Ejemplo n.º 1
0
    def load(self, graph: Graph):
        argv = graph.graph['cmd_params']
        try:
            model_nodes, model_params, model_name, iteration_number = load_symbol_def(
                argv.input_model, argv.input_symbol, argv.input,
                argv.nd_prefix_name, argv.pretrained_model_name,
                argv.legacy_mxnet_model)
        except (ValueError, mxnet.base.MXNetError) as e:
            raise FrameworkError(
                'The following error happened while loading mxnet model {}: {}. '
                + refer_to_faq_msg(53), argv.input_model, str(e)) from e

        if argv.nd_prefix_name and argv.pretrained_model_name and argv.save_params_from_nd:
            save_params_file(model_name, model_params._arg_params,
                             model_params._aux_params, iteration_number)

        update_extractors_with_extensions(mxnet_op_extractors)
        symbol2nx(graph, model_nodes, model_params, argv.input)
        graph.check_empty_graph(
            'symbol2nx. It may happen due to problems with loaded model')

        graph.graph['layout'] = 'NCHW'
        graph.graph['fw'] = 'mxnet'
        graph.graph[
            'feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3

        extract_node_attrs(graph, mxnet_op_extractor)
Ejemplo n.º 2
0
    def load(self, graph: Graph):
        argv = graph.graph['cmd_params']
        if argv.tensorflow_custom_layer_libraries:
            libraries = argv.tensorflow_custom_layer_libraries.split(',')
            for library in libraries:
                log.info('Loading library "{}" with custom operations'.format(library))
                tf_v1.load_op_library(library)

        graph_def, variables_values = load_tf_graph_def(graph_file_name=argv.input_model,
                                                        is_binary=not argv.input_model_is_text,
                                                        checkpoint=argv.input_checkpoint,
                                                        user_output_node_names_list=argv.output,
                                                        model_dir=argv.saved_model_dir,
                                                        meta_graph_file=argv.input_meta_graph,
                                                        saved_model_tags=argv.saved_model_tags)

        try:
            tf_v1.import_graph_def(graph_def, name='')
        except:
            log.warning("TensorFlow post-processing of loaded model was unsuccessful. "
                        "This is an optional step that Model Optimizer performs for any input model but it is not usually "
                        "required for all models."
                        "It likely means that the original model is ill-formed. "
                        "Model Optimizer will continue converting this model.")

        log.debug("Number of nodes in graph_def: {}".format(len(graph_def.node)))  # pylint: disable=no-member

        if argv.tensorboard_logdir:
            tensorboard_util.dump_for_tensorboard(graph_def, argv.tensorboard_logdir)

        update_extractors_with_extensions(tf_op_extractors)

        try:
            protobuf2nx(graph, graph_def)
        except Exception as e:
            raise Error(
                'Cannot pre-process TensorFlow graph after reading from model file "{}". ' \
                'File is corrupt or has unsupported format. Details: {}. ' +
                refer_to_faq_msg(44),
                argv.model_name,
                str(e)
            ) from e

        graph.__setattr__('name', argv.model_name)
        # 'layout' parameter change may cause an issue in EltwiseInputReshape replacer
        # and convert_nhwc_to_nchw(graph)
        graph.graph['layout'] = 'NCHW' if argv.disable_nhwc_to_nchw else 'NHWC'
        graph.graph['fw'] = 'tf'

        graph.graph['variables_values'] = variables_values
        del variables_values

        restore_edges(graph, get_tf_edges)
        remove_control_dependency_inputs(graph)

        graph.check_empty_graph('protobuf2nx. It may happen due to problems with loaded model')
        extract_node_attrs(graph, lambda node: tf_op_extractor(node, check_for_duplicates(tf_op_extractors)))
Ejemplo n.º 3
0
    def load(self, graph: Graph):
        argv = graph.graph['cmd_params']
        graph.graph['fw'] = 'pytorch'
        graph.graph['layout'] = 'NCHW'

        update_extractors_with_extensions(pytorch_op_extractors)

        # Create a dummy input
        inp = OpenVINOTensor(torch.randn(list(argv.placeholder_shapes)))
        inp.graph = graph
        inp.node_name = 'input'

        model = argv.input_model

        for module in model.modules():
            if len([m for m in module.modules()]) != 1:
                continue
            module.register_forward_hook(forward_hook)

        register_model_hook(model)

        graph.add_node('input',
                       kind='op',
                       op='Parameter',
                       name='input',
                       shape=list(inp.shape))

        with torch.no_grad():
            outs = model(inp)

        # Add output nodes
        if not hasattr(outs, '__contains__'):  # if a single tensor
            outs = [outs]
        if isinstance(outs, dict):
            outs = outs.values()

        for out in outs:
            name = out.node_name
            graph.add_node('output', kind='op', op='Result')
            edge_attrs = {
                'out': 0,
                'in': 0,
                'name': name,
                'fw_tensor_debug_info': [(name, name)],
                'in_attrs': ['in', 'name'],
                'out_attrs': ['out', 'name'],
                'data_attrs': ['fw_tensor_debug_info']
            }
            graph.add_edge(name, 'output', **edge_attrs)

        extract_node_attrs(
            graph, lambda node: pytorch_op_extractor(
                node, check_for_duplicates(pytorch_op_extractors)))
def driver(argv: argparse.Namespace):
    caffe_pb2 = loader.import_caffe_pb2(argv.caffe_parser_path)

    proto, model = loader.load_caffe_proto_model(caffe_pb2, argv.input_proto,
                                                 argv.input_model)

    update_extractors_with_extensions(
        caffe_type_extractors, argv.disable_omitting_optional if hasattr(
            argv, 'disable_omitting_optional') else False,
        argv.disable_flattening_optional_params if hasattr(
            argv, 'disable_flattening_optional_params') else False)

    try:
        graph, original_shapes = loader.caffe_pb_to_nx(proto, model)
    except ValueError as e:
        raise Error(
            'Invalid prototxt file: value error {}. ' + refer_to_faq_msg(11),
            str(e)) from e
    graph.check_empty_graph('load_caffe_proto_model')

    graph.__setattr__('proto_path', argv.input_proto)
    graph.__setattr__('caffemodel_path', argv.input_model)
    graph.__setattr__('name', getattr(proto, 'name', None) or argv.model_name)
    graph.graph['layout'] = 'NCHW'
    graph.graph['cmd_params'] = argv
    graph.graph['fw'] = 'caffe'
    graph.graph['original_shapes'] = original_shapes
    graph.graph['caffe_pb2'] = caffe_pb2
    graph.graph['ir_version'] = get_ir_version(argv)

    graph.graph['original_shapes'] = original_shapes
    graph.graph['caffe_pb2'] = caffe_pb2

    custom_layers_map = custom_layers_mapping.load_layers_xml(argv.k)
    custom_layers_mapping.update_extractors(
        caffe_type_extractors,
        custom_layers_map, argv.disable_omitting_optional if hasattr(
            argv, 'disable_omitting_optional') else False,
        argv.enable_flattening_nested_params if hasattr(
            argv, 'enable_flattening_nested_params') else False)
    extract_node_attrs(
        graph, lambda node: caffe_extractor(
            node, check_for_duplicates(caffe_type_extractors)))

    # --------------------------------- LOAD END ------------------------------------------------------

    class_registration.apply_replacements(graph, [
        class_registration.ClassType.FRONT_REPLACER,
        class_registration.ClassType.MIDDLE_REPLACER,
        class_registration.ClassType.BACK_REPLACER
    ])

    return graph
def driver(argv: argparse.Namespace):
    model_proto = load_onnx_model(argv.input_model)
    model_graph = model_proto.graph  # pylint: disable=no-member
    # print(model_graph)
    # assert len(model_graph) == 1, "An ONNX model contains more than 1 graph: unsupported"
    log.debug("Number of nodes in graph_def: {}".format(len(model_graph.node)))
    log.debug(
        "Number of all input ports (not true inputs) in graph_def: {}".format(
            len(model_graph.input)))
    log.debug("Number of initializers in graph_def: {}".format(
        len(model_graph.initializer)))
    log.debug("Number of real inputs in graph_def: {}".format(
        len(model_graph.input) - len(model_graph.initializer)))
    update_extractors_with_extensions(onnx_op_extractors)

    try:
        graph = protobuf2nx(model_proto)
        log.debug("Number of nodes in NX graph: {}".format(
            graph.number_of_nodes()))
        graph.__setattr__(
            'name',
            argv.model_name if argv.model_name else model_proto.graph.name)  # pylint: disable=no-member
        graph.graph['layout'] = 'NCHW'
        graph.graph['cmd_params'] = argv
        graph.graph['fw'] = 'onnx'
        graph.graph[
            'feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3
        graph.graph['ir_version'] = get_ir_version(argv)

    except Exception as e:
        raise Error(
            'Cannot pre-process ONNX graph after reading from model file "{}". ' \
            'File is corrupt or has unsupported format. Details: {}. ' +
            refer_to_faq_msg(44),
            argv.input_model,
            str(e)
        ) from e
    graph.check_empty_graph(
        'protobuf2nx. It may happen due to problems with loaded model')
    extract_node_attrs(
        graph, lambda node: onnx_op_extractor(
            node, check_for_duplicates(onnx_op_extractors)))

    # --------------------------------- LOAD END ------------------------------------------------------

    class_registration.apply_replacements(graph, [
        class_registration.ClassType.FRONT_REPLACER,
        class_registration.ClassType.MIDDLE_REPLACER,
        class_registration.ClassType.BACK_REPLACER
    ])

    return graph
Ejemplo n.º 6
0
    def load(self, graph: Graph):
        argv = graph.graph['cmd_params']
        try:
            load_kaldi_model(graph, argv.input_model)
        except Exception as e:
            raise Error('Model Optimizer is not able to parse Kaldi model {}. '.format(argv.input_model) +
                        refer_to_faq_msg(91)) from e
        graph.check_empty_graph('load_kaldi_nnet_model')
        graph.graph['layout'] = 'NCHW'
        graph.graph['fw'] = 'kaldi'

        update_extractors_with_extensions(kaldi_type_extractors)
        extract_node_attrs(graph, lambda node: kaldi_extractor(node))
Ejemplo n.º 7
0
def driver(argv, input_model, output_model_name, output_dir):
    meta_info = get_meta_info(argv)

    EltwiseChecker.enabled = False

    try:
        graph, input_shapes = load_kaldi_model(input_model)
    except Exception as e:
        raise Error('Model Optimizer is not able to read Kaldi model {}. '.format(input_model) +
                    refer_to_faq_msg(91)) from e
    graph.check_empty_graph('load_kaldi_nnet_model')
    graph.graph['cmd_params'] = argv
    graph.graph['fw'] = 'kaldi'
    graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 5
    update_extractors_with_extensions(kaldi_type_extractors)
    extract_node_attrs(graph, lambda node: kaldi_extractor(node))

    # --------------------------------- LOAD END ------------------------------------------------------
    class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER)

    graph = partial_infer(graph)

    # The order is intentional, firstly eliminate repeated, then remove redundant
    FuseRepeatedReshapes().find_and_replace_pattern(graph)
    EliminateRedundantReshape().find_and_replace_pattern(graph)
    graph.check_empty_graph('partial_infer')
    if argv.counts:
        try:
            counts = read_counts_file(argv.counts)
        except Exception as e:
            raise Error('Model Optimizer is not able to read counts file {}'.format(argv.counts) +
                        refer_to_faq_msg(92)) from e

        apply_biases_to_last_layer(graph, counts)

    if argv.remove_output_softmax:
        RemoveLastSoftMaxPattern().find_and_replace_pattern(graph)
        graph_clean_up(graph)
        log.debug("After removing softmax")
        graph.print_graph_stat()

    # Intentionally after all transformations
    KaldiRemoveMemoryOutputBackReplacementPattern().find_and_replace_pattern(graph)

    remove_const_ops(graph)
    CreateConstNodesReplacement().find_and_replace_pattern(graph)

    remove_output_ops(graph)

    prepare_emit_ir(graph, argv.data_type, output_dir, output_model_name, meta_info=meta_info)
    return 0
Ejemplo n.º 8
0
def driver(argv: argparse.Namespace, input_model: str, output_model_name: str,
           output_dir: str):
    meta_info = get_meta_info(argv)

    try:
        model_nodes, model_params, model_name, iteration_number = load_symbol_def(
            input_model, argv.input_symbol, argv.input, argv.nd_prefix_name,
            argv.pretrained_model_name, argv.legacy_mxnet_model)
    except (ValueError, mxnet.base.MXNetError) as e:
        raise FrameworkError(
            'The following error happened while loading mxnet model {}: {}. ' +
            refer_to_faq_msg(53), input_model, str(e)) from e

    if argv.nd_prefix_name and argv.pretrained_model_name and argv.save_params_from_nd:
        save_params_file(model_name, model_params._arg_params,
                         model_params._aux_params, iteration_number)

    update_extractors_with_extensions(mxnet_op_extractors)
    graph = symbol2nx(model_nodes, model_params, argv.input)
    graph.check_empty_graph(
        'symbol2nx. It may happen due to problems with loaded model')

    graph.__setattr__('name', output_model_name)
    graph.graph['layout'] = 'NCHW'
    graph.graph['cmd_params'] = argv
    graph.graph['fw'] = 'mxnet'
    graph.graph['feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3

    if graph.graph['cmd_params'].generate_experimental_IR_V10:
        version = 10
    else:
        version = 6
    graph.graph[
        'ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version

    extract_node_attrs(graph, mxnet_op_extractor)

