Ejemplo n.º 1
0
def test_find_events():
    """Test find events in raw file."""
    events = read_events(fname)
    raw = read_raw_fif(raw_fname, preload=True)
    # let's test the defaulting behavior while we're at it
    extra_ends = ['', '_1']
    orig_envs = [os.getenv('MNE_STIM_CHANNEL%s' % s) for s in extra_ends]
    os.environ['MNE_STIM_CHANNEL'] = 'STI 014'
    if 'MNE_STIM_CHANNEL_1' in os.environ:
        del os.environ['MNE_STIM_CHANNEL_1']
    events2 = find_events(raw)
    assert_array_almost_equal(events, events2)
    # now test with mask
    events11 = find_events(raw, mask=3, mask_type='not_and')
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        events22 = read_events(fname, mask=3)
        assert_true(sum('events masked' in str(ww.message) for ww in w) == 1)
    assert_array_equal(events11, events22)

    # Reset some data for ease of comparison
    raw._first_samps[0] = 0
    raw.info['sfreq'] = 1000
    raw._update_times()

    stim_channel = 'STI 014'
    stim_channel_idx = pick_channels(raw.info['ch_names'],
                                     include=[stim_channel])

    # test digital masking
    raw._data[stim_channel_idx, :5] = np.arange(5)
    raw._data[stim_channel_idx, 5:] = 0
    # 1 == '0b1', 2 == '0b10', 3 == '0b11', 4 == '0b100'

    assert_raises(TypeError, find_events, raw, mask="0")
    assert_raises(ValueError, find_events, raw, mask=0, mask_type='blah')
    # testing mask_type. default = 'not_and'
    assert_array_equal(find_events(raw, shortest_event=1, mask=1,
                                   mask_type='not_and'),
                       [[2, 0, 2], [4, 2, 4]])
    assert_array_equal(find_events(raw, shortest_event=1, mask=2,
                                   mask_type='not_and'),
                       [[1, 0, 1], [3, 0, 1], [4, 1, 4]])
    assert_array_equal(find_events(raw, shortest_event=1, mask=3,
                                   mask_type='not_and'),
                       [[4, 0, 4]])
    assert_array_equal(find_events(raw, shortest_event=1, mask=4,
                                   mask_type='not_and'),
                       [[1, 0, 1], [2, 1, 2], [3, 2, 3]])
    # testing with mask_type = 'and'
    assert_array_equal(find_events(raw, shortest_event=1, mask=1,
                       mask_type='and'),
                       [[1, 0, 1], [3, 0, 1]])
    assert_array_equal(find_events(raw, shortest_event=1, mask=2,
                       mask_type='and'),
                       [[2, 0, 2]])
    assert_array_equal(find_events(raw, shortest_event=1, mask=3,
                       mask_type='and'),
                       [[1, 0, 1], [2, 1, 2], [3, 2, 3]])
    assert_array_equal(find_events(raw, shortest_event=1, mask=4,
                       mask_type='and'),
                       [[4, 0, 4]])

    # test empty events channel
    raw._data[stim_channel_idx, :] = 0
    assert_array_equal(find_events(raw), np.empty((0, 3), dtype='int32'))

    raw._data[stim_channel_idx, :4] = 1
    assert_array_equal(find_events(raw), np.empty((0, 3), dtype='int32'))

    raw._data[stim_channel_idx, -1:] = 9
    assert_array_equal(find_events(raw), [[14399, 0, 9]])

    # Test that we can handle consecutive events with no gap
    raw._data[stim_channel_idx, 10:20] = 5
    raw._data[stim_channel_idx, 20:30] = 6
    raw._data[stim_channel_idx, 30:32] = 5
    raw._data[stim_channel_idx, 40] = 6

    assert_array_equal(find_events(raw, consecutive=False),
                       [[10, 0, 5],
                        [40, 0, 6],
                        [14399, 0, 9]])
    assert_array_equal(find_events(raw, consecutive=True),
                       [[10, 0, 5],
                        [20, 5, 6],
                        [30, 6, 5],
                        [40, 0, 6],
                        [14399, 0, 9]])
    assert_array_equal(find_events(raw),
                       [[10, 0, 5],
                        [20, 5, 6],
                        [40, 0, 6],
                        [14399, 0, 9]])
    assert_array_equal(find_events(raw, output='offset', consecutive=False),
                       [[31, 0, 5],
                        [40, 0, 6],
                        [14399, 0, 9]])
    assert_array_equal(find_events(raw, output='offset', consecutive=True),
                       [[19, 6, 5],
                        [29, 5, 6],
                        [31, 0, 5],
                        [40, 0, 6],
                        [14399, 0, 9]])
    assert_raises(ValueError, find_events, raw, output='step',
                  consecutive=True)
    assert_array_equal(find_events(raw, output='step', consecutive=True,
                                   shortest_event=1),
                       [[10, 0, 5],
                        [20, 5, 6],
                        [30, 6, 5],
                        [32, 5, 0],
                        [40, 0, 6],
                        [41, 6, 0],
                        [14399, 0, 9],
                        [14400, 9, 0]])
    assert_array_equal(find_events(raw, output='offset'),
                       [[19, 6, 5],
                        [31, 0, 6],
                        [40, 0, 6],
                        [14399, 0, 9]])
    assert_array_equal(find_events(raw, consecutive=False, min_duration=0.002),
                       [[10, 0, 5]])
    assert_array_equal(find_events(raw, consecutive=True, min_duration=0.002),
                       [[10, 0, 5],
                        [20, 5, 6],
                        [30, 6, 5]])
    assert_array_equal(find_events(raw, output='offset', consecutive=False,
                                   min_duration=0.002),
                       [[31, 0, 5]])
    assert_array_equal(find_events(raw, output='offset', consecutive=True,
                                   min_duration=0.002),
                       [[19, 6, 5],
                        [29, 5, 6],
                        [31, 0, 5]])
    assert_array_equal(find_events(raw, consecutive=True, min_duration=0.003),
                       [[10, 0, 5],
                        [20, 5, 6]])

