def init_model(transform):
    parser = argparse.ArgumentParser()
    parser.add_argument('-mw', '--model_weights', 
        default='model-f6b98070.pt',
        help='path to the trained weights of model'
    )

    parser.add_argument('-mt', '--model_type', 
        default='large',
        help='model type: large or small'
    )

    parser.add_argument('--optimize', dest='optimize', action='store_true')
    parser.add_argument('--no-optimize', dest='optimize', action='store_false')
    parser.set_defaults(optimize=True)

    args, unknown = parser.parse_known_args()    
    
    # set torch options
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

    print("initialize")

    # select device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("device: %s" % device)

    # load network
    if args.model_type == "large":
        model_path = "../MiDaS/"+args.model_weights
        model = MidasNet(model_path, non_negative=True)
        net_w, net_h = 384, 384
    elif args.model_type == "small":
        if "small" not in args.model_weights:
            args.model_weights = "model-small-70d6b9c8.pt"
        model_path = "../MiDaS/"+args.model_weights
        model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True})
        net_w, net_h = 256, 256
    else:
        print(f"model_type '{model_type}' not implemented, use: --model_type large")
        assert False

    transform = Compose(
        [
            Resize(
                net_w,
                net_h,
                resize_target=None,
                keep_aspect_ratio=True,
                ensure_multiple_of=32,
                resize_method="upper_bound",
                image_interpolation_method=cv2.INTER_CUBIC,
            ),
            NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
            PrepareForNet(),
        ]
    )

    model.eval()
    
    if args.optimize==True:
        rand_example = torch.rand(1, 3, net_h, net_w)
        model(rand_example)
        traced_script_module = torch.jit.trace(model, rand_example)
        model = traced_script_module
    
        if device == torch.device("cuda"):
            model = model.to(memory_format=torch.channels_last)  
            model = model.half()

    model.to(device)    
    
    return (model, transform, device, args.optimize), args
Ejemplo n.º 2
0
def run(input_path,
        output_path,
        model_path,
        model_type="large",
        optimize=True):
    """Run MonoDepthNN to compute depth maps.

    Args:
        input_path (str): path to input folder
        output_path (str): path to output folder
        model_path (str): path to saved model
    """
    print("initialize")

    # select device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("device: %s" % device)

    # load network
    if model_type == "large":
        model = MidasNet(model_path, non_negative=True)
        net_w, net_h = 384, 384
    elif model_type == "small":
        model = MidasNet_small(model_path,
                               features=64,
                               backbone="efficientnet_lite3",
                               exportable=True,
                               non_negative=True,
                               blocks={'expand': True})
        net_w, net_h = 256, 256
    else:
        print(
            f"model_type '{model_type}' not implemented, use: --model_type large"
        )
        assert False

    transform = Compose([
        Resize(
            net_w,
            net_h,
            resize_target=None,
            keep_aspect_ratio=True,
            ensure_multiple_of=32,
            resize_method="upper_bound",
            image_interpolation_method=cv2.INTER_CUBIC,
        ),
        NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        PrepareForNet(),
    ])

    model.eval()

    if optimize == True:
        rand_example = torch.rand(1, 3, net_h, net_w)
        model(rand_example)
        traced_script_module = torch.jit.trace(model, rand_example)
        model = traced_script_module

        if device == torch.device("cuda"):
            model = model.to(memory_format=torch.channels_last)
            model = model.half()

    model.to(device)

    # get input
    img_names = glob.glob(os.path.join(input_path, "*"))
    num_images = len(img_names)

    # create output folder
    os.makedirs(output_path, exist_ok=True)

    print("start processing")

    for ind, img_name in enumerate(img_names):

        print("  processing {} ({}/{})".format(img_name, ind + 1, num_images))

        # input

        img = utils.read_image(img_name)
        img_input = transform({"image": img})["image"]

        # compute
        with torch.no_grad():
            sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
            if optimize == True and device == torch.device("cuda"):
                sample = sample.to(memory_format=torch.channels_last)
                sample = sample.half()
            prediction = model.forward(sample)
            prediction = (torch.nn.functional.interpolate(
                prediction.unsqueeze(1),
                size=img.shape[:2],
                mode="bicubic",
                align_corners=False,
            ).squeeze().cpu().numpy())
            prediction /= 1000

        # output
        filename = os.path.join(
            output_path,
            os.path.splitext(os.path.basename(img_name))[0])
        utils.write_depth(filename, prediction, bits=2)
        print(prediction)
        print(prediction.shape)

    print("finished")