    # --------------------------------- LOAD END ------------------------------------------------------

    class_registration.apply_replacements(graph, [
        class_registration.ClassType.FRONT_REPLACER,
        class_registration.ClassType.MIDDLE_REPLACER,
        class_registration.ClassType.BACK_REPLACER
    ])

    prepare_emit_ir(graph=graph,
                    data_type=argv.data_type,
                    output_dir=output_dir,
                    output_model_name=output_model_name,
                    meta_info=meta_info)
    return 0
Ejemplo n.º 9
0
    def load(self, graph: Graph):
        argv = graph.graph['cmd_params']
        graph.graph['fw'] = 'pytorch'
        graph.graph['layout'] = 'NCHW'

        update_extractors_with_extensions(pytorch_op_extractors)

        # Create a dummy input
        if argv.input:
            placeholder_shapes = argv.placeholder_shapes
            placeholder_data_types = argv.placeholder_data_types
        else:
            placeholder_shapes = {'input': argv.placeholder_shapes}
            placeholder_data_types = {'input': np.float32}

        inputs = {}
        for name, shape in placeholder_shapes.items():
            dtype = placeholder_data_types[name]
            inp = np.random.randint(0, 255, shape).astype(dtype)
            inp = OpenVINOTensor(torch.tensor(inp))

            inputs[name] = inp
            inp.graph = graph
            inp.node_name = name
            graph.add_node(name,
                           kind='op',
                           op='Parameter',
                           name=name,
                           shape=shape)

        for name, value in argv.freeze_placeholder_with_value.items():
            inputs[name] = value

        model = argv.input_model

        for module in model.modules():
            if len([m for m in module.modules()]) != 1:
                continue
            module.register_forward_hook(forward_hook)

        register_model_hook(model)

        with torch.no_grad():
            if argv.input:
                model(**inputs)
            else:
                model(inputs['input'])

        extract_node_attrs(
            graph, lambda node: pytorch_op_extractor(
                node, check_for_duplicates(pytorch_op_extractors)))
Ejemplo n.º 10
0
    def load(self, graph: Graph):
        argv = graph.graph['cmd_params']
        model_proto = load_onnx_model(argv.input_model)
        model_graph = model_proto.graph  # pylint: disable=no-member
        # print(model_graph)
        # assert len(model_graph) == 1, "An ONNX model contains more than 1 graph: unsupported"
        log.debug("Number of nodes in graph_def: {}".format(
            len(model_graph.node)))
        log.debug(
            "Number of all input ports (not true inputs) in graph_def: {}".
            format(len(model_graph.input)))
        log.debug("Number of initializers in graph_def: {}".format(
            len(model_graph.initializer)))
        log.debug("Number of real inputs in graph_def: {}".format(
            len(model_graph.input) - len(model_graph.initializer)))
        update_extractors_with_extensions(onnx_op_extractors)

        try:
            protobuf2nx(graph, model_proto)
        except Exception as e:
            raise Error(
                'Cannot pre-process ONNX graph after reading from model file "{}". ' \
                'File is corrupt or has unsupported format. Details: {}. ' +
                refer_to_faq_msg(44),
                argv.input_model,
                str(e)
            ) from e
        log.debug("Number of nodes in NX graph: {}".format(
            graph.number_of_nodes()))

        graph.__setattr__(
            'name',
            argv.model_name if argv.model_name else model_proto.graph.name)  # pylint: disable=no-member
        graph.graph['layout'] = 'NCHW'
        graph.graph['fw'] = 'onnx'
        graph.graph['feature_dim'] = 1
        if hasattr(model_proto, 'opset_import'):
            graph.graph['fw_opset_version'] = model_proto.opset_import[
                0].version  # pylint: disable=no-member
        else:
            graph.graph['fw_opset_version'] = None

        graph.check_empty_graph(
            'protobuf2nx. It may happen due to problems with loaded model')
        extract_node_attrs(
            graph, lambda node: onnx_op_extractor(
                node, check_for_duplicates(onnx_op_extractors)))
        send_op_names_info('onnx', graph)
        send_shapes_info('onnx', graph)
Ejemplo n.º 11
0
def extract_if(cls, if_node: Node):
    If.update_node_stat(if_node, {})

    # check that required body and condition functions exist in the graph library
    main_graph = if_node.graph
    then_graph_proto = get_graph_proto(main_graph, 'then_branch', if_node)
    else_graph_proto = get_graph_proto(main_graph, 'else_branch', if_node)

    then_graph = create_internal_graph(main_graph)
    if_node['then_graph'] = then_graph

    else_graph = create_internal_graph(main_graph)
    if_node['else_graph'] = else_graph

    # create Parameter nodes for the then/else graphs
    for input_index, (body_graph, body_graph_proto) in enumerate(
            zip((then_graph, else_graph),
                (then_graph_proto, else_graph_proto))):

        body_parameters, body_parameter_names = convert_graph_inputs_to_parameters(
            body_graph, body_graph_proto)

        # update the If body graph with the body function graph
        body_results = []
        update_body_graph(body_graph, body_graph_proto, body_parameter_names,
                          body_results)

        body_graph.stage = 'front'

        # connect external input ports with body parameter nodes except input with condition
        for idx in range(0, len(body_parameters)):
            If.connect_body_input(if_node, not input_index, idx + 1,
                                  body_parameters[idx])

        # connect body outputs with If operation output ports
        for idx in range(len(body_results)):
            If.connect_body_output(if_node, not input_index, idx,
                                   body_results[idx])

        # run function to parse body nodes attributes similar to the main graph
        extract_node_attrs(
            body_graph, lambda node: tf_op_extractor(
                node, check_for_duplicates(tf_op_extractors)))

    return cls.enabled
Ejemplo n.º 12
0
    def load(self, graph: Graph):
        argv = graph.graph['cmd_params']
        caffe_pb2 = loader.import_caffe_pb2(argv.caffe_parser_path)

        proto, model = loader.load_caffe_proto_model(caffe_pb2,
                                                     argv.input_proto,
                                                     argv.input_model)

        update_extractors_with_extensions(
            caffe_type_extractors, argv.disable_omitting_optional if hasattr(
                argv, 'disable_omitting_optional') else False,
            argv.disable_flattening_optional_params if hasattr(
                argv, 'disable_flattening_optional_params') else False)

        try:
            original_shapes = loader.caffe_pb_to_nx(graph, proto, model)
        except ValueError as e:
            raise Error(
                'Invalid prototxt file: value error {}. ' +
                refer_to_faq_msg(11), str(e)) from e
        graph.check_empty_graph('load_caffe_proto_model')

        graph.__setattr__('proto_path', argv.input_proto)
        graph.__setattr__('caffemodel_path', argv.input_model)
        graph.__setattr__('name',
                          getattr(proto, 'name', None) or argv.model_name)
        graph.graph['layout'] = 'NCHW'
        graph.graph['fw'] = 'caffe'
        graph.graph['original_shapes'] = original_shapes
        graph.graph['caffe_pb2'] = caffe_pb2

        custom_layers_map = custom_layers_mapping.load_layers_xml(argv.k)
        custom_layers_mapping.update_extractors(
            caffe_type_extractors, custom_layers_map,
            argv.disable_omitting_optional if hasattr(
                argv, 'disable_omitting_optional') else False,
            argv.enable_flattening_nested_params if hasattr(
                argv, 'enable_flattening_nested_params') else False)
        extract_node_attrs(
            graph, lambda node: caffe_extractor(
                node, check_for_duplicates(caffe_type_extractors)))
def driver(argv):
    try:
        graph = load_kaldi_model(argv.input_model)
    except Exception as e:
        raise Error('Model Optimizer is not able to parse Kaldi model {}. '.
                    format(argv.input_model) + refer_to_faq_msg(91)) from e
    graph.check_empty_graph('load_kaldi_nnet_model')
    graph.graph['layout'] = 'NCHW'
    graph.graph['cmd_params'] = argv
    graph.graph['fw'] = 'kaldi'
    graph.graph['ir_version'] = get_ir_version(argv)

    update_extractors_with_extensions(kaldi_type_extractors)
    extract_node_attrs(graph, lambda node: kaldi_extractor(node))

    # --------------------------------- LOAD END ------------------------------------------------------
    class_registration.apply_replacements(graph, [
        class_registration.ClassType.FRONT_REPLACER,
        class_registration.ClassType.MIDDLE_REPLACER,
        class_registration.ClassType.BACK_REPLACER
    ])

    return graph
Ejemplo n.º 14
0
def tf2nx(argv: argparse.Namespace, model_file_name: str, output_model_name: str, outputs: list, output_dir: str,
          scale: float, is_binary: bool,
          user_shapes: [None, list, np.array] = None,
          mean_scale_values: [dict, list] = ()):
    """
    Convert TF GraphDef object to NetworkX representation.
    The resulting graph is still TF-specific and needs normalization passes to be applied.
    The specific TF structure assumes each GraphDef node is converted to a single
    NetworkX node, node id is an original TF node name, and edges go directly from one op   to another op.
    """
    meta_info = get_meta_info(argv)

    if argv.tensorflow_custom_layer_libraries:
        libraries = argv.tensorflow_custom_layer_libraries.split(',')
        for library in libraries:
            log.info('Loading library "{}" with custom operations'.format(library))
            tf.load_op_library(library)

    graph_def, variables_values = load_tf_graph_def(graph_file_name=model_file_name, is_binary=is_binary,
                                                    checkpoint=argv.input_checkpoint,
                                                    user_output_node_names_list=outputs,
                                                    model_dir=argv.saved_model_dir,
                                                    meta_graph_file=argv.input_meta_graph,
                                                    saved_model_tags=argv.saved_model_tags)

    try:
        tf.import_graph_def(graph_def, name='')
    except:
        log.warning("TensorFlow post-processing of loaded model was unsuccessful. "
                    "This is an optional step that Model Optimizer performs for any input model but it is not usually "
                    "required for all models."
                    "It likely means that the original model is ill-formed. "
                    "Model Optimizer will continue converting this model.")

    log.debug("Number of nodes in graph_def: {}".format(len(graph_def.node)))  # pylint: disable=no-member

    if argv.tensorboard_logdir:
        tensorboard.dump_for_tensorboard(graph_def, argv.tensorboard_logdir)

    update_extractors_with_extensions(tf_op_extractors)

    try:
        graph = protobuf2nx(graph_def)
        graph.__setattr__('name', output_model_name)
        # 'layout' parameter change may cause an issue in EltwiseInputReshape replacer
        # and convert_nhwc_to_nchw(graph)
        graph.graph['layout'] = 'NCHW' if argv.disable_nhwc_to_nchw else 'NHWC'
        graph.graph['cmd_params'] = argv
        graph.graph['fw'] = 'tf'
        graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 4

        if graph.graph['ir_version'] == 2:
            # When the deprecated IR version was requested,
            # we configure only those phases that can lead to
            # functional regressions in the version 2.
            # BasicLSTMCell is one such transformation; when it is turned off,
            # the body of TF basic_lstm_cell is converted as-is in a decomposed form,
            # and should work in version 2.
            BasicLSTMCell.enabled = False

        # placeholder for request from a transformation pass to repeat the entire conversion
        graph.graph['repeat_conversion'] = False

        graph = restore_edges(graph, get_tf_edges)
        graph = remove_control_dependency_inputs(graph)
        # extract basic attributes earlier to enable some passes that relies on them before full attribute
        # extractor is called
        extract_node_attrs(graph, lambda node: (True, common_tf_fields(node)))
    except Exception as e:
        raise Error(
            'Cannot pre-process TensorFlow graph after reading from model file "{}". ' \
            'File is corrupt or has unsupported format. Details: {}. ' +
            refer_to_faq_msg(44),
            model_file_name,
            str(e)
        ) from e

    check_empty_graph(graph, 'protobuf2nx. It may happen due to problems with loaded model')

    packed_user_shapes, packed_outputs, freeze_placeholder = user_data_repack(graph, user_shapes, outputs,
                                                                              argv.freeze_placeholder_with_value)
    if freeze_placeholder is not None:
        FreezePlaceholderValue.enabled = True
        FreezePlaceholderValue.replacement_dict = freeze_placeholder
        update_registration()

    GemmResolver.enabled = False

    inputs = list(packed_user_shapes.keys()) if packed_user_shapes is not None and isinstance(packed_user_shapes,
                                                                                              dict) else None
    graph.graph['inputs'] = inputs  # save user defined inputs for other extensions

    output_op_nodes = add_output_ops(graph, packed_outputs, inputs=packed_user_shapes)
    input_op_nodes = add_input_ops(graph, packed_user_shapes, True)

    # this call of 'graph_clean_up' removes child nodes of outputs which is useful when custom output is specified
    graph_clean_up_tf(graph)

    check_empty_graph(graph, 'add_output_ops and add_input_ops. It may happen due to absence of \'Placeholder\' layer '
                             'in the model')

    variables_to_constants(graph, variables_values)
    del variables_values
    graph_clean_up_tf(graph)

    if argv.tensorflow_custom_operations_config_update:
        if update_custom_replacement_config_file(graph, argv.tensorflow_custom_operations_config_update):
            return 0
        else:
            return 1

    unsupported_ops_to_offload_to_tf = list()