    # test find_stim_steps merge parameter
    raw._data[stim_channel_idx, :] = 0
    raw._data[stim_channel_idx, 0] = 1
    raw._data[stim_channel_idx, 10] = 4
    raw._data[stim_channel_idx, 11:20] = 5
    assert_array_equal(find_stim_steps(raw, pad_start=0, merge=0,
                                       stim_channel=stim_channel),
                       [[0, 0, 1],
                        [1, 1, 0],
                        [10, 0, 4],
                        [11, 4, 5],
                        [20, 5, 0]])
    assert_array_equal(find_stim_steps(raw, merge=-1,
                                       stim_channel=stim_channel),
                       [[1, 1, 0],
                        [10, 0, 5],
                        [20, 5, 0]])
    assert_array_equal(find_stim_steps(raw, merge=1,
                                       stim_channel=stim_channel),
                       [[1, 1, 0],
                        [11, 0, 5],
                        [20, 5, 0]])

    # put back the env vars we trampled on
    for s, o in zip(extra_ends, orig_envs):
        if o is not None:
            os.environ['MNE_STIM_CHANNEL%s' % s] = o
Ejemplo n.º 2
0
def test_find_events():
    """Test find events in raw file."""
    events = read_events(fname)
    raw = read_raw_fif(raw_fname, preload=True, add_eeg_ref=False)
    # let's test the defaulting behavior while we're at it
    extra_ends = ['', '_1']
    orig_envs = [os.getenv('MNE_STIM_CHANNEL%s' % s) for s in extra_ends]
    os.environ['MNE_STIM_CHANNEL'] = 'STI 014'
    if 'MNE_STIM_CHANNEL_1' in os.environ:
        del os.environ['MNE_STIM_CHANNEL_1']
    events2 = find_events(raw)
    assert_array_almost_equal(events, events2)
    # now test with mask
    events11 = find_events(raw, mask=3, mask_type='not_and')
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        events22 = read_events(fname, mask=3)
        assert_true(sum('events masked' in str(ww.message) for ww in w) == 1)
    assert_array_equal(events11, events22)

    # Reset some data for ease of comparison
    raw._first_samps[0] = 0
    raw.info['sfreq'] = 1000
    raw._update_times()

    stim_channel = 'STI 014'
    stim_channel_idx = pick_channels(raw.info['ch_names'],
                                     include=[stim_channel])

    # test digital masking
    raw._data[stim_channel_idx, :5] = np.arange(5)
    raw._data[stim_channel_idx, 5:] = 0
    # 1 == '0b1', 2 == '0b10', 3 == '0b11', 4 == '0b100'

    assert_raises(TypeError, find_events, raw, mask="0")
    assert_raises(ValueError, find_events, raw, mask=0, mask_type='blah')
    # testing mask_type. default = 'not_and'
    assert_array_equal(
        find_events(raw, shortest_event=1, mask=1, mask_type='not_and'),
        [[2, 0, 2], [4, 2, 4]])
    assert_array_equal(
        find_events(raw, shortest_event=1, mask=2, mask_type='not_and'),
        [[1, 0, 1], [3, 0, 1], [4, 1, 4]])
    assert_array_equal(
        find_events(raw, shortest_event=1, mask=3, mask_type='not_and'),
        [[4, 0, 4]])
    assert_array_equal(
        find_events(raw, shortest_event=1, mask=4, mask_type='not_and'),
        [[1, 0, 1], [2, 1, 2], [3, 2, 3]])
    # testing with mask_type = 'and'
    assert_array_equal(
        find_events(raw, shortest_event=1, mask=1, mask_type='and'),
        [[1, 0, 1], [3, 0, 1]])
    assert_array_equal(
        find_events(raw, shortest_event=1, mask=2, mask_type='and'),
        [[2, 0, 2]])
    assert_array_equal(
        find_events(raw, shortest_event=1, mask=3, mask_type='and'),
        [[1, 0, 1], [2, 1, 2], [3, 2, 3]])
    assert_array_equal(
        find_events(raw, shortest_event=1, mask=4, mask_type='and'),
        [[4, 0, 4]])

    # test empty events channel
    raw._data[stim_channel_idx, :] = 0
    assert_array_equal(find_events(raw), np.empty((0, 3), dtype='int32'))

    raw._data[stim_channel_idx, :4] = 1
    assert_array_equal(find_events(raw), np.empty((0, 3), dtype='int32'))

    raw._data[stim_channel_idx, -1:] = 9
    assert_array_equal(find_events(raw), [[14399, 0, 9]])

    # Test that we can handle consecutive events with no gap
    raw._data[stim_channel_idx, 10:20] = 5
    raw._data[stim_channel_idx, 20:30] = 6
    raw._data[stim_channel_idx, 30:32] = 5
    raw._data[stim_channel_idx, 40] = 6

    assert_array_equal(find_events(raw, consecutive=False),
                       [[10, 0, 5], [40, 0, 6], [14399, 0, 9]])
    assert_array_equal(
        find_events(raw, consecutive=True),
        [[10, 0, 5], [20, 5, 6], [30, 6, 5], [40, 0, 6], [14399, 0, 9]])
    assert_array_equal(find_events(raw),
                       [[10, 0, 5], [20, 5, 6], [40, 0, 6], [14399, 0, 9]])
    assert_array_equal(find_events(raw, output='offset', consecutive=False),
                       [[31, 0, 5], [40, 0, 6], [14399, 0, 9]])
    assert_array_equal(
        find_events(raw, output='offset', consecutive=True),
        [[19, 6, 5], [29, 5, 6], [31, 0, 5], [40, 0, 6], [14399, 0, 9]])
    assert_raises(ValueError,
                  find_events,
                  raw,
                  output='step',
                  consecutive=True)
    assert_array_equal(
        find_events(raw, output='step', consecutive=True, shortest_event=1),
        [[10, 0, 5], [20, 5, 6], [30, 6, 5], [32, 5, 0], [40, 0, 6],
         [41, 6, 0], [14399, 0, 9], [14400, 9, 0]])
    assert_array_equal(find_events(raw, output='offset'),
                       [[19, 6, 5], [31, 0, 6], [40, 0, 6], [14399, 0, 9]])
    assert_array_equal(find_events(raw, consecutive=False, min_duration=0.002),
                       [[10, 0, 5]])
    assert_array_equal(find_events(raw, consecutive=True, min_duration=0.002),
                       [[10, 0, 5], [20, 5, 6], [30, 6, 5]])
    assert_array_equal(
        find_events(raw,
                    output='offset',
                    consecutive=False,
                    min_duration=0.002), [[31, 0, 5]])
    assert_array_equal(
        find_events(raw, output='offset', consecutive=True,
                    min_duration=0.002), [[19, 6, 5], [29, 5, 6], [31, 0, 5]])
    assert_array_equal(find_events(raw, consecutive=True, min_duration=0.003),
                       [[10, 0, 5], [20, 5, 6]])

