def load(self, graph: Graph): argv = graph.graph['cmd_params'] try: model_nodes, model_params, model_name, iteration_number = load_symbol_def( argv.input_model, argv.input_symbol, argv.input, argv.nd_prefix_name, argv.pretrained_model_name, argv.legacy_mxnet_model) except (ValueError, mxnet.base.MXNetError) as e: raise FrameworkError( 'The following error happened while loading mxnet model {}: {}. ' + refer_to_faq_msg(53), argv.input_model, str(e)) from e if argv.nd_prefix_name and argv.pretrained_model_name and argv.save_params_from_nd: save_params_file(model_name, model_params._arg_params, model_params._aux_params, iteration_number) update_extractors_with_extensions(mxnet_op_extractors) symbol2nx(graph, model_nodes, model_params, argv.input) graph.check_empty_graph( 'symbol2nx. It may happen due to problems with loaded model') graph.graph['layout'] = 'NCHW' graph.graph['fw'] = 'mxnet' graph.graph[ 'feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3 extract_node_attrs(graph, mxnet_op_extractor)
def load(self, graph: Graph): argv = graph.graph['cmd_params'] if argv.tensorflow_custom_layer_libraries: libraries = argv.tensorflow_custom_layer_libraries.split(',') for library in libraries: log.info('Loading library "{}" with custom operations'.format(library)) tf_v1.load_op_library(library) graph_def, variables_values = load_tf_graph_def(graph_file_name=argv.input_model, is_binary=not argv.input_model_is_text, checkpoint=argv.input_checkpoint, user_output_node_names_list=argv.output, model_dir=argv.saved_model_dir, meta_graph_file=argv.input_meta_graph, saved_model_tags=argv.saved_model_tags) try: tf_v1.import_graph_def(graph_def, name='') except: log.warning("TensorFlow post-processing of loaded model was unsuccessful. " "This is an optional step that Model Optimizer performs for any input model but it is not usually " "required for all models." "It likely means that the original model is ill-formed. " "Model Optimizer will continue converting this model.") log.debug("Number of nodes in graph_def: {}".format(len(graph_def.node))) # pylint: disable=no-member if argv.tensorboard_logdir: tensorboard_util.dump_for_tensorboard(graph_def, argv.tensorboard_logdir) update_extractors_with_extensions(tf_op_extractors) try: protobuf2nx(graph, graph_def) except Exception as e: raise Error( 'Cannot pre-process TensorFlow graph after reading from model file "{}". ' \ 'File is corrupt or has unsupported format. Details: {}. ' + refer_to_faq_msg(44), argv.model_name, str(e) ) from e graph.__setattr__('name', argv.model_name) # 'layout' parameter change may cause an issue in EltwiseInputReshape replacer # and convert_nhwc_to_nchw(graph) graph.graph['layout'] = 'NCHW' if argv.disable_nhwc_to_nchw else 'NHWC' graph.graph['fw'] = 'tf' graph.graph['variables_values'] = variables_values del variables_values restore_edges(graph, get_tf_edges) remove_control_dependency_inputs(graph) graph.check_empty_graph('protobuf2nx. It may happen due to problems with loaded model') extract_node_attrs(graph, lambda node: tf_op_extractor(node, check_for_duplicates(tf_op_extractors)))
def load(self, graph: Graph): argv = graph.graph['cmd_params'] graph.graph['fw'] = 'pytorch' graph.graph['layout'] = 'NCHW' update_extractors_with_extensions(pytorch_op_extractors) # Create a dummy input inp = OpenVINOTensor(torch.randn(list(argv.placeholder_shapes))) inp.graph = graph inp.node_name = 'input' model = argv.input_model for module in model.modules(): if len([m for m in module.modules()]) != 1: continue module.register_forward_hook(forward_hook) register_model_hook(model) graph.add_node('input', kind='op', op='Parameter', name='input', shape=list(inp.shape)) with torch.no_grad(): outs = model(inp) # Add output nodes if not hasattr(outs, '__contains__'): # if a single tensor outs = [outs] if isinstance(outs, dict): outs = outs.values() for out in outs: name = out.node_name graph.add_node('output', kind='op', op='Result') edge_attrs = { 'out': 0, 'in': 0, 'name': name, 'fw_tensor_debug_info': [(name, name)], 'in_attrs': ['in', 'name'], 'out_attrs': ['out', 'name'], 'data_attrs': ['fw_tensor_debug_info'] } graph.add_edge(name, 'output', **edge_attrs) extract_node_attrs( graph, lambda node: pytorch_op_extractor( node, check_for_duplicates(pytorch_op_extractors)))