    MAX_ITERATIONS = 5
    cur_iteration = 0
    while cur_iteration < MAX_ITERATIONS:
        graph_copy = copy.deepcopy(graph)  # create a copy of graph for the case when some ops are unsupported

        if argv.tensorflow_subgraph_patterns is not None:
            csc.replace_subgraph_calls(graph, argv.tensorflow_subgraph_patterns)

        if argv.tensorflow_operation_patterns is not None:
            csc.offload_operations_to_tf(graph, argv.tensorflow_operation_patterns)

        if argv.offload_unsupported_operations_to_tf and len(unsupported_ops_to_offload_to_tf):
            csc.offload_unsupported_operations_to_tf(graph, unsupported_ops_to_offload_to_tf)

        extract_node_attrs(graph, lambda node: tf_op_extractor(node, check_for_duplicates(tf_op_extractors)))

        if argv.tensorflow_use_custom_operations_config is not None:
            registry = CustomReplacementRegistry()
            registry.add_custom_replacement_description_from_config(argv.tensorflow_use_custom_operations_config)

            # automatically generate sub-classes for custom replacements that replace sub-graph with a single node
            for replacement_desc in registry.get_all_replacements_descriptions():
                if replacement_desc.has('op'):
                    type('FrontReplacementFromConfigFileOp' + replacement_desc.op, (FrontReplacementFromConfigFileOp,),
                         {'replacement_id': replacement_desc.id})
            update_registration()

        override_placeholder_shapes(graph, packed_user_shapes)

        # the user shapes are used to convert TensorFlow Object Detection API models
        graph.graph['user_shapes'] = packed_user_shapes
        class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER)

        override_batch(graph, argv.batch)

        create_tensor_nodes(graph)
        graph_clean_up_tf(graph)

        remove_output_ops(graph)
        partial_infer(graph)
        delete_control_flow_edges(graph)

        replacer = AddIsCyclicAttribute()
        replacer.find_and_replace_pattern(graph)

        # TENSOR ITERATOR CREATING BEGINS
        if graph.graph['is_cyclic']:
            replacer = DeleteSelect()
            replacer.find_and_replace_pattern(graph)

            replacer = SmartInputMatcher()
            replacer.find_and_replace_pattern(graph)

            replacer = SmartOutputMatcher()
            replacer.find_and_replace_pattern(graph)

            replacer = LoopConditionMatcher()
            replacer.find_and_replace_pattern(graph)

            replacer = SimpleConditionMather()
            replacer.find_and_replace_pattern(graph)

            replacer = BackEdgesMatching()
            replacer.find_and_replace_pattern(graph)

            replacer = ConditionChecks()
            replacer.find_and_replace_pattern(graph)

        delete_not_executable(graph)
        graph_clean_up_tf(graph)
        if graph.graph['is_cyclic']:
            replacer = SimpleInputMatcher()
            replacer.find_and_replace_pattern(graph)

            replacer = BackEdgeSimpleInputMatcher()
            replacer.find_and_replace_pattern(graph)

            # Here will be optimizing path (ops after Enter and before body take out of body)

            replacer = TensorIteratorMerge()
            replacer.find_and_replace_pattern(graph)
        # TENSOR ITERATOR CREATING ENDS

        check_for_cycle(graph)

        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)
        check_empty_graph(graph, 'partial_infer')

        csc.prepare_tf_call_nodes(graph)
        graph_clean_up_tf(graph)

        duplicate_shared_weights(graph)

        input_op_nodes = add_input_ops(graph, packed_user_shapes, False)
        graph_clean_up_tf(graph)
        check_empty_graph(graph, 'add_input_ops')

        change_placeholders_types_to_FP32(graph)

        scale_input(graph, scale)
        add_mean_scale_values(graph, mean_scale_values)

        convert_dilated_convolution(graph)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        l2_norm_to_norm(graph)
        graph_clean_up_tf(graph)

        remove_op_nodes(graph, {'identity': True})
        remove_useless_split(graph)

        class_registration.apply_replacements(graph, class_registration.ClassType.MIDDLE_REPLACER)

        mean_to_avgpool(graph)
        convert_nasnet(graph)

        fuse_pad(graph)
        graph_clean_up_tf(graph)

        convert_matmul_to_fully_connected(graph)

        # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes
        for_graph_and_each_sub_graph_recursively(graph, lambda graph: mark_unfused_nodes(graph, argv.finegrain_fusing))

        # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence
        # IE doesn't support BN with 4 inputs, so we have to split it to two ScaleShift
        convert_batch_norm(graph)
        graph_clean_up_tf(graph)

        if not argv.disable_fusing:
            # Converting ScaleShift layer to Mul->Add
            for_graph_and_each_sub_graph_recursively(graph, convert_scale_shift_to_mul_add)
            for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

            # Fusing the sequences of Mul/Add operations
            for_graph_and_each_sub_graph_recursively(graph, fuse_mul_add_sequence)
            for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

            # Fusing linear operation to Convolution
            for_graph_and_each_sub_graph_recursively(graph, fuse_linear_ops)
            for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        if not argv.disable_gfusing:
            grouped_convolutions_fusing(graph)
            graph_clean_up_tf(graph)
            if not argv.disable_fusing:
                fuse_linear_ops(graph)
                graph_clean_up_tf(graph)

        # Converting Mul->Add to ScaleShift node
        for_graph_and_each_sub_graph_recursively(graph, convert_muladd_to_scaleshift_or_power)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        for_graph_and_each_sub_graph_recursively(graph, convert_mul_add_to_power)

        # Need to eliminate dead nodes before doing update_fully_connected_shapes
        # because update_fully_connected_shapes does partial inference and dead
        # nodes will lead to sporadic failures.
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)
        for_graph_and_each_sub_graph_recursively(graph, update_fully_connected_shapes)

        for_graph_and_each_sub_graph_recursively(graph, convert_mul_eltwise_to_leaky_relu)
        graph_clean_up_tf(graph)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        for_graph_and_each_sub_graph_recursively(graph, fuse_pad)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        for_graph_and_each_sub_graph_recursively(graph, convert_reshape)
        for_graph_and_each_sub_graph_recursively(graph, convert_squeeze)

        for_graph_and_each_sub_graph_recursively(graph, convert_add_to_scaleshift)  # scale = 1
        for_graph_and_each_sub_graph_recursively(graph, convert_mul_to_scaleshift)  # biases = 0

        if argv.reverse_input_channels:
            reverse_input_channels(graph)

        if argv.move_to_preprocess:
            move_scaleshift_to_preprocess(graph)
            graph_clean_up_tf(graph)

        for_graph_and_each_sub_graph_recursively(graph, fuse_sequence_of_reshapes)

        pattern = EltwiseInputNormalize()
        pattern.find_and_replace_pattern(graph)

        conv_flatten_concat(graph)

        for_graph_and_each_sub_graph_recursively(graph, apply_nhwc_to_nchw_permutation)
        for_graph_and_each_sub_graph_recursively(graph, merge_nodes_permutations)
        for_graph_and_each_sub_graph_recursively(graph, permute_data_nodes_attrs)
        for_graph_and_each_sub_graph_recursively(graph, permute_op_nodes_attrs)

        for_graph_and_each_sub_graph_recursively(graph, repack_fully_connected_weights_nhwc_to_nchw)
        for_graph_and_each_sub_graph_recursively(graph, transpose_fully_connected_weights)

        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        if argv.offload_unsupported_operations_to_tf:
            unsupported_ops_to_offload_to_tf = find_unsupported_ops(graph)
            if len(unsupported_ops_to_offload_to_tf) == 0:
                log.info('All operations are supported! Exit from the loop.')
                if not need_to_repeat_conversion(graph):
                    break
            else:
                print('After {} iteration there are {} unsupported ops'.format(cur_iteration + 1,
                                                                               len(unsupported_ops_to_offload_to_tf)))
        else:
            if not need_to_repeat_conversion(graph):
                break

        graph = graph_copy
        cur_iteration += 1

    class_registration.apply_replacements(graph, class_registration.ClassType.BACK_REPLACER)

    prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name,
                    meta_info=meta_info)

    return 0
Ejemplo n.º 15
0
def driver_R1(onnx_modelproto_bytes,
              precision: str,
              output_model_name: str,
              outputs: list,
              output_dir: str,
              scale: float,
              user_shapes: [None, list, np.array] = None,
              mean_scale_values: [dict, list] = ()):

    try:
        model_proto = onnx.load_from_string(bytes(onnx_modelproto_bytes))
    except Exception as e:
        print("[python] onnx exception: ", str(e))

    model_graph = model_proto.graph  # pylint: disable=no-member

    update_extractors_with_extensions(onnx_op_extractors)

    try:
        graph = protobuf2nx(model_proto)
        log.debug("Number of nodes in NX graph: {}".format(
            graph.number_of_nodes()))
        graph.__setattr__(
            'name',
            output_model_name if output_model_name else model_proto.graph.name)  # pylint: disable=no-member
        graph.graph['layout'] = 'NCHW'
        graph.graph['cmd_params'] = argparse.Namespace(
            batch=None,
            data_type='float',
            disable_fusing=False,
            disable_gfusing=False,
            disable_resnet_optimization=False,
            enable_concat_optimization=False,
            extensions=mo_extensions,
            finegrain_fusing=None,
            framework='onnx',
            freeze_placeholder_with_value=None,
            generate_deprecated_IR_V2=False,
            input=None,
            input_model=None,
            input_shape=None,
            keep_shape_ops=False,
            log_level='ERROR',
            mean_scale_values={},
            mean_values=(),
            model_name=None,
            move_to_preprocess=False,
            output=None,
            output_dir='.',
            placeholder_shapes=None,
            reverse_input_channels=False,
            scale=None,
            scale_values=(),
            silent=False,
            version=False)
        graph.graph['fw'] = 'onnx'
        graph.graph[
            'feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3
        graph.graph['ir_version'] = 5
    except Exception as e:
        raise Error(
            'Cannot pre-process ONNX graph after reading from model file "{}". '
            'File is corrupt or has unsupported format. Details: {}. ' +
            refer_to_faq_msg(44), model_file_name, str(e)) from e
    graph.check_empty_graph(
        'protobuf2nx. It may happen due to problems with loaded model')
    extract_node_attrs(
        graph, lambda node: onnx_op_extractor(
            node, check_for_duplicates(onnx_op_extractors)))

    # --------------------------------- LOAD END ------------------------------------------------------
    class_registration.apply_replacements(
        graph, class_registration.ClassType.FRONT_REPLACER)
    class_registration.apply_replacements(
        graph, class_registration.ClassType.MIDDLE_REPLACER)

    fuse_pad(graph)
    graph_clean_up_onnx(graph)

    mark_unfused_nodes(graph, 'False')
    convert_batch_norm(graph)
    graph_clean_up_onnx(graph)

    convert_scale_shift_to_mul_add(graph)
    graph_clean_up_onnx(graph)

    fuse_mul_add_sequence(graph)
    graph_clean_up_onnx(graph)

    fuse_linear_ops(graph)
    graph_clean_up_onnx(graph)

    grouped_convolutions_fusing(graph)
    graph_clean_up_onnx(graph)

    fuse_linear_ops(graph)
    graph_clean_up_onnx(graph)

    convert_muladd_to_scaleshift_or_power(graph)
    graph_clean_up_onnx(graph)

    convert_mul_add_to_power(graph)
    graph_clean_up_onnx(graph)

    convert_reshape(graph)
    graph_clean_up_onnx(graph)
    convert_add_or_mul_to_scaleshift(graph)  # scale = 1
    graph_clean_up_onnx(graph)

    fuse_pad(graph)
    graph_clean_up_onnx(graph)

    fuse_sequence_of_reshapes(graph)
    graph_clean_up_onnx(graph)

    pattern = EltwiseInputNormalize()
    pattern.find_and_replace_pattern(graph)

    merge_nodes_permutations(graph)
    permute_data_nodes_attrs(graph)
    permute_op_nodes_attrs(graph)

    class_registration.apply_replacements(
        graph, class_registration.ClassType.BACK_REPLACER)

    for_graph_and_each_sub_graph_recursively(graph, remove_const_ops)