    # test find_stim_steps merge parameter
    raw._data[stim_channel_idx, :] = 0
    raw._data[stim_channel_idx, 0] = 1
    raw._data[stim_channel_idx, 10] = 4
    raw._data[stim_channel_idx, 11:20] = 5
    assert_array_equal(
        find_stim_steps(raw, pad_start=0, merge=0, stim_channel=stim_channel),
        [[0, 0, 1], [1, 1, 0], [10, 0, 4], [11, 4, 5], [20, 5, 0]])
    assert_array_equal(
        find_stim_steps(raw, merge=-1, stim_channel=stim_channel),
        [[1, 1, 0], [10, 0, 5], [20, 5, 0]])
    assert_array_equal(
        find_stim_steps(raw, merge=1, stim_channel=stim_channel),
        [[1, 1, 0], [11, 0, 5], [20, 5, 0]])

    # put back the env vars we trampled on
    for s, o in zip(extra_ends, orig_envs):
        if o is not None:
            os.environ['MNE_STIM_CHANNEL%s' % s] = o
Ejemplo n.º 3
0
def test_find_events():
    """Test find events in raw file."""
    events = read_events(fname)
    raw = read_raw_fif(raw_fname, preload=True)
    # let's test the defaulting behavior while we're at it
    extra_ends = ['', '_1']
    orig_envs = [os.getenv('MNE_STIM_CHANNEL%s' % s) for s in extra_ends]
    os.environ['MNE_STIM_CHANNEL'] = 'STI 014'
    if 'MNE_STIM_CHANNEL_1' in os.environ:
        del os.environ['MNE_STIM_CHANNEL_1']
    events2 = find_events(raw)
    assert_array_almost_equal(events, events2)
    # now test with mask
    events11 = find_events(raw, mask=3, mask_type='not_and')
    with pytest.warns(RuntimeWarning, match='events masked'):
        events22 = read_events(fname, mask=3, mask_type='not_and')
    assert_array_equal(events11, events22)

    # Reset some data for ease of comparison
    raw._first_samps[0] = 0
    raw.info['sfreq'] = 1000

    stim_channel = 'STI 014'
    stim_channel_idx = pick_channels(raw.info['ch_names'],
                                     include=[stim_channel])

    # test digital masking
    raw._data[stim_channel_idx, :5] = np.arange(5)
    raw._data[stim_channel_idx, 5:] = 0
    # 1 == '0b1', 2 == '0b10', 3 == '0b11', 4 == '0b100'

    pytest.raises(TypeError, find_events, raw, mask="0", mask_type='and')
    pytest.raises(ValueError, find_events, raw, mask=0, mask_type='blah')
    # testing mask_type. default = 'not_and'
    assert_array_equal(
        find_events(raw, shortest_event=1, mask=1, mask_type='not_and'),
        [[2, 0, 2], [4, 2, 4]])
    assert_array_equal(
        find_events(raw, shortest_event=1, mask=2, mask_type='not_and'),
        [[1, 0, 1], [3, 0, 1], [4, 1, 4]])
    assert_array_equal(
        find_events(raw, shortest_event=1, mask=3, mask_type='not_and'),
        [[4, 0, 4]])
    assert_array_equal(
        find_events(raw, shortest_event=1, mask=4, mask_type='not_and'),
        [[1, 0, 1], [2, 1, 2], [3, 2, 3]])
    # testing with mask_type = 'and'
    assert_array_equal(
        find_events(raw, shortest_event=1, mask=1, mask_type='and'),
        [[1, 0, 1], [3, 0, 1]])
    assert_array_equal(
        find_events(raw, shortest_event=1, mask=2, mask_type='and'),
        [[2, 0, 2]])
    assert_array_equal(
        find_events(raw, shortest_event=1, mask=3, mask_type='and'),
        [[1, 0, 1], [2, 1, 2], [3, 2, 3]])
    assert_array_equal(
        find_events(raw, shortest_event=1, mask=4, mask_type='and'),
        [[4, 0, 4]])

    # test empty events channel
    raw._data[stim_channel_idx, :] = 0
    assert_array_equal(find_events(raw), np.empty((0, 3), dtype='int32'))

    raw._data[stim_channel_idx, :4] = 1
    assert_array_equal(find_events(raw), np.empty((0, 3), dtype='int32'))

    raw._data[stim_channel_idx, -1:] = 9
    assert_array_equal(find_events(raw), [[14399, 0, 9]])

    # Test that we can handle consecutive events with no gap
    raw._data[stim_channel_idx, 10:20] = 5
    raw._data[stim_channel_idx, 20:30] = 6
    raw._data[stim_channel_idx, 30:32] = 5
    raw._data[stim_channel_idx, 40] = 6

    assert_array_equal(find_events(raw, consecutive=False),
                       [[10, 0, 5], [40, 0, 6], [14399, 0, 9]])
    assert_array_equal(
        find_events(raw, consecutive=True),
        [[10, 0, 5], [20, 5, 6], [30, 6, 5], [40, 0, 6], [14399, 0, 9]])
    assert_array_equal(find_events(raw),
                       [[10, 0, 5], [20, 5, 6], [40, 0, 6], [14399, 0, 9]])
    assert_array_equal(find_events(raw, output='offset', consecutive=False),
                       [[31, 0, 5], [40, 0, 6], [14399, 0, 9]])
    assert_array_equal(
        find_events(raw, output='offset', consecutive=True),
        [[19, 6, 5], [29, 5, 6], [31, 0, 5], [40, 0, 6], [14399, 0, 9]])
    pytest.raises(ValueError,
                  find_events,
                  raw,
                  output='step',
                  consecutive=True)
    assert_array_equal(
        find_events(raw, output='step', consecutive=True, shortest_event=1),
        [[10, 0, 5], [20, 5, 6], [30, 6, 5], [32, 5, 0], [40, 0, 6],
         [41, 6, 0], [14399, 0, 9], [14400, 9, 0]])
    assert_array_equal(find_events(raw, output='offset'),
                       [[19, 6, 5], [31, 0, 6], [40, 0, 6], [14399, 0, 9]])
    assert_array_equal(find_events(raw, consecutive=False, min_duration=0.002),
                       [[10, 0, 5]])
    assert_array_equal(find_events(raw, consecutive=True, min_duration=0.002),
                       [[10, 0, 5], [20, 5, 6], [30, 6, 5]])
    assert_array_equal(
        find_events(raw,
                    output='offset',
                    consecutive=False,
                    min_duration=0.002), [[31, 0, 5]])
    assert_array_equal(
        find_events(raw, output='offset', consecutive=True,
                    min_duration=0.002), [[19, 6, 5], [29, 5, 6], [31, 0, 5]])
    assert_array_equal(find_events(raw, consecutive=True, min_duration=0.003),
                       [[10, 0, 5], [20, 5, 6]])

