def init_model(transform): parser = argparse.ArgumentParser() parser.add_argument('-mw', '--model_weights', default='model-f6b98070.pt', help='path to the trained weights of model' ) parser.add_argument('-mt', '--model_type', default='large', help='model type: large or small' ) parser.add_argument('--optimize', dest='optimize', action='store_true') parser.add_argument('--no-optimize', dest='optimize', action='store_false') parser.set_defaults(optimize=True) args, unknown = parser.parse_known_args() # set torch options torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True print("initialize") # select device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("device: %s" % device) # load network if args.model_type == "large": model_path = "../MiDaS/"+args.model_weights model = MidasNet(model_path, non_negative=True) net_w, net_h = 384, 384 elif args.model_type == "small": if "small" not in args.model_weights: args.model_weights = "model-small-70d6b9c8.pt" model_path = "../MiDaS/"+args.model_weights model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True}) net_w, net_h = 256, 256 else: print(f"model_type '{model_type}' not implemented, use: --model_type large") assert False transform = Compose( [ Resize( net_w, net_h, resize_target=None, keep_aspect_ratio=True, ensure_multiple_of=32, resize_method="upper_bound", image_interpolation_method=cv2.INTER_CUBIC, ), NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), PrepareForNet(), ] ) model.eval() if args.optimize==True: rand_example = torch.rand(1, 3, net_h, net_w) model(rand_example) traced_script_module = torch.jit.trace(model, rand_example) model = traced_script_module if device == torch.device("cuda"): model = model.to(memory_format=torch.channels_last) model = model.half() model.to(device) return (model, transform, device, args.optimize), args
def run(input_path, output_path, model_path, model_type="large", optimize=True): """Run MonoDepthNN to compute depth maps. Args: input_path (str): path to input folder output_path (str): path to output folder model_path (str): path to saved model """ print("initialize") # select device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("device: %s" % device) # load network if model_type == "large": model = MidasNet(model_path, non_negative=True) net_w, net_h = 384, 384 elif model_type == "small": model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True}) net_w, net_h = 256, 256 else: print( f"model_type '{model_type}' not implemented, use: --model_type large" ) assert False transform = Compose([ Resize( net_w, net_h, resize_target=None, keep_aspect_ratio=True, ensure_multiple_of=32, resize_method="upper_bound", image_interpolation_method=cv2.INTER_CUBIC, ), NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), PrepareForNet(), ]) model.eval() if optimize == True: rand_example = torch.rand(1, 3, net_h, net_w) model(rand_example) traced_script_module = torch.jit.trace(model, rand_example) model = traced_script_module if device == torch.device("cuda"): model = model.to(memory_format=torch.channels_last) model = model.half() model.to(device) # get input img_names = glob.glob(os.path.join(input_path, "*")) num_images = len(img_names) # create output folder os.makedirs(output_path, exist_ok=True) print("start processing") for ind, img_name in enumerate(img_names): print(" processing {} ({}/{})".format(img_name, ind + 1, num_images)) # input img = utils.read_image(img_name) img_input = transform({"image": img})["image"] # compute with torch.no_grad(): sample = torch.from_numpy(img_input).to(device).unsqueeze(0) if optimize == True and device == torch.device("cuda"): sample = sample.to(memory_format=torch.channels_last) sample = sample.half() prediction = model.forward(sample) prediction = (torch.nn.functional.interpolate( prediction.unsqueeze(1), size=img.shape[:2], mode="bicubic", align_corners=False, ).squeeze().cpu().numpy()) prediction /= 1000 # output filename = os.path.join( output_path, os.path.splitext(os.path.basename(img_name))[0]) utils.write_depth(filename, prediction, bits=2) print(prediction) print(prediction.shape) print("finished")