    CreateConstNodesReplacement().find_and_replace_pattern(graph)

    for_graph_and_each_sub_graph_recursively(graph, remove_output_ops)

    weights, xml_string = prepare_emit_ir(graph=graph,
                                          data_type=precision,
                                          output_dir=output_dir,
                                          output_model_name=output_model_name,
                                          meta_info={'unset': []})

    return weights, xml_string
Ejemplo n.º 16
0
def driver_R5(onnx_modelproto_bytes,
              precision: str,
              output_model_name: str,
              outputs: list,
              output_dir: str,
              scale: float,
              user_shapes: [None, list, np.array] = None,
              mean_scale_values: [dict, list] = ()):

    try:
        model_proto = onnx.load_from_string(bytes(onnx_modelproto_bytes))
    except Exception as e:
        print("[python] onnx exception: ", str(e))

    model_graph = model_proto.graph  # pylint: disable=no-member
    log.debug("Number of nodes in graph_def: {}".format(len(model_graph.node)))
    log.debug(
        "Number of all input ports (not true inputs) in graph_def: {}".format(
            len(model_graph.input)))
    log.debug("Number of initializers in graph_def: {}".format(
        len(model_graph.initializer)))
    log.debug("Number of real inputs in graph_def: {}".format(
        len(model_graph.input) - len(model_graph.initializer)))
    update_extractors_with_extensions(onnx_op_extractors)

    try:
        graph = protobuf2nx(model_proto)
        log.debug("Number of nodes in NX graph: {}".format(
            graph.number_of_nodes()))
        graph.__setattr__(
            'name',
            output_model_name if output_model_name else model_proto.graph.name)  # pylint: disable=no-member
        graph.graph['layout'] = 'NCHW'
        graph.graph['fw'] = 'onnx'
        graph.graph[
            'feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3
        graph.graph['ir_version'] = 4
        extract_node_attrs(graph, lambda node:
                           (True, common_onnx_fields(node)))
    except Exception as e:
        raise Error(
            'Cannot pre-process ONNX graph after reading from model file "{}". '
            'File is corrupt or has unsupported format. Details: {}. ' +
            refer_to_faq_msg(44), model_file_name, str(e)) from e
    check_empty_graph(
        graph, 'protobuf2nx. It may happen due to problems with loaded model')
    packed_user_shapes, packed_outputs, _ = user_data_repack(
        graph, user_shapes, outputs, None)

    output_op_nodes = add_output_ops(graph, packed_outputs)
    input_op_nodes = add_input_ops(graph, packed_user_shapes, True)

    graph_clean_up(graph)
    check_empty_graph(graph, 'add_output_ops and add_input_ops')
    extract_node_attrs(
        graph, lambda node: onnx_op_extractor(
            node, check_for_duplicates(onnx_op_extractors)))

    class_registration.apply_replacements(
        graph, class_registration.ClassType.FRONT_REPLACER)

    create_tensor_nodes(graph)
    graph_clean_up(graph)

    override_placeholder_shapes(graph, packed_user_shapes)

    graph_clean_up(graph)
    remove_op_nodes(graph, {'op': 'Identity'})

    graph_clean_up(graph)

    remove_output_ops(graph)

    partial_infer(graph)
    graph_clean_up(graph)
    check_empty_graph(graph, 'partial_infer')

    input_op_nodes = add_input_ops(graph, packed_user_shapes, False)
    graph_clean_up(graph)
    check_empty_graph(graph, 'add_input_ops')

    scale_input(graph, scale)
    add_mean_scale_values(graph, mean_scale_values)

    convert_dilated_convolution(graph)
    graph_clean_up(graph)

    graph_clean_up(graph)

    remove_op_nodes(graph, {'op': 'Identity'})
    remove_useless_split(graph)

    class_registration.apply_replacements(
        graph, class_registration.ClassType.MIDDLE_REPLACER)

    convert_gemm_to_fully_connected(graph)
    NormalizeFullyConnected().find_and_replace_pattern(graph)

    fuse_pad(graph)
    graph_clean_up(graph)

    convert_batch_norm(graph)
    graph_clean_up(graph)

    convert_scale_shift_to_mul_add(graph)
    graph_clean_up(graph)

    fuse_mul_add_sequence(graph)
    graph_clean_up(graph)

    fuse_linear_ops(graph)
    graph_clean_up(graph)

    grouped_convolutions_fusing(graph)
    graph_clean_up(graph)

    fuse_linear_ops(graph)
    graph_clean_up(graph)

    convert_muladd_to_scaleshift_or_power(graph)
    graph_clean_up(graph)

    convert_mul_add_to_power(graph)
    graph_clean_up(graph)

    convert_reshape(graph)
    convert_add_to_scaleshift(graph)  # scale = 1
    convert_mul_to_scaleshift(graph)  # biases = 0

    fuse_pad(graph)
    graph_clean_up(graph)

    fuse_sequence_of_reshapes(graph)
    graph_clean_up(graph)

    pattern = EltwiseInputNormalize()
    pattern.find_and_replace_pattern(graph)

    merge_nodes_permutations(graph)
    permute_data_nodes_attrs(graph)
    permute_op_nodes_attrs(graph)

    class_registration.apply_replacements(
        graph, class_registration.ClassType.BACK_REPLACER)

    weights, xml_string = prepare_emit_ir(graph=graph,
                                          data_type=precision,
                                          output_dir=output_dir,
                                          output_model_name=output_model_name,
                                          meta_info={'unset': []})

    return weights, xml_string
Ejemplo n.º 17
0
def tf2nx(argv: argparse.Namespace, model_file_name: str, output_model_name: str, output_dir: str,
          is_binary: bool):
    """
    Convert TF GraphDef object to NetworkX representation.
    The resulting graph is still TF-specific and needs normalization passes to be applied.
    The specific TF structure assumes each GraphDef node is converted to a single
    NetworkX node, node id is an original TF node name, and edges go directly from one op   to another op.
    """
    meta_info = get_meta_info(argv)

    if argv.tensorflow_custom_layer_libraries:
        libraries = argv.tensorflow_custom_layer_libraries.split(',')
        for library in libraries:
            log.info('Loading library "{}" with custom operations'.format(library))
            tf.load_op_library(library)

    graph_def, variables_values = load_tf_graph_def(graph_file_name=model_file_name, is_binary=is_binary,
                                                    checkpoint=argv.input_checkpoint,
                                                    user_output_node_names_list=argv.output,
                                                    model_dir=argv.saved_model_dir,
                                                    meta_graph_file=argv.input_meta_graph,
                                                    saved_model_tags=argv.saved_model_tags)

    try:
        tf.import_graph_def(graph_def, name='')
    except:
        log.warning("TensorFlow post-processing of loaded model was unsuccessful. "
                    "This is an optional step that Model Optimizer performs for any input model but it is not usually "
                    "required for all models."
                    "It likely means that the original model is ill-formed. "
                    "Model Optimizer will continue converting this model.")

    log.debug("Number of nodes in graph_def: {}".format(len(graph_def.node)))  # pylint: disable=no-member

    if argv.tensorboard_logdir:
        tensorboard.dump_for_tensorboard(graph_def, argv.tensorboard_logdir)

    update_extractors_with_extensions(tf_op_extractors)

    try:
        graph = protobuf2nx(graph_def)
        graph.__setattr__('name', output_model_name)
        # 'layout' parameter change may cause an issue in EltwiseInputReshape replacer
        # and convert_nhwc_to_nchw(graph)
        graph.graph['layout'] = 'NCHW' if argv.disable_nhwc_to_nchw else 'NHWC'
        graph.graph['cmd_params'] = argv
        graph.graph['fw'] = 'tf'
        graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 5

        graph.graph['variables_values'] = variables_values
        del variables_values

        graph = restore_edges(graph, get_tf_edges)
        graph = remove_control_dependency_inputs(graph)
    except Exception as e:
        raise Error(
            'Cannot pre-process TensorFlow graph after reading from model file "{}". ' \
            'File is corrupt or has unsupported format. Details: {}. ' +
            refer_to_faq_msg(44),
            model_file_name,
            str(e)
        ) from e

    graph.check_empty_graph('protobuf2nx. It may happen due to problems with loaded model')
    extract_node_attrs(graph, lambda node: tf_op_extractor(node, check_for_duplicates(tf_op_extractors)))

    # --------------------------------- LOAD END ------------------------------------------------------
    class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER)
    class_registration.apply_replacements(graph, class_registration.ClassType.MIDDLE_REPLACER)

    fuse_pad(graph)
    graph_clean_up_tf(graph)

    convert_matmul_to_fully_connected(graph)

    # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes
    for_graph_and_each_sub_graph_recursively(graph, lambda graph: mark_unfused_nodes(graph, argv.finegrain_fusing))

    # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence
    # IE doesn't support BN with 4 inputs, so we have to split it to two ScaleShift
    convert_batch_norm(graph)
    graph_clean_up_tf(graph)

    if not argv.disable_fusing:
        # Converting ScaleShift layer to Mul->Add
        for_graph_and_each_sub_graph_recursively(graph, convert_scale_shift_to_mul_add)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        # Fusing the sequences of Mul/Add operations
        for_graph_and_each_sub_graph_recursively(graph, fuse_mul_add_sequence)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        # Fusing linear operation to Convolution
        for_graph_and_each_sub_graph_recursively(graph, fuse_linear_ops)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

    if not argv.disable_gfusing:
        grouped_convolutions_fusing(graph)
        graph_clean_up_tf(graph)
        if not argv.disable_fusing:
            fuse_linear_ops(graph)
            graph_clean_up_tf(graph)

    # Converting Mul->Add to ScaleShift node
    for_graph_and_each_sub_graph_recursively(graph, convert_muladd_to_scaleshift_or_power)
    for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

    for_graph_and_each_sub_graph_recursively(graph, convert_mul_add_to_power)

    # Need to eliminate dead nodes before doing update_fully_connected_shapes
    # because update_fully_connected_shapes does partial inference and dead
    # nodes will lead to sporadic failures.
    for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)
    for_graph_and_each_sub_graph_recursively(graph, update_fully_connected_shapes)

    for_graph_and_each_sub_graph_recursively(graph, convert_mul_eltwise_to_leaky_relu)
    graph_clean_up_tf(graph)
    for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

    for_graph_and_each_sub_graph_recursively(graph, fuse_pad)
    for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

    for_graph_and_each_sub_graph_recursively(graph, convert_reshape)
    for_graph_and_each_sub_graph_recursively(graph, convert_squeeze)

    for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

    for_graph_and_each_sub_graph_recursively(graph, convert_add_or_mul_to_scaleshift)  # scale = 1
    for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

    if argv.reverse_input_channels:
        reverse_input_channels(graph)

    if argv.move_to_preprocess:
        move_scaleshift_to_preprocess(graph)
        graph_clean_up_tf(graph)

    fuse_sequence_of_reshapes(graph)

    pattern = EltwiseInputNormalize()
    pattern.find_and_replace_pattern(graph)

    conv_flatten_concat(graph)

    if argv.enable_concat_optimization:
        ConcatOptimization().find_and_replace_pattern(graph)

    LayoutChangeForConstantShapePaths().find_and_replace_pattern(graph)
    for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

    for_graph_and_each_sub_graph_recursively(graph, apply_nhwc_to_nchw_permutation)
    for_graph_and_each_sub_graph_recursively(graph, merge_nodes_permutations)
    for_graph_and_each_sub_graph_recursively(graph, permute_data_nodes_attrs)
    for_graph_and_each_sub_graph_recursively(graph, permute_op_nodes_attrs)

    for_graph_and_each_sub_graph_recursively(graph, repack_fully_connected_weights_nhwc_to_nchw)
    for_graph_and_each_sub_graph_recursively(graph, transpose_fully_connected_weights)

    for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

    class_registration.apply_replacements(graph, class_registration.ClassType.BACK_REPLACER)

    for_graph_and_each_sub_graph_recursively(graph, remove_const_ops)
    CreateConstNodesReplacement().find_and_replace_pattern(graph)

    for_graph_and_each_sub_graph_recursively(graph, remove_output_ops)

    prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name,
                    meta_info=meta_info)

    return 0
Ejemplo n.º 18
0
def driver(argv: argparse.Namespace, model_file_name: str, output_model_name: str, output_dir: str):
    meta_info = get_meta_info(argv)

    model_proto = load_onnx_model(model_file_name)
    model_graph = model_proto.graph  # pylint: disable=no-member
    # print(model_graph)
    # assert len(model_graph) == 1, "An ONNX model contains more than 1 graph: unsupported"
    log.debug("Number of nodes in graph_def: {}".format(len(model_graph.node)))
    log.debug("Number of all input ports (not true inputs) in graph_def: {}".format(len(model_graph.input)))
    log.debug("Number of initializers in graph_def: {}".format(len(model_graph.initializer)))
    log.debug("Number of real inputs in graph_def: {}".format(len(model_graph.input) - len(model_graph.initializer)))
    update_extractors_with_extensions(onnx_op_extractors)

    try:
        graph = protobuf2nx(model_proto)
        log.debug("Number of nodes in NX graph: {}".format(graph.number_of_nodes()))
        graph.__setattr__('name',
                          output_model_name if output_model_name else model_proto.graph.name)  # pylint: disable=no-member
        graph.graph['layout'] = 'NCHW'
        graph.graph['cmd_params'] = argv
        graph.graph['fw'] = 'onnx'
        graph.graph['feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3
        graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 5
    except Exception as e:
        raise Error(
            'Cannot pre-process ONNX graph after reading from model file "{}". ' \
            'File is corrupt or has unsupported format. Details: {}. ' +
            refer_to_faq_msg(44),
            model_file_name,
            str(e)
        ) from e
    graph.check_empty_graph('protobuf2nx. It may happen due to problems with loaded model')
    extract_node_attrs(graph, lambda node: onnx_op_extractor(node, check_for_duplicates(onnx_op_extractors)))

    # --------------------------------- LOAD END ------------------------------------------------------
    class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER)
    class_registration.apply_replacements(graph, class_registration.ClassType.MIDDLE_REPLACER)

    fuse_pad(graph)
    graph_clean_up_onnx(graph)

    # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes
    mark_unfused_nodes(graph, argv.finegrain_fusing)

    # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence
    # IE doesn't support BN with 4 inputs, so we have to split it to two ScaleShift
    convert_batch_norm(graph)
    graph_clean_up_onnx(graph)

    if not argv.disable_fusing:
        # Converting ScaleShift layer to Mul->Add
        convert_scale_shift_to_mul_add(graph)
        graph_clean_up_onnx(graph)

        # Fusing the sequences of Mul/Add operations
        fuse_mul_add_sequence(graph)
        graph_clean_up_onnx(graph)

        # Fusing linear operation to Convolution
        fuse_linear_ops(graph)
        graph_clean_up_onnx(graph)

    if not argv.disable_gfusing:
        grouped_convolutions_fusing(graph)
        graph_clean_up_onnx(graph)
        if not argv.disable_fusing:
            fuse_linear_ops(graph)
            graph_clean_up_onnx(graph)