    # test find_stim_steps merge parameter
    raw._data[stim_channel_idx, :] = 0
    raw._data[stim_channel_idx, 0] = 1
    raw._data[stim_channel_idx, 10] = 4
    raw._data[stim_channel_idx, 11:20] = 5
    assert_array_equal(
        find_stim_steps(raw, pad_start=0, merge=0, stim_channel=stim_channel),
        [[0, 0, 1], [1, 1, 0], [10, 0, 4], [11, 4, 5], [20, 5, 0]])
    assert_array_equal(
        find_stim_steps(raw, merge=-1, stim_channel=stim_channel),
        [[1, 1, 0], [10, 0, 5], [20, 5, 0]])
    assert_array_equal(
        find_stim_steps(raw, merge=1, stim_channel=stim_channel),
        [[1, 1, 0], [11, 0, 5], [20, 5, 0]])

    # put back the env vars we trampled on
    for s, o in zip(extra_ends, orig_envs):
        if o is not None:
            os.environ['MNE_STIM_CHANNEL%s' % s] = o

    # Test with list of stim channels
    raw._data[stim_channel_idx, 1:101] = np.zeros(100)
    raw._data[stim_channel_idx, 10:11] = 1
    raw._data[stim_channel_idx, 30:31] = 3
    stim_channel2 = 'STI 015'
    stim_channel2_idx = pick_channels(raw.info['ch_names'],
                                      include=[stim_channel2])
    raw._data[stim_channel2_idx, :] = 0
    raw._data[stim_channel2_idx, :100] = raw._data[stim_channel_idx, 5:105]
    events1 = find_events(raw, stim_channel='STI 014')
    events2 = events1.copy()
    events2[:, 0] -= 5
    events = find_events(raw, stim_channel=['STI 014', stim_channel2])
    assert_array_equal(events[::2], events2)
    assert_array_equal(events[1::2], events1)

    # test initial_event argument
    info = create_info(['MYSTI'], 1000, 'stim')
    data = np.zeros((1, 1000))
    raw = RawArray(data, info)
    data[0, :10] = 100
    data[0, 30:40] = 200
    assert_array_equal(find_events(raw, 'MYSTI'), [[30, 0, 200]])
    assert_array_equal(find_events(raw, 'MYSTI', initial_event=True),
                       [[0, 0, 100], [30, 0, 200]])

    # test error message for raw without stim channels
    raw = read_raw_fif(raw_fname, preload=True)
    raw.pick_types(meg=True, stim=False)
    # raw does not have annotations
    with pytest.raises(ValueError, match="'stim_channel'"):
        find_events(raw)
    # if raw has annotations, we show a different error message
    raw.set_annotations(Annotations(0, 2, "test"))
    with pytest.raises(ValueError, match="mne.events_from_annotations"):
        find_events(raw)
Ejemplo n.º 4
0
def test_find_events():
    """Test find events in raw file
    """
    events = read_events(fname)
    raw = fiff.Raw(raw_fname, preload=True)
    # let's test the defaulting behavior while we're at it
    extra_ends = ['', '_1']
    orig_envs = [os.getenv('MNE_STIM_CHANNEL%s' % s) for s in extra_ends]
    os.environ['MNE_STIM_CHANNEL'] = 'STI 014'
    if 'MNE_STIM_CHANNEL_1' in os.environ:
        del os.environ['MNE_STIM_CHANNEL_1']
    events2 = find_events(raw)
    assert_array_almost_equal(events, events2)

    # Reset some data for ease of comparison
    raw.first_samp = 0
    raw.info['sfreq'] = 1000

    stim_channel = 'STI 014'
    stim_channel_idx = fiff.pick_channels(raw.info['ch_names'],
                                      include=stim_channel)

    # test empty events channel
    raw._data[stim_channel_idx, :] = 0
    assert_array_equal(find_events(raw), np.empty((0, 3), dtype='int32'))

    raw._data[stim_channel_idx, :4] = 1
    assert_array_equal(find_events(raw), np.empty((0, 3), dtype='int32'))

    raw._data[stim_channel_idx, -1:] = 9
    assert_array_equal(find_events(raw), [[14399, 0, 9]])

    # Test that we can handle consecutive events with no gap
    raw._data[stim_channel_idx, 10:20] = 5
    raw._data[stim_channel_idx, 20:30] = 6
    raw._data[stim_channel_idx, 30:32] = 5
    raw._data[stim_channel_idx, 40] = 6

