AQUI FICTICIO). Ep= 2000 # Elastic modulus of the steel de la reinforcement activa (AQUI FICTICIO). Fp= 0 # Prestressing force in the cross-section (positive if in tension). Ae= 0.01 # Area enclosed by the mid-line of the effective hollow area. ue= 1 # Perimeter of the mid-line of the effective hollow area. Md= 10 epsilonX01= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue) ratio1= abs(epsilonX01-1e-3)/1e-3 Md= 0 Vd= 1 epsilonX02= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue) ratio2= abs(epsilonX02-2e-3)/2e-3 Vd= 0 Td= 0.02 epsilonX03= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue) ratio3= abs(epsilonX03-1e-3)/1e-3 Td= 0 Nd= -1 epsilonX04= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue) ratio4= abs(epsilonX04) Nd= 2 epsilonX05= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue)
Nd= 1224e3 #Design axial internal force. Md= 0 #Bending moment design value Vd= 125e3 #Effective design shear (clause 42.2.2). Td= 0 #Torque design value. d= 0.55 #Effective depth. z= 0.9*d #Lever arm. Asl= 9.425e-4 AsAct= 0 #reinforcement area activa AsTrsv= math.pi*(6e-3/2)**2*4/0.2 #reinforcement area transversal Es= 200e9 #Elastic modulus of the steel de la reinforcement pasiva. Ep= Es #Elastic modulus of the steel de la reinforcement activa. Fp= 0 #Prestressing force on the cross-section (positive if in tension). Ae= 0.01 #Area enclosed by the mid-line of the effective hollow area. ue= 1 #Perimeter of the mid-line of the effective hollow area. epsilonX= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,Asl,AsAct,Es,Ep,Fp,Ae,ue) gammaC= 1.5 gammaS= 1.15 fck= 30e6 fcd= fck/gammaC fyk= 500e6 fyd= fyk/gammaS Ac= 0.4*0.6e-4 vChi= min(2,1+math.sqrt(200/(d*1000))) Fcv= EHE_limit_state_checking.getFcvEHE08(0.15,fck,gammaC,0.4,d,vChi,0.0,Asl,0.0) thetaE= EHE_limit_state_checking.getCrackAngleEHE08(Nd,Md,Vd,Td,z,Asl,AsAct,Es,Ep,Fp,Ae,ue) theta= math.radians(45) alpha= math.radians(90) beta= EHE_limit_state_checking.getBetaVcuEHE08(theta,thetaE) Vcu= EHE_limit_state_checking.getVcuEHE08(fck,fcd,gammaC,0,Ac,0.4,d,z,Asl,0.0,theta,Nd,Md,Vd,Td,Es,Ep,Fp,Ae,ue) Vu1= EHE_limit_state_checking.getVu1EHE08(fck,fcd,0,Ac,0.4,d,alpha,theta)
Nd = 1224e3 # Design axial internal force. Md = 0 # Bending moment design value Vd = 125e3 # Effective design shear (clause 42.2.2). Td = 0 # Torque design value. d = 0.55 # Effective depth. z = 0.9 * d # Lever arm. Asl = 9.425e-4 AsAct = 0 # reinforcement area activa AsTrsv = math.pi * (6e-3 / 2)**2 * 4 / 0.2 # reinforcement area transversal Es = 200e9 # Elastic modulus of the steel de la reinforcement pasiva. Ep = Es # Elastic modulus of the steel de la reinforcement activa. Fp = 0 # Prestressing force on the cross-section (positive if in tension). Ae = 0.01 # Area enclosed by the mid-line of the effective hollow area. ue = 1 # Perimeter of the mid-line of the effective hollow area. epsilonX = EHE_limit_state_checking.getEpsilonXEHE08(Nd, Md, Vd, Td, z, Asl, AsAct, Es, Ep, Fp, Ae, ue) gammaC = 1.5 gammaS = 1.15 fck = 30e6 fcd = fck / gammaC fyk = 500e6 fyd = fyk / gammaS Ac = 0.4 * 0.6e-4 vChi = min(2, 1 + math.sqrt(200 / (d * 1000))) Fcv = EHE_limit_state_checking.getFcvEHE08(0.15, fck, gammaC, 0.4, d, vChi, 0.0, Asl, 0.0) thetaE = EHE_limit_state_checking.getCrackAngleEHE08(Nd, Md, Vd, Td, z, Asl, AsAct, Es, Ep, Fp, Ae, ue) theta = math.radians(45) alpha = math.radians(90) beta = EHE_limit_state_checking.getBetaVcuEHE08(theta, thetaE)
Nd= 0 Md= 0 #Absolute value of the design bending moment. Vd= 0 #Absolute value of effective design shear (clause 42.2.2). Td= 0 #Torque design value. z= 10 #Lever arm. AsPas= 1/4 #Area of passive longitudinal reinforcement anchored at a distance greater than the effective depth of the section. AsAct= 1/8 #Area of active (prestressed) longitudinal reinforcement anchored at a distance greater than the effective depth of the section. Es= 1000 #Elastic modulus of the steel de la reinforcement pasiva (AQUI FICTICIO). Ep= 2000 #Elastic modulus of the steel de la reinforcement activa (AQUI FICTICIO). Fp= 0 #Prestressing force in the cross-section (positive if in tension). Ae= 0.01 #Area enclosed by the mid-line of the effective hollow area. ue= 1 #Perimeter of the mid-line of the effective hollow area. Md= 10 epsilonX01= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue) ratio1= abs(epsilonX01-1e-3)/1e-3 Md= 0 Vd= 1 epsilonX02= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue) ratio2= abs(epsilonX02-2e-3)/2e-3 Vd= 0 Td= 0.02 epsilonX03= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue) ratio3= abs(epsilonX03-1e-3)/1e-3 Td= 0 Nd= -1 epsilonX04= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue) ratio4= abs(epsilonX04) Nd= 2 epsilonX05= EHE_limit_state_checking.getEpsilonXEHE08(Nd,Md,Vd,Td,z,AsPas,AsAct,Es,Ep,Fp,Ae,ue)