    AddQuantizeFuse().find_and_replace_pattern(graph)
    MulQuantizeFuse().find_and_replace_pattern(graph)

    convert_muladd_to_scaleshift_or_power(graph)
    graph_clean_up_onnx(graph)

    convert_mul_add_to_power(graph)
    graph_clean_up_onnx(graph)

    convert_reshape(graph)
    graph_clean_up_onnx(graph)
    convert_add_or_mul_to_scaleshift(graph)  # scale = 1
    graph_clean_up_onnx(graph)

    fuse_pad(graph)
    graph_clean_up_onnx(graph)

    if argv.reverse_input_channels:
        reverse_input_channels(graph)

    if argv.move_to_preprocess:
        move_scaleshift_to_preprocess(graph)
        graph_clean_up_onnx(graph)

    fuse_sequence_of_reshapes(graph)
    graph_clean_up_onnx(graph)

    pattern = EltwiseInputNormalize()
    pattern.find_and_replace_pattern(graph)

    merge_nodes_permutations(graph)
    permute_data_nodes_attrs(graph)
    permute_op_nodes_attrs(graph)

    class_registration.apply_replacements(graph, class_registration.ClassType.BACK_REPLACER)

    for_graph_and_each_sub_graph_recursively(graph, remove_const_ops)

    CreateConstNodesReplacement().find_and_replace_pattern(graph)

    for_graph_and_each_sub_graph_recursively(graph, remove_output_ops)

    prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name,
                    meta_info=meta_info)

    return 0
Ejemplo n.º 19
0
def driver(onnx_modelproto_bytes, precision: str, output_model_name: str,
           output_dir: str):
    try:
        model_proto = onnx.load_from_string(bytes(onnx_modelproto_bytes))
    except Exception as e:
        print("[python] onnx exception: ", str(e))

    model_graph = model_proto.graph  # pylint: disable=no-member
    log.debug("Number of nodes in graph_def: {}".format(len(model_graph.node)))
    log.debug(
        "Number of all input ports (not true inputs) in graph_def: {}".format(
            len(model_graph.input)))
    log.debug("Number of initializers in graph_def: {}".format(
        len(model_graph.initializer)))
    log.debug("Number of real inputs in graph_def: {}".format(
        len(model_graph.input) - len(model_graph.initializer)))
    update_extractors_with_extensions(onnx_op_extractors)

    try:
        graph = protobuf2nx(model_proto)
        log.debug("Number of nodes in NX graph: {}".format(
            graph.number_of_nodes()))
        graph.__setattr__(
            'name',
            output_model_name if output_model_name else model_proto.graph.name)  # pylint: disable=no-member
        graph.graph['layout'] = 'NCHW'
        graph.graph['fw'] = 'onnx'
        graph.graph[
            'feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3
        graph.graph['cmd_params'] = argparse.Namespace(
            batch=None,
            data_type='float',
            disable_fusing=False,
            disable_gfusing=False,
            disable_resnet_optimization=False,
            enable_concat_optimization=False,
            extensions=mo_extensions,
            finegrain_fusing=None,
            framework='onnx',
            freeze_placeholder_with_value=None,
            generate_deprecated_IR_V2=False,
            input=None,
            input_model=None,
            input_shape=None,
            keep_shape_ops=False,
            log_level='ERROR',
            mean_scale_values={},
            mean_values=(),
            model_name=None,
            move_to_preprocess=False,
            output=None,
            output_dir='.',
            placeholder_shapes=None,
            reverse_input_channels=False,
            scale=None,
            scale_values=(),
            silent=False,
            version=False,
            blobs_as_inputs=False,
            keep_quantize_ops_in_IR=False,
            generate_experimental_IR_V10=False)
        graph.graph['ir_version'] = 6

    except Exception as e:
        raise Error(
            'Cannot pre-process ONNX graph after reading from model file "{}". ' \
            'File is corrupt or has unsupported format. Details: {}. ' +
            refer_to_faq_msg(44),
            model_file_name,
            str(e)
        ) from e
    graph.check_empty_graph(
        'protobuf2nx. It may happen due to problems with loaded model')
    extract_node_attrs(
        graph, lambda node: onnx_op_extractor(
            node, check_for_duplicates(onnx_op_extractors)))

    # --------------------------------- LOAD END ------------------------------------------------------
    class_registration.apply_replacements(
        graph, class_registration.ClassType.FRONT_REPLACER)
    class_registration.apply_replacements(
        graph, class_registration.ClassType.MIDDLE_REPLACER)

    fuse_pad(graph)
    graph_clean_up_onnx(graph)

    for_graph_and_each_sub_graph_recursively(
        graph, convert_matmul_to_fully_connected)

    # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes
    mark_unfused_nodes(graph, False)

    # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence
    # IE doesn't support BN with 4 inputs, so we have to split it to two ScaleShift
    convert_batch_norm(graph)
    graph_clean_up_onnx(graph)

    # Converting ScaleShift layer to Mul->Add
    convert_scale_shift_to_mul_add(graph)
    graph_clean_up_onnx(graph)

    # Fusing the sequences of Mul/Add operations
    fuse_mul_add_sequence(graph)
    graph_clean_up_onnx(graph)

    # Fusing linear operation to Convolution
    fuse_linear_ops(graph)
    graph_clean_up_onnx(graph)

    grouped_convolutions_fusing(graph)
    graph_clean_up_onnx(graph)

    fuse_linear_ops(graph)
    graph_clean_up_onnx(graph)

    MarkNodesToFuseUpToFakeQuantize().find_and_replace_pattern(graph)
    FakeQuantizeFuse().find_and_replace_pattern(graph)

    AddFakeQuantizeFuse().find_and_replace_pattern(graph)
    MulFakeQuantizeFuse().find_and_replace_pattern(graph)

    convert_muladd_to_scaleshift(graph)
    graph_clean_up_onnx(graph)

    graph_clean_up_onnx(graph)
    convert_add_or_mul_to_scaleshift(graph)  # scale = 1
    graph_clean_up_onnx(graph)

    fuse_pad(graph)
    graph_clean_up_onnx(graph)

    FuseReshapesSequence().find_and_replace_pattern(graph)
    RemoveRedundantReshapes().find_and_replace_pattern(graph)

    graph_clean_up_onnx(graph)

    pattern = EltwiseInputNormalize()
    pattern.find_and_replace_pattern(graph)

    merge_nodes_permutations(graph)
    permute_data_nodes_attrs(graph)
    permute_op_nodes_attrs(graph)

    graph_clean_up_onnx(graph)
    class_registration.apply_replacements(
        graph, class_registration.ClassType.BACK_REPLACER)

    for_graph_and_each_sub_graph_recursively(graph, remove_const_ops)

    CreateConstNodesReplacement().find_and_replace_pattern(graph)

    for_graph_and_each_sub_graph_recursively(graph, remove_output_ops)

    weights, xml_string = prepare_emit_ir(graph=graph,
                                          data_type=precision,
                                          output_dir=output_dir,
                                          output_model_name=output_model_name,
                                          meta_info={'unset': []})

    return weights, xml_string
Ejemplo n.º 20
0
def driver(argv: argparse.Namespace,
           proto_file_name: str,
           model_file_name: str,
           output_model_name: str,
           output_dir: str,
           caffe_proto_path: str,
           mean_file: str = "",
           mean_file_offsets: tuple = None,
           custom_layers_mapping_path: str = None):
    log_step(argv.steps, 'LOAD')
    meta_info = get_meta_info(argv)

    caffe_pb2 = loader.import_caffe_pb2(caffe_proto_path)

    proto, model = loader.load_caffe_proto_model(caffe_pb2, proto_file_name,
                                                 model_file_name)

    update_extractors_with_extensions(
        caffe_type_extractors, argv.disable_omitting_optional if hasattr(
            argv, 'disable_omitting_optional') else False,
        argv.disable_flattening_optional_params if hasattr(
            argv, 'disable_flattening_optional_params') else False)

    try:
        graph, original_shapes = loader.caffe_pb_to_nx(proto, model)
    except ValueError as e:
        raise Error(
            'Invalid prototxt file: value error {}. ' + refer_to_faq_msg(11),
            str(e)) from e

    log.debug("After caffe_pb_to_nx")
    graph.print_graph_stat()
    graph.check_empty_graph('load_caffe_proto_model')

    graph.__setattr__('proto_path', proto_file_name)
    graph.__setattr__('caffemodel_path', model_file_name)
    graph.__setattr__('name',
                      getattr(proto, 'name', None) or output_model_name)
    graph.graph['layout'] = 'NCHW'
    graph.graph['cmd_params'] = argv
    graph.graph['fw'] = 'caffe'
    if graph.graph['cmd_params'].generate_experimental_IR_V10:
        version = 10
    else:
        version = 6
    graph.graph[
        'ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version

    custom_layers_map = custom_layers_mapping.load_layers_xml(
        custom_layers_mapping_path)
    custom_layers_mapping.update_extractors(
        caffe_type_extractors,
        custom_layers_map, argv.disable_omitting_optional if hasattr(
            argv, 'disable_omitting_optional') else False,
        argv.enable_flattening_nested_params if hasattr(
            argv, 'enable_flattening_nested_params') else False)
    extract_node_attrs(
        graph, lambda node: caffe_extractor(
            node, check_for_duplicates(caffe_type_extractors)))

    # --------------------------------- LOAD END ------------------------------------------------------
    log_step(argv.steps, 'FRONT')
    class_registration.apply_replacements(
        graph, class_registration.ClassType.FRONT_REPLACER)
    log_step(argv.steps, 'MIDDLE')
    class_registration.apply_replacements(
        graph, class_registration.ClassType.MIDDLE_REPLACER)

    # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes
    mark_unfused_nodes(graph, argv.finegrain_fusing)

    # need this pass even without fusing to convert scale with 2 inputs
    convert_scale_shift_to_mul_add(graph)
    graph_clean_up(graph)

    if not argv.disable_fusing:
        convert_bn_to_mul_add(graph)
        graph_clean_up(graph)

        fuse_mul_add_sequence(graph)
        graph_clean_up(graph)

        fuse_linear_ops(graph)
        graph_clean_up(graph)

    if not argv.disable_resnet_optimization:
        stride_optimization(graph)

    convert_muladd_to_scaleshift(graph)
    convert_matmul_to_fully_connected(graph)
    batch_norm_fuse(graph)
    convert_add_or_mul_to_scaleshift(graph)  # scale = 1
    graph_clean_up(graph)

    log.debug("After graph_cleanup")
    graph.print_graph_stat()

    if argv.reverse_input_channels:
        reverse_input_channels(graph)

    if argv.move_to_preprocess:
        move_scaleshift_to_preprocess(graph)
        graph_clean_up(graph)

    FuseReshapesSequence().find_and_replace_pattern(graph)
    RemoveRedundantReshapes().find_and_replace_pattern(graph)

    input_names = find_inputs(graph)
    mf = []
    try:
        if mean_file and len(original_shapes) == 1:
            mf = loader.parse_mean(mean_file, original_shapes[input_names[0]],
                                   mean_file_offsets, caffe_pb2)
        elif mean_file:
            raise Error(
                'Mean file for topologies with multiple inputs is not supported. '
                + refer_to_faq_msg(9))
    except ValueError as e:
        raise Error(
            'Cannot load or process mean file: value error {}. ' +
            refer_to_faq_msg(10), str(e)) from e

    merge_nodes_permutations(graph)
    permute_data_nodes_attrs(graph)
    permute_op_nodes_attrs(graph)

    graph_clean_up(graph)
    log_step(argv.steps, 'BACK')
    class_registration.apply_replacements(
        graph, class_registration.ClassType.BACK_REPLACER)

    remove_const_ops(graph)
    CreateConstNodesReplacement().find_and_replace_pattern(graph)

    remove_output_ops(graph)
    log_step(argv.steps, 'EMIT')
    prepare_emit_ir(graph=graph,
                    data_type=argv.data_type,
                    output_dir=output_dir,
                    output_model_name=output_model_name,
                    mean_data=mf,
                    input_names=input_names,
                    meta_info=meta_info)
    return 0
Ejemplo n.º 21
0
    def extract(cls, loop_node):
        Loop.update_node_stat(loop_node, {})
        loop_name = loop_node.soft_get('name', loop_node.id)

        # check that required body and condition functions exist in the graph library
        main_graph = loop_node.graph
        body_graph_name = loop_node.pb.attr['body'].func.name
        cond_graph_name = loop_node.pb.attr['cond'].func.name
        assert 'library' in main_graph.graph, 'The graph does not contain a library that is required ' \
                                              'by node with name "{}".'.format(loop_name)
        library_graph = main_graph.graph['library']

        assert body_graph_name in library_graph, 'The library does not contain a function with name "{}" ' \
                                                 'that is required by node ' \
                                                 'with name "{}".'.format(body_graph_name, loop_name)
        body_graph_proto = library_graph[body_graph_name]

        assert cond_graph_name in library_graph, 'The library does not contain a function with name "{}" ' \
                                                 'that is required by node ' \
                                                 'with name "{}".'.format(cond_graph_name, loop_name)
        cond_graph_proto = library_graph[cond_graph_name]

        body_graph = Graph()
        # fill the body graph
        for attr_key in main_graph.graph.keys():
            if attr_key != 'library':
                body_graph.graph[attr_key] = copy.deepcopy(main_graph.graph[attr_key])
            else:
                # it is sufficient to have a link to the library
                body_graph.graph['library'] = main_graph.graph['library']
        loop_node['body'] = body_graph