    assert_array_equal(find_events(raw, consecutive=False),
                       [[10, 0, 5],
                        [40, 0, 6],
                        [14399, 0, 9]])
    assert_array_equal(find_events(raw, consecutive=True),
                       [[10, 0, 5],
                        [20, 5, 6],
                        [30, 6, 5],
                        [40, 0, 6],
                        [14399, 0, 9]])
    assert_array_equal(find_events(raw),
                       [[10, 0, 5],
                        [20, 5, 6],
                        [40, 0, 6],
                        [14399, 0, 9]])
    assert_array_equal(find_events(raw, output='offset', consecutive=False),
                       [[31, 0, 5],
                        [40, 0, 6],
                        [14399, 0, 9]])
    assert_array_equal(find_events(raw, output='offset', consecutive=True),
                       [[19, 6, 5],
                        [29, 5, 6],
                        [31, 0, 5],
                        [40, 0, 6],
                        [14399, 0, 9]])
    assert_array_equal(find_events(raw, output='step', consecutive=True),
                       [[10, 0, 5],
                        [20, 5, 6],
                        [30, 6, 5],
                        [32, 5, 0],
                        [40, 0, 6],
                        [41, 6, 0],
                        [14399, 0, 9],
                        [14400, 9, 0]])
    assert_array_equal(find_events(raw, output='offset'),
                       [[19, 6, 5],
                        [31, 0, 6],
                        [40, 0, 6],
                        [14399, 0, 9]])
    assert_array_equal(find_events(raw, consecutive=False, min_duration=0.002),
                       [[10, 0, 5]])
    assert_array_equal(find_events(raw, consecutive=True, min_duration=0.002),
                       [[10, 0, 5],
                        [20, 5, 6],
                        [30, 6, 5]])
    assert_array_equal(find_events(raw, output='offset', consecutive=False,
                                   min_duration=0.002),
                       [[31, 0, 5]])
    assert_array_equal(find_events(raw, output='offset', consecutive=True,
                                   min_duration=0.002),
                       [[19, 6, 5],
                        [29, 5, 6],
                        [31, 0, 5]])
    assert_array_equal(find_events(raw, consecutive=True, min_duration=0.003),
                       [[10, 0, 5],
                        [20, 5, 6]])

    # test find_stim_steps merge parameter
    raw._data[stim_channel_idx, :] = 0
    raw._data[stim_channel_idx, 0] = 1
    raw._data[stim_channel_idx, 10] = 4
    raw._data[stim_channel_idx, 11:20] = 5
    assert_array_equal(find_stim_steps(raw, pad_start=0, merge=0,
                                       stim_channel=stim_channel),
                       [[0, 0, 1],
                        [1, 1, 0],
                        [10, 0, 4],
                        [11, 4, 5],
                        [20, 5, 0]])
    assert_array_equal(find_stim_steps(raw, merge=-1,
                                       stim_channel=stim_channel),
                       [[1, 1, 0],
                        [10, 0, 5],
                        [20, 5, 0]])
    assert_array_equal(find_stim_steps(raw, merge=1,
                                       stim_channel=stim_channel),
                       [[1, 1, 0],
                        [11, 0, 5],
                        [20, 5, 0]])

    # put back the env vars we trampled on
    for s, o in zip(extra_ends, orig_envs):
        if o is not None:
            os.environ['MNE_STIM_CHANNEL%s' % s] = o
Ejemplo n.º 5
0
def events(raw=None, merge=-1, proj=False, name=None,
           bads=None, stim_channel=None, **kwargs):
    """
    Load events from a raw fiff file.

    Use :func:`fiff_epochs` to load MEG data corresponding to those events.

    Parameters
    ----------
    raw : str(path) | None | mne.fiff.Raw
        The raw fiff file from which to extract events (if ``None``, a file
        dialog will be displayed).
    merge : int
        Merge steps occurring in neighboring samples. The integer value
        indicates over how many samples events should be merged, and the sign
        indicates in which direction they should be merged (negative means
        towards the earlier event, positive towards the later event).
    proj : bool | str
        Path to the projections file that will be loaded with the raw file.
        ``'{raw}'`` will be expanded to the raw file's path minus extension.
        With ``proj=True``, ``'{raw}_*proj.fif'`` will be used,
        looking for any projection file starting with the raw file's name.
        If multiple files match the pattern, a ValueError will be raised.
    name : str | None
        A name for the Dataset. If ``None``, the raw filename will be used.
    bads : None | list
        Specify additional bad channels in the raw data file (these are added
        to the ones that are already defined in the raw file).
    stim_channel : None | string | list of string
        Name of the stim channel or all the stim channels
        affected by the trigger. If None, the config variables
        'MNE_STIM_CHANNEL', 'MNE_STIM_CHANNEL_1', 'MNE_STIM_CHANNEL_2',
        etc. are read. If these are not found, it will default to
        'STI 014'.
    others :
        Keyword arguments for loading the raw file.

    Returns
    -------
    events : Dataset
        A Dataset with the following variables:
         - *i_start*: the index of the event in the raw file.
         - *trigger*: the event value.
        The Dataset's info dictionary contains the following values:
         - *raw*: the mne Raw object.

    """
    if raw is None or isinstance(raw, basestring):
        raw = mne_raw(raw, proj=proj, **kwargs)

    if bads is not None:
        raw.info['bads'].extend(bads)

    if name is None:
        raw_path = raw.info['filename']
        if isinstance(raw_path, basestring):
            name = os.path.basename(raw_path)
        else:
            name = None

    # stim_channel_bl: see commit 52796ad1267b5ad4fba10f6ca5f2b7cfba65ba9b or earlier
    evts = mne.find_stim_steps(raw, merge=merge, stim_channel=stim_channel)
    idx = np.nonzero(evts[:, 2])
    evts = evts[idx]

    if len(evts) == 0:
        raise ValueError("No events found!")

    i_start = Var(evts[:, 0], name='i_start')
    trigger = Var(evts[:, 2], name='trigger')
    info = {'raw': raw}
    return Dataset(trigger, i_start, name=name, info=info)
Ejemplo n.º 6
0
def test_find_events():
    """Test find events in raw file
    """
    events = read_events(fname)
    raw = fiff.Raw(raw_fname, preload=True)
    # let's test the defaulting behavior while we're at it
    extra_ends = ['', '_1']
    orig_envs = [os.getenv('MNE_STIM_CHANNEL%s' % s) for s in extra_ends]
    os.environ['MNE_STIM_CHANNEL'] = 'STI 014'
    if 'MNE_STIM_CHANNEL_1' in os.environ:
        del os.environ['MNE_STIM_CHANNEL_1']
    events2 = find_events(raw)
    assert_array_almost_equal(events, events2)

    # Reset some data for ease of comparison
    raw.first_samp = 0
    raw.info['sfreq'] = 1000

    stim_channel = 'STI 014'
    stim_channel_idx = fiff.pick_channels(raw.info['ch_names'],
                                          include=stim_channel)

    # test empty events channel
    raw._data[stim_channel_idx, :] = 0
    assert_array_equal(find_events(raw), np.empty((0, 3), dtype='int32'))

    raw._data[stim_channel_idx, :4] = 1
    assert_array_equal(find_events(raw), np.empty((0, 3), dtype='int32'))

    raw._data[stim_channel_idx, -1:] = 9
    assert_array_equal(find_events(raw), [[14399, 0, 9]])