        # create Parameter nodes for the body graph
        body_parameters = []
        body_parameter_names = []
        for idx, pb_node in enumerate(body_graph_proto['input_arg']):
            param_id = body_graph.unique_id(pb_node.name)
            body_graph.add_node(param_id, name=param_id, kind='op', op='Parameter', pb=None, shape=None)
            parameter_node = Node(body_graph, pb_node.name)
            Parameter.update_node_stat(parameter_node,
                                       {'data_type': tf_dtype_extractor(pb_node.type),
                                        'permute_attrs': PermuteAttrs().update_attrs(attrs=[('shape', 'output:0')])}
                                       )
            body_parameters.append(parameter_node)
            body_parameter_names.append(param_id)

        # update the loop body graph with the body function graph
        body_results = []
        update_body_graph(body_graph, body_graph_proto, body_parameter_names, body_results)

        # update the loop body graph with the condition function graph
        update_body_graph(body_graph, cond_graph_proto, body_parameter_names, body_results)

        # add 'internal_layer_id' attribute which is a must have attribute for the loop body node
        for idx, body_node in enumerate(body_graph.get_op_nodes()):
            body_node['internal_layer_id'] = idx

        body_graph.stage = 'front'

        # Currently,
        # Loop Inputs Order:
        #   0    - current iteration
        #   1    - trip count
        #   2..  - "loop carried" dependencies variables
        #
        # Body Inputs Order:
        #   0    - current iteration
        #   1    - trip count
        #   2..  - "loop carried" dependencies variables
        #
        # Body Outputs Order:
        #   0      - current iteration
        #   1      - trip count
        #   2..    - "loop carried" dependencies variables
        #
        # Loop Outputs Order:
        #   0    - current iteration
        #   1    - trip count
        #   2..  - "loop carried" dependencies variables
        #
        # so inputs must be reordered and execution condition must be created in the front transformation
        # to be aligned with the specification

        # connect external input ports with body parameter nodes except current iteration
        # since it must be disconnected from external port
        for idx in range(1, len(body_parameters)):
            Loop.connect_body_input(loop_node, idx, body_parameters[idx])

        # mark current iteration input Parameter node and execution condition Result node
        Loop.mark_current_iteration_parameter_node(loop_node, body_parameters[0])
        Loop.mark_execution_condition_result_node(loop_node, body_results[-1])

        # connect back edges in the body except current iteration
        for idx in range(1, len(body_parameters)):
            Loop.add_back_edge(loop_node, body_parameters[idx], body_results[idx])

        # connect body outputs with Loop operation output ports except the execution condition result
        for idx in range(len(body_results)-1):
            Loop.connect_body_output(loop_node, idx, body_results[idx])

        # run function to parse body nodes attributes similar to the main graph
        extract_node_attrs(body_graph, lambda node: tf_op_extractor(node, check_for_duplicates(tf_op_extractors)))
        return cls.enabled
Ejemplo n.º 22
0
def driver(argv: argparse.Namespace, input_model: str, output_model_name: str, outputs: list, output_dir: str,
           scale: float,
           placeholder_shapes: [None, list, np.array] = None,
           mean_scale_values: [dict, list] = ()):
    meta_info = get_meta_info(argv)

    try:
        model_nodes, model_params, model_name, iteration_number = load_symbol_def(input_model, argv.input_symbol,
                                                                                  argv.input,
                                                                                  argv.nd_prefix_name,
                                                                                  argv.pretrained_model_name,
                                                                                  argv.legacy_mxnet_model)
    except (ValueError, mxnet.base.MXNetError) as e:
        raise FrameworkError(
            'The following error happened while loading mxnet model {}: {}. ' +
            refer_to_faq_msg(53),
            input_model,
            str(e)
        ) from e

    if argv.nd_prefix_name and argv.pretrained_model_name and argv.save_params_from_nd:
        save_params_file(model_name, model_params._arg_params, model_params._aux_params, iteration_number)

    update_extractors_with_extensions(mxnet_op_extractors)
    graph = symbol2nx(model_nodes, model_params, argv.input)
    check_empty_graph(graph, 'symbol2nx. It may happen due to problems with loaded model')

    graph.__setattr__('name', output_model_name)
    graph.graph['layout'] = 'NCHW'
    graph.graph['cmd_params'] = argv
    graph.graph['fw'] = 'mxnet'
    graph.graph['feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3
    graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 4
    graph = extract_node_attrs(graph, mxnet_op_extractor)
    check_softmax_node_inputs(graph)

    user_shapes, packed_outputs, _ = user_data_repack(graph, placeholder_shapes, outputs, None)
    output_op_nodes = add_output_ops(graph, packed_outputs)
    input_op_nodes = add_input_ops(graph, user_shapes, True)

    try:
        override_placeholder_shapes(graph, user_shapes, argv.batch)
    except ValueError as err:
        raise Error(
            'The following error happened while processing input shapes: {}. ' +
            refer_to_faq_msg(54),
            str(err)
        ) from err
    check_empty_graph(graph, 'add_output_ops and add_input_ops')

    class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER)
    add_input_data_to_prior_boxes(graph, argv.input)

    graph = create_tensor_nodes(graph)

    graph_clean_up(graph)
    remove_output_ops(graph)
    mark_outputs(graph)
    remove_output_ops(graph)

    graph_clean_up(graph)

    log.debug("After removing specific nodes for output")

    print_graph_stat(graph)

    graph = partial_infer(graph)
    graph_clean_up(graph)
    check_empty_graph(graph, 'partial_infer')

    duplicate_shared_weights(graph)

    scale_input(graph, scale)
    add_mean_scale_values(graph, mean_scale_values)

    remove_op_nodes(graph, {'identity': True})

    graph_clean_up(graph)

    class_registration.apply_replacements(graph, class_registration.ClassType.MIDDLE_REPLACER)
    fuse_pad(graph)

    # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes
    mark_unfused_nodes(graph, argv.finegrain_fusing)

    # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence
    convert_batch_norm(graph)
    graph_clean_up(graph)

    if not argv.disable_fusing:
        # Converting ScaleShift layer to Mul->Add
        convert_scale_shift_to_mul_add(graph)
        graph_clean_up(graph)

        # Fusing the sequences of Mul/Add operations
        fuse_mul_add_sequence(graph)
        graph_clean_up(graph)

        # Fusing linear operation to Convolution
        fuse_linear_ops(graph)
        graph_clean_up(graph)

    if not argv.disable_resnet_optimization:
        stride_optimization(graph)

    fuse_pad(graph)

    # Converting Mul->Add to ScaleShift node
    convert_muladd_to_scaleshift_or_power(graph)
    graph_clean_up(graph)

    convert_mul_add_to_power(graph)
    convert_add_to_scaleshift(graph)  # scale = 1
    convert_mul_to_scaleshift(graph)  # biases = 0

    if argv.reverse_input_channels:
        reverse_input_channels(graph)

    if argv.move_to_preprocess:
        move_scaleshift_to_preprocess(graph)
        graph_clean_up(graph)

    pattern = EltwiseInputNormalize()
    pattern.find_and_replace_pattern(graph)

    class_registration.apply_replacements(graph, class_registration.ClassType.BACK_REPLACER)

    prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name,
                    meta_info=meta_info)
    return 0
Ejemplo n.º 23
0
def driver(argv, input_model, output_model_name, output_dir):
    log_step(argv.steps, 'LOAD')
    meta_info = get_meta_info(argv)

    EltwiseChecker.enabled = False

    try:
        graph = load_kaldi_model(input_model)
    except Exception as e:
        raise Error('Model Optimizer is not able to parse Kaldi model {}. '.format(input_model) +
                    refer_to_faq_msg(91)) from e
    graph.check_empty_graph('load_kaldi_nnet_model')
    graph.graph['cmd_params'] = argv
    graph.graph['fw'] = 'kaldi'

    if graph.graph['cmd_params'].generate_experimental_IR_V10:
        version = 10
    else:
        version = 6
    graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version

    update_extractors_with_extensions(kaldi_type_extractors)
    extract_node_attrs(graph, lambda node: kaldi_extractor(node))

    # --------------------------------- LOAD END ------------------------------------------------------
    log_step(argv.steps, 'FRONT')
    ReplaceLSTMNodePattern().find_and_replace_pattern(graph)
    class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER)
    log_step(argv.steps, 'MIDDLE')
    graph = partial_infer(graph)

    ReplacePNormNodePattern().find_and_replace_pattern(graph)
    ReplaceMemoryOffsetNodePattern().find_and_replace_pattern(graph)
    ReplaceMemoryOffsetWithMemoryNodePattern().find_and_replace_pattern(graph)
    RemoveMemoryDuplicationPattern().find_and_replace_pattern(graph)
    MergeNeighborSplicePattern().find_and_replace_pattern(graph)
    RemoveUselessCropsPattern().find_and_replace_pattern(graph)
    RemoveIdentity().find_and_replace_pattern(graph)
    graph_clean_up(graph)

    AddSelectBeforeMemoryNodePattern().find_and_replace_pattern(graph)

    ReplaceSpliceNodePattern().find_and_replace_pattern(graph)
    graph_clean_up(graph)

    # The order is intentional, firstly eliminate repeated, then remove redundant
    FuseRepeatedReshapes().find_and_replace_pattern(graph)
    EliminateRedundantReshape().find_and_replace_pattern(graph)
    graph_clean_up(graph)
    graph.check_empty_graph('partial_infer')
    if argv.counts:
        try:
            counts = read_counts_file(argv.counts)
        except Exception as e:
            raise Error('Model Optimizer is not able to read counts file {}'.format(argv.counts) +
                        refer_to_faq_msg(92)) from e

        apply_biases_to_last_layer(graph, counts)

    if argv.remove_output_softmax:
        RemoveLastSoftMaxPattern().find_and_replace_pattern(graph)
        graph_clean_up(graph)
        log.debug("After removing softmax")
        graph.print_graph_stat()

    log_step(argv.steps, 'BACK')
    LeakyReluToReluWithNegativeSlope().find_and_replace_pattern(graph)
    TransposeToPermute().find_and_replace_pattern(graph)
    DivideToEltwises().find_and_replace_pattern(graph)
    SubtractToEltwises().find_and_replace_pattern(graph)
    SimpleEltwiseToEltwiseOp().find_and_replace_pattern(graph)
    for_graph_and_each_sub_graph_recursively(graph, convert_matmul_to_fully_connected)

    # Intentionally after all transformations
    if argv.remove_memory:
        CutMemory().find_and_replace_pattern(graph)
        graph_clean_up(graph)
    ParameterToInput().find_and_replace_pattern(graph)

    KaldiRemoveMemoryOutputBackReplacementPattern().find_and_replace_pattern(graph)
    ForceStrictPrecision().find_and_replace_pattern(graph)
    remove_const_ops(graph)
    CreateConstNodesReplacement().find_and_replace_pattern(graph)

    remove_output_ops(graph)
    log_step(argv.steps, 'EMIT')
    prepare_emit_ir(graph, argv.data_type, output_dir, output_model_name, meta_info=meta_info)
    return 0
Ejemplo n.º 24
0
def tf2nx(argv: argparse.Namespace, model_file_name: str,
          output_model_name: str, output_dir: str, is_binary: bool):
    """
    Convert TF GraphDef object to NetworkX representation.
    The resulting graph is still TF-specific and needs normalization passes to be applied.
    The specific TF structure assumes each GraphDef node is converted to a single
    NetworkX node, node id is an original TF node name, and edges go directly from one op   to another op.
    """
    meta_info = get_meta_info(argv)

    if argv.tensorflow_custom_layer_libraries:
        libraries = argv.tensorflow_custom_layer_libraries.split(',')
        for library in libraries:
            log.info(
                'Loading library "{}" with custom operations'.format(library))
            tf.load_op_library(library)

    graph_def, variables_values = load_tf_graph_def(
        graph_file_name=model_file_name,
        is_binary=is_binary,
        checkpoint=argv.input_checkpoint,
        user_output_node_names_list=argv.output,
        model_dir=argv.saved_model_dir,
        meta_graph_file=argv.input_meta_graph,
        saved_model_tags=argv.saved_model_tags)

    try:
        tf.import_graph_def(graph_def, name='')
    except:
        log.warning(
            "TensorFlow post-processing of loaded model was unsuccessful. "
            "This is an optional step that Model Optimizer performs for any input model but it is not usually "
            "required for all models."
            "It likely means that the original model is ill-formed. "
            "Model Optimizer will continue converting this model.")

    log.debug("Number of nodes in graph_def: {}".format(len(graph_def.node)))  # pylint: disable=no-member

    if argv.tensorboard_logdir:
        tensorboard.dump_for_tensorboard(graph_def, argv.tensorboard_logdir)

    update_extractors_with_extensions(tf_op_extractors)

    try:
        graph = protobuf2nx(graph_def)
        graph.__setattr__('name', output_model_name)
        # 'layout' parameter change may cause an issue in EltwiseInputReshape replacer
        # and convert_nhwc_to_nchw(graph)
        graph.graph['layout'] = 'NCHW' if argv.disable_nhwc_to_nchw else 'NHWC'
        graph.graph['cmd_params'] = argv
        graph.graph['fw'] = 'tf'

        if graph.graph['cmd_params'].generate_experimental_IR_V10:
            version = 10
        else:
            version = 6
        graph.graph[
            'ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version

        graph.graph['variables_values'] = variables_values
        del variables_values

        graph = restore_edges(graph, get_tf_edges)
        graph = remove_control_dependency_inputs(graph)
    except Exception as e:
        raise Error(
            'Cannot pre-process TensorFlow graph after reading from model file "{}". ' \
            'File is corrupt or has unsupported format. Details: {}. ' +
            refer_to_faq_msg(44),
            model_file_name,
            str(e)
        ) from e

    graph.check_empty_graph(
        'protobuf2nx. It may happen due to problems with loaded model')
    extract_node_attrs(
        graph, lambda node: tf_op_extractor(
            node, check_for_duplicates(tf_op_extractors)))

    # --------------------------------- LOAD END ------------------------------------------------------

    class_registration.apply_replacements(graph, [
        class_registration.ClassType.FRONT_REPLACER,
        class_registration.ClassType.MIDDLE_REPLACER,
        class_registration.ClassType.BACK_REPLACER
    ])

    prepare_emit_ir(graph=graph,
                    data_type=argv.data_type,
                    output_dir=output_dir,
                    output_model_name=output_model_name,
                    meta_info=meta_info)
    return 0
Ejemplo n.º 25
0
def driver(argv: argparse.Namespace,
           proto_file_name: str,
           model_file_name: str,
           output_model_name: str,
           output_dir: str,
           caffe_proto_path: str,
           custom_layers_mapping_path: str = None):
    meta_info = get_meta_info(argv)

    caffe_pb2 = loader.import_caffe_pb2(caffe_proto_path)

    proto, model = loader.load_caffe_proto_model(caffe_pb2, proto_file_name,
                                                 model_file_name)

    update_extractors_with_extensions(
        caffe_type_extractors, argv.disable_omitting_optional if hasattr(
            argv, 'disable_omitting_optional') else False,
        argv.disable_flattening_optional_params if hasattr(
            argv, 'disable_flattening_optional_params') else False)

    try:
        graph, original_shapes = loader.caffe_pb_to_nx(proto, model)
    except ValueError as e:
        raise Error(
            'Invalid prototxt file: value error {}. ' + refer_to_faq_msg(11),
            str(e)) from e
    graph.check_empty_graph('load_caffe_proto_model')

    graph.__setattr__('proto_path', proto_file_name)
    graph.__setattr__('caffemodel_path', model_file_name)
    graph.__setattr__('name',
                      getattr(proto, 'name', None) or output_model_name)
    graph.graph['layout'] = 'NCHW'
    graph.graph['cmd_params'] = argv
    graph.graph['fw'] = 'caffe'
    if graph.graph['cmd_params'].generate_experimental_IR_V10:
        version = 10
    else:
        version = 6
    graph.graph[
        'ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version

    graph.graph['original_shapes'] = original_shapes
    graph.graph['caffe_pb2'] = caffe_pb2

    custom_layers_map = custom_layers_mapping.load_layers_xml(
        custom_layers_mapping_path)
    custom_layers_mapping.update_extractors(
        caffe_type_extractors,
        custom_layers_map, argv.disable_omitting_optional if hasattr(
            argv, 'disable_omitting_optional') else False,
        argv.enable_flattening_nested_params if hasattr(
            argv, 'enable_flattening_nested_params') else False)
    extract_node_attrs(
        graph, lambda node: caffe_extractor(
            node, check_for_duplicates(caffe_type_extractors)))

    # --------------------------------- LOAD END ------------------------------------------------------

    class_registration.apply_replacements(graph, [
        class_registration.ClassType.FRONT_REPLACER,
        class_registration.ClassType.MIDDLE_REPLACER,
        class_registration.ClassType.BACK_REPLACER
    ])

    prepare_emit_ir(graph=graph,
                    data_type=argv.data_type,
                    output_dir=output_dir,
                    output_model_name=output_model_name,
                    mean_data=graph.graph['mf'],
                    input_names=graph.graph['input_names'],
                    meta_info=meta_info)
    return 0
Ejemplo n.º 26
0
    def extract(cls, loop_node):
        Loop.update_node_stat(loop_node, {})

        body_graph_proto = onnx_attr(loop_node, 'body', 'g', None)
        main_graph = loop_node.graph

        # create a Graph object for the body and take graph attributes from the main graph
        body_graph = Graph()
        main_graph_attrs_copy = copy.deepcopy(main_graph.graph)
        del main_graph_attrs_copy['tensor_mapping']
        body_graph.graph.update(main_graph_attrs_copy)
        loop_node['body'] = body_graph

        # maps a tensor name to a node produced it and the node port: str -> (node_id, node_port)
        data_nodes_map = {}
        body_graph.graph[
            'tensor_mapping'] = data_nodes_map  # save mapping for possible Loop inside the Loop

        body_parameters = add_initializers_and_inputs_to_graph(
            body_graph, body_graph_proto, data_nodes_map)

        external_edges = [
        ]  # (src_node, src_out_port), dest_body_parameter_node
        additional_params = {
        }  # (src_node, src_out_port) -> parameter_node (for manually added Parameters)
        # Go through all nodes in the original model order because data nodes are defined on-the-fly and order matters
        for pb_node in body_graph_proto.node:
            # create an NX node
            id = body_graph.unique_id(node_id(pb_node))
            body_graph.add_node(id, pb=pb_node, kind='op')

            # add incoming edges based on data_nodes_map
            for dst_port, inp in enumerate(pb_node.input):
                # should add edge inp --> id
                if inp not in data_nodes_map:
                    if inp == '':
                        # input is omitted; most likely it corresponds to an optional input for an operator
                        continue
                    elif inp in main_graph.graph['tensor_mapping']:
                        log.debug(
                            'The edge between outer and inner graphs detected: {} -> {}'
                            .format(inp, id))
                        if main_graph.graph['tensor_mapping'][
                                inp] not in additional_params:
                            # create new Parameter body node and connect the body node with the outer graph using it
                            param_id = str(inp)
                            body_graph.add_node(param_id,
                                                kind='op',
                                                op='Parameter',
                                                name=param_id,
                                                pb=None,
                                                shape=None)
                            parameter_node = Node(body_graph, param_id)
                            # need to manually update necessary attrs for the node because extractor will not be called
                            # for it because the node does not have .pb attribute
                            Parameter.update_node_stat(parameter_node, {})
                            external_edges.append(
                                (main_graph.graph['tensor_mapping'][inp],
                                 parameter_node))
                            src_id, src_port = param_id, 0
                            additional_params[main_graph.graph[
                                'tensor_mapping'][inp]] = parameter_node
                        else:
                            src_id, src_port = additional_params[
                                main_graph.graph['tensor_mapping'][inp]].id, 0
                    else:
                        raise Error(
                            'Reference to "{}" is not satisfied. A node refer not existing data tensor. ONNX '
                            'model is not consistent. Protobuf fragment: {}',
                            inp, pb_node)
                else:
                    src_id, src_port = data_nodes_map[inp]

                assert (body_graph.has_node(src_id))
                edge_attrs = {
                    'out': src_port,
                    'in': dst_port,
                    'name': inp,
                    'fw_tensor_debug_info': [(inp, inp)],
                    'in_attrs': ['in', 'name'],
                    'out_attrs': ['out', 'name'],
                    'data_attrs': ['fw_tensor_debug_info']
                }
                body_graph.add_edge(src_id, id, **edge_attrs)

            # add outgoing edges to data_nodes_map
            for src_port, out in enumerate(pb_node.output):
                if out in data_nodes_map:
                    log.debug("Detected reuse of blob {}.".format(out))
                data_nodes_map[out] = (id, src_port)

        body_results = []
        for output in body_graph_proto.output:
            tensor_name = str(output.name)
            node_name, output_port = data_nodes_map[tensor_name]
            assert body_graph.has_node(
                node_name
            ), 'The body graph does not contain output with name "{}"'.format(
                node_name)
            body_results.append(
                Node(body_graph,
                     add_opoutput(body_graph, node_name, output_port, False)))

        # add 'internal_layer_id' attribute which is a must have attribute for the loop body node
        for idx, body_node in enumerate(body_graph.get_op_nodes()):
            body_node['internal_layer_id'] = idx

        loop_carried_dependencies_count = len(body_graph_proto.input) - 2
        scan_outputs_count = len(
            body_graph_proto.output) - 1 - loop_carried_dependencies_count

        # Loop inputs:
        #   0 - trip count
        #   1 - execution condition
        #   2 .. - loop carried dependencies

        # Loop outputs:
        #   0 .. loop_carried_dependencies_count - 1 - loop carried dependencies
        #   loop_carried_dependencies_count .. - scan outputs

        # Body inputs:
        #   0 - iteration number
        #   1 - execution condition
        #   2 .. - loop carried dependencies

        # Body outputs:
        #   0 - execution condition
        #   1 .. loop_carried_dependencies_count - loop carried dependencies
        #   loop_carried_dependencies_count + 1 .. - scan outputs

        body_graph.stage = 'front'
        # some of the inputs/outputs may not be connected but the normalization transformation will take care of it
        # connection Loop body nodes with external input edges
        next_loop_input_port_idx = sorted(loop_node.in_edges().keys())[-1] + 1
        for (src_node, src_port), body_node in external_edges:
            main_graph.add_edge(
                src_node, loop_node.id, **{
                    'out': src_port,
                    'in': next_loop_input_port_idx,
                    'name': src_node,
                    'fw_tensor_debug_info': [(src_node, src_node)],
                    'in_attrs': ['in', 'name'],
                    'out_attrs': ['out', 'name'],
                    'data_attrs': ['fw_tensor_debug_info']
                })
            connect_body_input(loop_node, next_loop_input_port_idx, body_node)
            next_loop_input_port_idx += 1

        # mark current iteration input Parameter node
        Loop.mark_current_iteration_parameter_node(loop_node,
                                                   body_parameters[0])

        # connect initial value for "execution condition" input of the loop
        connect_body_input(loop_node, 1, body_parameters[1])
        # add back edge with "execution condition"
        Loop.add_back_edge(loop_node, body_parameters[1], body_results[0])
        # mark "execution condition" Result node
        Loop.mark_execution_condition_result_node(loop_node, body_results[0])

        # connect initial value for "loop carried" dependencies variables
        for idx in range(loop_carried_dependencies_count):
            connect_body_input(loop_node, idx + 2, body_parameters[idx + 2])
        # add back edge for "loop carried" dependencies variables
        for idx in range(loop_carried_dependencies_count):
            Loop.add_back_edge(loop_node, body_parameters[idx + 2],
                               body_results[idx + 1])
        # connect final value for "loop carried" dependencies variables
        for idx in range(loop_carried_dependencies_count):
            connect_body_output(loop_node, idx, body_results[idx + 1])

        # connect "scan outputs" and mark axis for concatenation
        for idx in range(loop_carried_dependencies_count,
                         loop_carried_dependencies_count + scan_outputs_count):
            connect_body_output(loop_node, idx, body_results[idx + 1], axis=0)

        # run function to parse body nodes attributes similar to the main graph
        extract_node_attrs(
            body_graph, lambda node: onnx_op_extractor(
                node, check_for_duplicates(onnx_op_extractors)))
        return cls.enabled
Ejemplo n.º 27
0
    def extract(cls, loop_node):
        Loop.update_node_stat(loop_node, {})

        # check that required body and condition functions exist in the graph library
        main_graph = loop_node.graph
        body_graph_proto = get_graph_proto(main_graph, 'body', loop_node)
        cond_graph_proto = get_graph_proto(main_graph, 'cond', loop_node)

        body_graph = create_internal_graph(main_graph)
        loop_node['body'] = body_graph
        # create Parameter nodes for the body graph
        body_parameters, body_parameter_names = convert_graph_inputs_to_parameters(
            body_graph, body_graph_proto)

        # update the loop body graph with the body function graph
        body_results = []
        update_body_graph(body_graph, body_graph_proto, body_parameter_names,
                          body_results)

        # update the loop body graph with the condition function graph
        update_body_graph(body_graph, cond_graph_proto, body_parameter_names,
                          body_results)

        # add 'internal_layer_id' attribute which is a must have attribute for the loop body node
        for idx, body_node in enumerate(body_graph.get_op_nodes()):
            body_node['internal_layer_id'] = idx

        body_graph.stage = 'front'

        # Currently,
        # Loop Inputs Order:
        #   0    - current iteration
        #   1    - trip count
        #   2..  - "loop carried" dependencies variables
        #
        # Body Inputs Order:
        #   0    - current iteration
        #   1    - trip count
        #   2..  - "loop carried" dependencies variables
        #
        # Body Outputs Order:
        #   0      - current iteration
        #   1      - trip count
        #   2..    - "loop carried" dependencies variables
        #
        # Loop Outputs Order:
        #   0    - current iteration
        #   1    - trip count
        #   2..  - "loop carried" dependencies variables
        #
        # so inputs must be reordered and execution condition must be created in the front transformation
        # to be aligned with the specification

        # connect external input ports with body parameter nodes except current iteration
        # since it must be disconnected from external port
        for idx in range(1, len(body_parameters)):
            Loop.connect_body_input(loop_node, idx, body_parameters[idx])

        # mark current iteration input Parameter node and execution condition Result node
        Loop.mark_current_iteration_parameter_node(loop_node,
                                                   body_parameters[0])
        Loop.mark_execution_condition_result_node(loop_node, body_results[-1])

        # connect back edges in the body except current iteration
        for idx in range(1, len(body_parameters)):
            Loop.add_back_edge(loop_node, body_parameters[idx],
                               body_results[idx])

        # connect body outputs with Loop operation output ports except the execution condition result
        for idx in range(len(body_results) - 1):
            Loop.connect_body_output(loop_node, idx, body_results[idx])