    # Test that we can handle consecutive events with no gap
    raw._data[stim_channel_idx, 10:20] = 5
    raw._data[stim_channel_idx, 20:30] = 6
    raw._data[stim_channel_idx, 30:32] = 5
    raw._data[stim_channel_idx, 40] = 6

    assert_array_equal(find_events(raw, consecutive=False),
                       [[10, 0, 5], [40, 0, 6], [14399, 0, 9]])
    assert_array_equal(
        find_events(raw, consecutive=True),
        [[10, 0, 5], [20, 5, 6], [30, 6, 5], [40, 0, 6], [14399, 0, 9]])
    assert_array_equal(find_events(raw),
                       [[10, 0, 5], [20, 5, 6], [40, 0, 6], [14399, 0, 9]])
    assert_array_equal(find_events(raw, output='offset', consecutive=False),
                       [[31, 0, 5], [40, 0, 6], [14399, 0, 9]])
    assert_array_equal(
        find_events(raw, output='offset', consecutive=True),
        [[19, 6, 5], [29, 5, 6], [31, 0, 5], [40, 0, 6], [14399, 0, 9]])
    assert_array_equal(find_events(raw, output='step', consecutive=True),
                       [[10, 0, 5], [20, 5, 6], [30, 6, 5], [32, 5, 0],
                        [40, 0, 6], [41, 6, 0], [14399, 0, 9], [14400, 9, 0]])
    assert_array_equal(find_events(raw, output='offset'),
                       [[19, 6, 5], [31, 0, 6], [40, 0, 6], [14399, 0, 9]])
    assert_array_equal(find_events(raw, consecutive=False, min_duration=0.002),
                       [[10, 0, 5]])
    assert_array_equal(find_events(raw, consecutive=True, min_duration=0.002),
                       [[10, 0, 5], [20, 5, 6], [30, 6, 5]])
    assert_array_equal(
        find_events(raw,
                    output='offset',
                    consecutive=False,
                    min_duration=0.002), [[31, 0, 5]])
    assert_array_equal(
        find_events(raw, output='offset', consecutive=True,
                    min_duration=0.002), [[19, 6, 5], [29, 5, 6], [31, 0, 5]])
    assert_array_equal(find_events(raw, consecutive=True, min_duration=0.003),
                       [[10, 0, 5], [20, 5, 6]])

    # test find_stim_steps merge parameter
    raw._data[stim_channel_idx, :] = 0
    raw._data[stim_channel_idx, 0] = 1
    raw._data[stim_channel_idx, 10] = 4
    raw._data[stim_channel_idx, 11:20] = 5
    assert_array_equal(
        find_stim_steps(raw, pad_start=0, merge=0, stim_channel=stim_channel),
        [[0, 0, 1], [1, 1, 0], [10, 0, 4], [11, 4, 5], [20, 5, 0]])
    assert_array_equal(
        find_stim_steps(raw, merge=-1, stim_channel=stim_channel),
        [[1, 1, 0], [10, 0, 5], [20, 5, 0]])
    assert_array_equal(
        find_stim_steps(raw, merge=1, stim_channel=stim_channel),
        [[1, 1, 0], [11, 0, 5], [20, 5, 0]])

    # put back the env vars we trampled on
    for s, o in zip(extra_ends, orig_envs):
        if o is not None:
            os.environ['MNE_STIM_CHANNEL%s' % s] = o
Ejemplo n.º 7
0
def events(raw=None,
           merge=-1,
           proj=False,
           name=None,
           bads=None,
           stim_channel=None,
           events=None,
           **kwargs):
    """
    Load events from a raw fiff file.

    Parameters
    ----------
    raw : str(path) | None | mne Raw
        The raw fiff file from which to extract events (if raw and events are
        both ``None``, a file dialog will be displayed to select a raw file).
    merge : int
        Merge steps occurring in neighboring samples. The integer value
        indicates over how many samples events should be merged, and the sign
        indicates in which direction they should be merged (negative means
        towards the earlier event, positive towards the later event).
    proj : bool | str
        Path to the projections file that will be loaded with the raw file.
        ``'{raw}'`` will be expanded to the raw file's path minus extension.
        With ``proj=True``, ``'{raw}_*proj.fif'`` will be used,
        looking for any projection file starting with the raw file's name.
        If multiple files match the pattern, a ValueError will be raised.
    name : str | None
        A name for the Dataset. If ``None``, the raw filename will be used.
    bads : None | list
        Specify additional bad channels in the raw data file (these are added
        to the ones that are already defined in the raw file).
    stim_channel : None | string | list of string
        Name of the stim channel or all the stim channels
        affected by the trigger. If None, the config variables
        'MNE_STIM_CHANNEL', 'MNE_STIM_CHANNEL_1', 'MNE_STIM_CHANNEL_2',
        etc. are read. If these are not found, it will default to
        'STI 014'.
    events : None | str
        If events are stored in a fiff file separate from the Raw object, the
        path to the events file can be supplied here. The events in the Dataset
        will reflect the event sin the events file rather than the raw file.
    others :
        Keyword arguments for loading the raw file (see
        :func:`mne.io.read_raw_kit` or :func:`mne.io.read_raw_kit`).

    Returns
    -------
    events : Dataset
        A Dataset with the following variables:
         - *i_start*: the index of the event in the raw file.
         - *trigger*: the event value.
        The Dataset's info dictionary contains the following values:
         - *raw*: the mne Raw object.

    """
    if (raw is None and events is None) or isinstance(raw, basestring):
        raw = mne_raw(raw, proj=proj, **kwargs)

    if bads is not None and raw is not None:
        raw.info['bads'].extend(bads)

    if name is None and raw is not None:
        raw_path = _get_raw_filename(raw)
        if isinstance(raw_path, basestring):
            name = os.path.basename(raw_path)
        else:
            name = None

    if events is None:
        evts = mne.find_stim_steps(raw, merge=merge, stim_channel=stim_channel)
        evts = evts[np.flatnonzero(evts[:, 2])]
    else:
        evts = mne.read_events(events)

    i_start = Var(evts[:, 0], name='i_start')
    trigger = Var(evts[:, 2], name='trigger')
    info = {'raw': raw}
    return Dataset((trigger, i_start), name, info=info)
Ejemplo n.º 8
0
def events(raw=None, merge=-1, proj=False, name=None, bads=None, stim_channel=None, events=None, **kwargs):
    """
    Load events from a raw fiff file.

    Parameters
    ----------
    raw : str(path) | None | mne Raw
        The raw fiff file from which to extract events (if raw and events are
        both ``None``, a file dialog will be displayed to select a raw file).
    merge : int
        Merge steps occurring in neighboring samples. The integer value
        indicates over how many samples events should be merged, and the sign
        indicates in which direction they should be merged (negative means
        towards the earlier event, positive towards the later event).
    proj : bool | str
        Path to the projections file that will be loaded with the raw file.
        ``'{raw}'`` will be expanded to the raw file's path minus extension.
        With ``proj=True``, ``'{raw}_*proj.fif'`` will be used,
        looking for any projection file starting with the raw file's name.
        If multiple files match the pattern, a ValueError will be raised.
    name : str | None
        A name for the Dataset. If ``None``, the raw filename will be used.
    bads : None | list
        Specify additional bad channels in the raw data file (these are added
        to the ones that are already defined in the raw file).
    stim_channel : None | string | list of string
        Name of the stim channel or all the stim channels
        affected by the trigger. If None, the config variables
        'MNE_STIM_CHANNEL', 'MNE_STIM_CHANNEL_1', 'MNE_STIM_CHANNEL_2',
        etc. are read. If these are not found, it will default to
        'STI 014'.
    events : None | str
        If events are stored in a fiff file separate from the Raw object, the
        path to the events file can be supplied here. The events in the Dataset
        will reflect the event sin the events file rather than the raw file.
    others :
        Keyword arguments for loading the raw file.

    Returns
    -------
    events : Dataset
        A Dataset with the following variables:
         - *i_start*: the index of the event in the raw file.
         - *trigger*: the event value.
        The Dataset's info dictionary contains the following values:
         - *raw*: the mne Raw object.

    """
    if (raw is None and events is None) or isinstance(raw, basestring):
        raw = mne_raw(raw, proj=proj, **kwargs)

    if bads is not None and raw is not None:
        raw.info["bads"].extend(bads)

    if name is None and raw is not None:
        raw_path = raw.info["filename"]
        if isinstance(raw_path, basestring):
            name = os.path.basename(raw_path)
        else:
            name = None

    if events is None:
        evts = mne.find_stim_steps(raw, merge=merge, stim_channel=stim_channel)
        evts = evts[np.flatnonzero(evts[:, 2])]
    else:
        evts = mne.read_events(events)

    i_start = Var(evts[:, 0], name="i_start")
    trigger = Var(evts[:, 2], name="trigger")
    info = {"raw": raw}
    return Dataset((trigger, i_start), name, info=info)
Ejemplo n.º 9
0
def test_find_events():
    """Test find events in raw file."""
    events = read_events(fname)
    raw = read_raw_fif(raw_fname, preload=True)
    # let's test the defaulting behavior while we're at it
    extra_ends = ['', '_1']
    orig_envs = [os.getenv('MNE_STIM_CHANNEL%s' % s) for s in extra_ends]
    os.environ['MNE_STIM_CHANNEL'] = 'STI 014'
    if 'MNE_STIM_CHANNEL_1' in os.environ:
        del os.environ['MNE_STIM_CHANNEL_1']
    events2 = find_events(raw)
    assert_array_almost_equal(events, events2)
    # now test with mask
    events11 = find_events(raw, mask=3, mask_type='not_and')
    with pytest.warns(RuntimeWarning, match='events masked'):
        events22 = read_events(fname, mask=3, mask_type='not_and')
    assert_array_equal(events11, events22)

    # Reset some data for ease of comparison
    raw._first_samps[0] = 0
    raw.info['sfreq'] = 1000
    raw._update_times()

    stim_channel = 'STI 014'
    stim_channel_idx = pick_channels(raw.info['ch_names'],
                                     include=[stim_channel])

    # test digital masking
    raw._data[stim_channel_idx, :5] = np.arange(5)
    raw._data[stim_channel_idx, 5:] = 0
    # 1 == '0b1', 2 == '0b10', 3 == '0b11', 4 == '0b100'

    pytest.raises(TypeError, find_events, raw, mask="0", mask_type='and')
    pytest.raises(ValueError, find_events, raw, mask=0, mask_type='blah')
    # testing mask_type. default = 'not_and'
    assert_array_equal(find_events(raw, shortest_event=1, mask=1,
                                   mask_type='not_and'),
                       [[2, 0, 2], [4, 2, 4]])
    assert_array_equal(find_events(raw, shortest_event=1, mask=2,
                                   mask_type='not_and'),
                       [[1, 0, 1], [3, 0, 1], [4, 1, 4]])
    assert_array_equal(find_events(raw, shortest_event=1, mask=3,
                                   mask_type='not_and'),
                       [[4, 0, 4]])
    assert_array_equal(find_events(raw, shortest_event=1, mask=4,
                                   mask_type='not_and'),
                       [[1, 0, 1], [2, 1, 2], [3, 2, 3]])
    # testing with mask_type = 'and'
    assert_array_equal(find_events(raw, shortest_event=1, mask=1,
                       mask_type='and'),
                       [[1, 0, 1], [3, 0, 1]])
    assert_array_equal(find_events(raw, shortest_event=1, mask=2,
                       mask_type='and'),
                       [[2, 0, 2]])
    assert_array_equal(find_events(raw, shortest_event=1, mask=3,
                       mask_type='and'),
                       [[1, 0, 1], [2, 1, 2], [3, 2, 3]])
    assert_array_equal(find_events(raw, shortest_event=1, mask=4,
                       mask_type='and'),
                       [[4, 0, 4]])

    # test empty events channel
    raw._data[stim_channel_idx, :] = 0
    assert_array_equal(find_events(raw), np.empty((0, 3), dtype='int32'))

    raw._data[stim_channel_idx, :4] = 1
    assert_array_equal(find_events(raw), np.empty((0, 3), dtype='int32'))

    raw._data[stim_channel_idx, -1:] = 9
    assert_array_equal(find_events(raw), [[14399, 0, 9]])