        # run function to parse body nodes attributes similar to the main graph
        extract_node_attrs(
            body_graph, lambda node: tf_op_extractor(
                node, check_for_duplicates(tf_op_extractors)))
        return cls.enabled
Ejemplo n.º 28
0
def driver(argv,
           input_model,
           output_model_name,
           outputs,
           output_dir,
           scale,
           placeholder_shapes=None,
           mean_scale_values=()):
    meta_info = get_meta_info(argv)

    EltwiseChecker.enabled = False

    try:
        graph, input_shapes = load_kaldi_model(input_model)
    except Exception as e:
        raise Error('Model Optimizer is not able to read Kaldi model {}. '.
                    format(input_model) + refer_to_faq_msg(91)) from e
    check_empty_graph(graph, 'load_kaldi_nnet_model')
    graph.graph['cmd_params'] = argv
    graph.graph['fw'] = 'kaldi'
    graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 4

    update_extractors_with_extensions(kaldi_type_extractors)

    extract_node_attrs(graph, lambda node: kaldi_extractor(node))

    class_registration.apply_replacements(
        graph, class_registration.ClassType.FRONT_REPLACER)

    output_op_nodes = add_output_ops(
        graph, outputs)  # TODO pass real outputs instead of None
    log.debug("After adding specific nodes for outputs")
    print_graph_stat(graph)

    check_empty_graph(graph, 'add_output_ops')
    create_tensor_nodes(graph)

    graph_clean_up(graph)
    log.debug("After removing specific nodes for output")
    print_graph_stat(graph)

    override_placeholder_shapes(graph, placeholder_shapes)
    override_batch(graph, argv.batch)

    graph_clean_up(graph)
    log.debug("After setting input shapes")
    print_graph_stat(graph)
    graph_clean_up(graph)
    remove_output_ops(graph)
    log.debug("After removing specific nodes for output")
    print_graph_stat(graph)

    # You need to pass required network outputs here
    # but we don't have a way yet, so just passing all discovered sinks
    mark_outputs(graph)
    graph_clean_up(graph)
    log.debug("After graph_cleanup")
    print_graph_stat(graph)
    graph = partial_infer(graph)

    # The order is intentional, firstly eliminate repeated, then remove redundant
    FuseRepeatedReshapes().find_and_replace_pattern(graph)
    EliminateRedundantReshape().find_and_replace_pattern(graph)
    check_empty_graph(graph, 'partial_infer')
    if argv.counts:
        try:
            counts = read_counts_file(argv.counts)
        except Exception as e:
            raise Error('Model Optimizer is not able to read counts file {}'.
                        format(argv.counts) + refer_to_faq_msg(92)) from e

        apply_biases_to_last_layer(graph, counts)

    if argv.remove_output_softmax:
        RemoveLastSoftMaxPattern().find_and_replace_pattern(graph)
        graph_clean_up(graph)
        log.debug("After removing softmax")
        print_graph_stat(graph)

    # Intentionally after all transformations
    KaldiRemoveMemoryOutputBackReplacementPattern().find_and_replace_pattern(
        graph)
    prepare_emit_ir(graph,
                    argv.data_type,
                    output_dir,
                    output_model_name,
                    meta_info=meta_info)
    return 0
Ejemplo n.º 29
0
    def load(self, graph: Graph):
        argv = graph.graph['cmd_params']
        if argv.tensorflow_custom_layer_libraries:
            libraries = argv.tensorflow_custom_layer_libraries.split(',')
            for library in libraries:
                log.info('Loading library "{}" with custom operations'.format(
                    library))
                tf_v1.load_op_library(library)

        graph_def, variables_values, framework = load_tf_graph_def(
            graph_file_name=argv.input_model,
            is_binary=not argv.input_model_is_text,
            checkpoint=argv.input_checkpoint,
            user_output_node_names_list=argv.output,
            model_dir=argv.saved_model_dir,
            meta_graph_file=argv.input_meta_graph,
            saved_model_tags=argv.saved_model_tags)
        send_framework_info(framework)

        try:
            tf_v1.import_graph_def(graph_def, name='')
        except:
            log.warning(
                "TensorFlow post-processing of loaded model was unsuccessful. "
                "This is an optional step that Model Optimizer performs for any input model but it is not usually "
                "required for all models. "
                "It likely means that the original model is ill-formed. "
                "Model Optimizer will continue converting this model.")

        log.debug("Number of nodes in graph_def: {}".format(len(
            graph_def.node)))  # pylint: disable=no-member

        if argv.tensorboard_logdir:
            tensorboard_util.dump_for_tensorboard(graph_def,
                                                  argv.tensorboard_logdir)

        update_extractors_with_extensions(tf_op_extractors)

        try:
            protobuf2nx(graph, graph_def)
        except Exception as e:
            raise Error(
                'Cannot pre-process TensorFlow graph after reading from model file "{}". ' \
                'File is corrupt or has unsupported format. Details: {}. ' +
                refer_to_faq_msg(44),
                argv.model_name,
                str(e)
            ) from e

        graph.__setattr__('name', argv.model_name)
        # 'layout' parameter change may cause an issue in EltwiseInputReshape replacer
        # and convert_nhwc_to_nchw(graph)
        graph.graph['layout'] = 'NCHW' if argv.disable_nhwc_to_nchw else 'NHWC'
        graph.graph['fw'] = 'tf'

        graph.graph['variables_values'] = variables_values
        del variables_values

        used_tensors = restore_edges(graph, get_tf_edges)

        # Tensor names information corresponding to a node is stored on outgoing edges.
        # As output nodes do not have outgoing edges, fake outputs are required. In the following code
        # for each output Identity node is added, and tensor name for the output is kept
        # on (output, fake output) edge. After Result nodes adding transformation fake outputs
        # are deleted from graph.
        add_outputs_identity(
            graph, graph.nodes - used_tensors,
            lambda g, output, fake_node_name: g.add_edges_from(
                [create_tf_edge(output, fake_node_name, 0)]))

        remove_control_dependency_inputs(graph)

        graph.check_empty_graph(
            'protobuf2nx. It may happen due to problems with loaded model')
        extract_node_attrs(
            graph, lambda node: tf_op_extractor(
                node, check_for_duplicates(tf_op_extractors)))

        # try to detect layout from the nodes of the graph. If there are no convolution nodes in N(D)HWC layout then we
        # consider that the graph is in NCHW layout and no layout conversion should be performed
        if not argv.disable_nhwc_to_nchw and not argv.silent and not graph_or_sub_graph_has_nhwc_ops(
                graph):
            log.error(
                'The TensorFlow model does not contain Convolution operations with N(D)HWC layout. Most likely '
                'the model should be converted using additional "--disable_nhwc_to_nchw" command line parameter '
                'which disables model layout conversion inside the Model Optimizer.',
                extra={'is_warning': True})

        send_op_names_info(framework, graph)
        send_shapes_info(framework, graph)
Ejemplo n.º 30
0
def driver(argv: argparse.Namespace,
           proto_file_name: str,
           model_file_name: str,
           output_model_name: str,
           outputs: list,
           output_dir: str,
           scale: float,
           user_shapes: [None, list, np.array] = None,
           mean_scale_values: [dict, list] = (),
           mean_file: str = "",
           mean_file_offsets: tuple = None,
           custom_layers_mapping_path: str = None):
    meta_info = get_meta_info(argv)

    FusePermutesSequence.enabled = False

    proto, model = loader.load_caffe_proto_model(proto_file_name,
                                                 model_file_name)

    update_extractors_with_extensions(
        caffe_type_extractors, argv.disable_omitting_optional if hasattr(
            argv, 'disable_omitting_optional') else False,
        argv.disable_flattening_optional_params if hasattr(
            argv, 'disable_flattening_optional_params') else False)

    try:
        graph, original_shapes = loader.caffe_pb_to_nx(proto, model)
    except ValueError as e:
        raise Error(
            'Invalid prototxt file: value error {}. ' + refer_to_faq_msg(11),
            str(e)) from e

    log.debug("After caffe_pb_to_nx")
    print_graph_stat(graph)
    check_empty_graph(graph, 'load_caffe_proto_model')

    graph.__setattr__('proto_path', proto_file_name)
    graph.__setattr__('caffemodel_path', model_file_name)
    graph.__setattr__('name',
                      getattr(proto, 'name', None) or output_model_name)
    graph.graph['layout'] = 'NCHW'
    graph.graph['cmd_params'] = argv
    graph.graph['fw'] = 'caffe'
    graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 4

    extract_node_attrs(graph, lambda node: (True, common_caffe_fields(node)))

    log.debug("After adding specific nodes for outputs")
    print_graph_stat(graph)

    custom_layers_map = custom_layers_mapping.load_layers_xml(
        custom_layers_mapping_path)
    custom_layers_mapping.update_extractors(
        caffe_type_extractors,
        custom_layers_map, argv.disable_omitting_optional if hasattr(
            argv, 'disable_omitting_optional') else False,
        argv.enable_flattening_nested_params if hasattr(
            argv, 'enable_flattening_nested_params') else False)

    extract_node_attrs(
        graph, lambda node: caffe_extractor(
            node, check_for_duplicates(caffe_type_extractors)))

    log.debug("After extract_node_attr")
    print_graph_stat(graph)

    packed_user_shapes, packed_outputs, freeze_placeholder = user_data_repack(
        graph, user_shapes, outputs, argv.freeze_placeholder_with_value)
    if argv.freeze_placeholder_with_value is not None:
        FreezePlaceholderValue.enabled = True
        FreezePlaceholderValue.replacement_dict = freeze_placeholder
        class_registration.update_registration([FrontReplacementSubgraph])
    output_op_nodes = add_output_ops(graph, packed_outputs)
    input_op_nodes = add_input_ops(graph, packed_user_shapes, True)
    override_placeholder_shapes(graph, packed_user_shapes)
    override_batch(graph, argv.batch)
    graph_clean_up(graph)
    check_empty_graph(graph, 'add_output_ops and add_input_ops')
    class_registration.apply_replacements(
        graph, class_registration.ClassType.FRONT_REPLACER)

    graph = create_tensor_nodes(graph)

    log.debug("After create_tensor_nodes")
    print_graph_stat(graph)

    remove_op_nodes(graph, {'op': 'Identity'})
    remove_output_ops(graph)
    graph_clean_up(graph)

    log.debug("After removing specific nodes for output")
    print_graph_stat(graph)

    # you need to pass required network outputs here
    # but we don't have a way yet, so just passing all discovered sinks
    mark_outputs(graph)
    graph_clean_up(graph)
    log.debug("After graph_cleanup")
    print_graph_stat(graph)

    graph = partial_infer(graph)
    log.debug("After partial_infer")
    print_graph_stat(graph)
    check_empty_graph(graph, 'partial_infer')
    duplicate_shared_weights(graph)

    input_op_nodes = add_input_ops(graph, packed_user_shapes, False)
    graph_clean_up(graph)
    check_empty_graph(graph, 'add_input_ops')
    scale_input(graph, scale)

    add_mean_scale_values(graph, mean_scale_values)

    log.debug("Split multi input convolutions")
    convert_multi_input_conv(graph)

    graph_clean_up(graph)
    log.debug("After graph_cleanup")
    print_graph_stat(graph)

    remove_op_nodes(graph, {'op': 'Dropout'})
    remove_op_nodes(graph, {'phase': 0})
    graph_clean_up(graph)

    class_registration.apply_replacements(
        graph, class_registration.ClassType.MIDDLE_REPLACER)

    mean_to_avgpool(graph)

    # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes
    mark_unfused_nodes(graph, argv.finegrain_fusing)

    #need this pass even without fusing to convert scale with 2 inputs
    convert_scale_shift_to_mul_add(graph)
    graph_clean_up(graph)

    if not argv.disable_fusing:
        convert_bn_to_mul_add(graph)
        graph_clean_up(graph)

        fuse_mul_add_sequence(graph)
        graph_clean_up(graph)

        fuse_linear_ops(graph)
        graph_clean_up(graph)

    if not argv.disable_resnet_optimization:
        stride_optimization(graph)

    convert_muladd_to_scaleshift_or_power(graph)
    convert_matmul_to_fully_connected(graph)
    batch_norm_fuse(graph)
    convert_mul_add_to_power(graph)
    convert_add_to_scaleshift(graph)  # scale = 1
    convert_mul_to_scaleshift(graph)  # biases = 0

    graph_clean_up(graph)
    log.debug("After graph_cleanup")
    print_graph_stat(graph)

    if argv.reverse_input_channels:
        reverse_input_channels(graph)

    if argv.move_to_preprocess:
        move_scaleshift_to_preprocess(graph)
        graph_clean_up(graph)

    fuse_sequence_of_reshapes(graph)

    input_names = find_inputs(graph)
    mf = []
    try:
        if mean_file and len(original_shapes) == 1:
            mf = loader.parse_mean(mean_file, original_shapes[input_names[0]],
                                   mean_file_offsets)
        elif mean_file:
            raise Error(
                'Mean file for topologies with multiple inputs is not supported. '
                + refer_to_faq_msg(9))
    except ValueError as e:
        raise Error(
            'Cannot load or process mean file: value error {}. ' +
            refer_to_faq_msg(10), str(e)) from e

    class_registration.apply_replacements(
        graph, class_registration.ClassType.BACK_REPLACER)

    prepare_emit_ir(graph=graph,
                    data_type=argv.data_type,
                    output_dir=output_dir,
                    output_model_name=output_model_name,
                    mean_data=mf,
                    input_names=input_names,
                    meta_info=meta_info)
    return 0