    # Test that we can handle consecutive events with no gap
    raw._data[stim_channel_idx, 10:20] = 5
    raw._data[stim_channel_idx, 20:30] = 6
    raw._data[stim_channel_idx, 30:32] = 5
    raw._data[stim_channel_idx, 40] = 6

    assert_array_equal(find_events(raw, consecutive=False),
                       [[10, 0, 5],
                        [40, 0, 6],
                        [14399, 0, 9]])
    assert_array_equal(find_events(raw, consecutive=True),
                       [[10, 0, 5],
                        [20, 5, 6],
                        [30, 6, 5],
                        [40, 0, 6],
                        [14399, 0, 9]])
    assert_array_equal(find_events(raw),
                       [[10, 0, 5],
                        [20, 5, 6],
                        [40, 0, 6],
                        [14399, 0, 9]])
    assert_array_equal(find_events(raw, output='offset', consecutive=False),
                       [[31, 0, 5],
                        [40, 0, 6],
                        [14399, 0, 9]])
    assert_array_equal(find_events(raw, output='offset', consecutive=True),
                       [[19, 6, 5],
                        [29, 5, 6],
                        [31, 0, 5],
                        [40, 0, 6],
                        [14399, 0, 9]])
    pytest.raises(ValueError, find_events, raw, output='step',
                  consecutive=True)
    assert_array_equal(find_events(raw, output='step', consecutive=True,
                                   shortest_event=1),
                       [[10, 0, 5],
                        [20, 5, 6],
                        [30, 6, 5],
                        [32, 5, 0],
                        [40, 0, 6],
                        [41, 6, 0],
                        [14399, 0, 9],
                        [14400, 9, 0]])
    assert_array_equal(find_events(raw, output='offset'),
                       [[19, 6, 5],
                        [31, 0, 6],
                        [40, 0, 6],
                        [14399, 0, 9]])
    assert_array_equal(find_events(raw, consecutive=False, min_duration=0.002),
                       [[10, 0, 5]])
    assert_array_equal(find_events(raw, consecutive=True, min_duration=0.002),
                       [[10, 0, 5],
                        [20, 5, 6],
                        [30, 6, 5]])
    assert_array_equal(find_events(raw, output='offset', consecutive=False,
                                   min_duration=0.002),
                       [[31, 0, 5]])
    assert_array_equal(find_events(raw, output='offset', consecutive=True,
                                   min_duration=0.002),
                       [[19, 6, 5],
                        [29, 5, 6],
                        [31, 0, 5]])
    assert_array_equal(find_events(raw, consecutive=True, min_duration=0.003),
                       [[10, 0, 5],
                        [20, 5, 6]])

    # test find_stim_steps merge parameter
    raw._data[stim_channel_idx, :] = 0
    raw._data[stim_channel_idx, 0] = 1
    raw._data[stim_channel_idx, 10] = 4
    raw._data[stim_channel_idx, 11:20] = 5
    assert_array_equal(find_stim_steps(raw, pad_start=0, merge=0,
                                       stim_channel=stim_channel),
                       [[0, 0, 1],
                        [1, 1, 0],
                        [10, 0, 4],
                        [11, 4, 5],
                        [20, 5, 0]])
    assert_array_equal(find_stim_steps(raw, merge=-1,
                                       stim_channel=stim_channel),
                       [[1, 1, 0],
                        [10, 0, 5],
                        [20, 5, 0]])
    assert_array_equal(find_stim_steps(raw, merge=1,
                                       stim_channel=stim_channel),
                       [[1, 1, 0],
                        [11, 0, 5],
                        [20, 5, 0]])

    # put back the env vars we trampled on
    for s, o in zip(extra_ends, orig_envs):
        if o is not None:
            os.environ['MNE_STIM_CHANNEL%s' % s] = o

    # Test with list of stim channels
    raw._data[stim_channel_idx, 1:101] = np.zeros(100)
    raw._data[stim_channel_idx, 10:11] = 1
    raw._data[stim_channel_idx, 30:31] = 3
    stim_channel2 = 'STI 015'
    stim_channel2_idx = pick_channels(raw.info['ch_names'],
                                      include=[stim_channel2])
    raw._data[stim_channel2_idx, :] = 0
    raw._data[stim_channel2_idx, :100] = raw._data[stim_channel_idx, 5:105]
    events1 = find_events(raw, stim_channel='STI 014')
    events2 = events1.copy()
    events2[:, 0] -= 5
    events = find_events(raw, stim_channel=['STI 014', stim_channel2])
    assert_array_equal(events[::2], events2)
    assert_array_equal(events[1::2], events1)

    # test initial_event argument
    info = create_info(['MYSTI'], 1000, 'stim')
    data = np.zeros((1, 1000))
    raw = RawArray(data, info)
    data[0, :10] = 100
    data[0, 30:40] = 200
    assert_array_equal(find_events(raw, 'MYSTI'), [[30, 0, 200]])
    assert_array_equal(find_events(raw, 'MYSTI', initial_event=True),
                       [[0, 0, 100], [30, 0, 200]])
Ejemplo n.º 10
0
filt = config.filt

for subject in config.subjects:
    print(config.banner % subject)

    fname_template = op.join(path, subject, 'mne', '_'.join((subject, exp)))
    fname_evts = fname_template + '-eve.txt'
    fname_raw = fname_template + '_calm_' + filt + '_filt-raw.fif'
    # write the co-registration file
    fname_trial = fname_template + '_meg_trial_struct.txt'

    if not op.exists(fname_evts) or redo:
        raw = mne.io.read_raw_fif(fname_raw)

        # E-MEG alignment
        evts = mne.find_stim_steps(raw, merge=-2)
        # select non-zero events
        idx = np.nonzero(evts[:, 2])[0]
        evts = evts[idx]
        # recode events
        if exp == 'OLDT':
            evts, fix_idx, primes_idx, targets_idx, \
                semantic_idx, nonwords_idx = _recode_events(exp, evts)
        else:
            evts, fix_idx, primes_idx, targets_idx, \
                semantic_idx = _recode_events(exp, evts)
        """
        Writing the co-registration event file
        --------------------------------------
        The MEG and EM files must be aligned to have a proper decoding.
        This arranges the triggers in events of interests: prime, target.