def driver(argv: argparse.Namespace): caffe_pb2 = loader.import_caffe_pb2(argv.caffe_parser_path) proto, model = loader.load_caffe_proto_model(caffe_pb2, argv.input_proto, argv.input_model) update_extractors_with_extensions( caffe_type_extractors, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.disable_flattening_optional_params if hasattr( argv, 'disable_flattening_optional_params') else False) try: graph, original_shapes = loader.caffe_pb_to_nx(proto, model) except ValueError as e: raise Error( 'Invalid prototxt file: value error {}. ' + refer_to_faq_msg(11), str(e)) from e graph.check_empty_graph('load_caffe_proto_model') graph.__setattr__('proto_path', argv.input_proto) graph.__setattr__('caffemodel_path', argv.input_model) graph.__setattr__('name', getattr(proto, 'name', None) or argv.model_name) graph.graph['layout'] = 'NCHW' graph.graph['cmd_params'] = argv graph.graph['fw'] = 'caffe' graph.graph['original_shapes'] = original_shapes graph.graph['caffe_pb2'] = caffe_pb2 graph.graph['ir_version'] = get_ir_version(argv) graph.graph['original_shapes'] = original_shapes graph.graph['caffe_pb2'] = caffe_pb2 custom_layers_map = custom_layers_mapping.load_layers_xml(argv.k) custom_layers_mapping.update_extractors( caffe_type_extractors, custom_layers_map, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.enable_flattening_nested_params if hasattr( argv, 'enable_flattening_nested_params') else False) extract_node_attrs( graph, lambda node: caffe_extractor( node, check_for_duplicates(caffe_type_extractors))) # --------------------------------- LOAD END ------------------------------------------------------ class_registration.apply_replacements(graph, [ class_registration.ClassType.FRONT_REPLACER, class_registration.ClassType.MIDDLE_REPLACER, class_registration.ClassType.BACK_REPLACER ]) return graph
def driver(argv: argparse.Namespace): model_proto = load_onnx_model(argv.input_model) model_graph = model_proto.graph # pylint: disable=no-member # print(model_graph) # assert len(model_graph) == 1, "An ONNX model contains more than 1 graph: unsupported" log.debug("Number of nodes in graph_def: {}".format(len(model_graph.node))) log.debug( "Number of all input ports (not true inputs) in graph_def: {}".format( len(model_graph.input))) log.debug("Number of initializers in graph_def: {}".format( len(model_graph.initializer))) log.debug("Number of real inputs in graph_def: {}".format( len(model_graph.input) - len(model_graph.initializer))) update_extractors_with_extensions(onnx_op_extractors) try: graph = protobuf2nx(model_proto) log.debug("Number of nodes in NX graph: {}".format( graph.number_of_nodes())) graph.__setattr__( 'name', argv.model_name if argv.model_name else model_proto.graph.name) # pylint: disable=no-member graph.graph['layout'] = 'NCHW' graph.graph['cmd_params'] = argv graph.graph['fw'] = 'onnx' graph.graph[ 'feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3 graph.graph['ir_version'] = get_ir_version(argv) except Exception as e: raise Error( 'Cannot pre-process ONNX graph after reading from model file "{}". ' \ 'File is corrupt or has unsupported format. Details: {}. ' + refer_to_faq_msg(44), argv.input_model, str(e) ) from e graph.check_empty_graph( 'protobuf2nx. It may happen due to problems with loaded model') extract_node_attrs( graph, lambda node: onnx_op_extractor( node, check_for_duplicates(onnx_op_extractors))) # --------------------------------- LOAD END ------------------------------------------------------ class_registration.apply_replacements(graph, [ class_registration.ClassType.FRONT_REPLACER, class_registration.ClassType.MIDDLE_REPLACER, class_registration.ClassType.BACK_REPLACER ]) return graph
def load(self, graph: Graph): argv = graph.graph['cmd_params'] try: load_kaldi_model(graph, argv.input_model) except Exception as e: raise Error('Model Optimizer is not able to parse Kaldi model {}. '.format(argv.input_model) + refer_to_faq_msg(91)) from e graph.check_empty_graph('load_kaldi_nnet_model') graph.graph['layout'] = 'NCHW' graph.graph['fw'] = 'kaldi' update_extractors_with_extensions(kaldi_type_extractors) extract_node_attrs(graph, lambda node: kaldi_extractor(node))
def driver(argv, input_model, output_model_name, output_dir): meta_info = get_meta_info(argv) EltwiseChecker.enabled = False try: graph, input_shapes = load_kaldi_model(input_model) except Exception as e: raise Error('Model Optimizer is not able to read Kaldi model {}. '.format(input_model) + refer_to_faq_msg(91)) from e graph.check_empty_graph('load_kaldi_nnet_model') graph.graph['cmd_params'] = argv graph.graph['fw'] = 'kaldi' graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 5 update_extractors_with_extensions(kaldi_type_extractors) extract_node_attrs(graph, lambda node: kaldi_extractor(node)) # --------------------------------- LOAD END ------------------------------------------------------ class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER) graph = partial_infer(graph) # The order is intentional, firstly eliminate repeated, then remove redundant FuseRepeatedReshapes().find_and_replace_pattern(graph) EliminateRedundantReshape().find_and_replace_pattern(graph) graph.check_empty_graph('partial_infer') if argv.counts: try: counts = read_counts_file(argv.counts) except Exception as e: raise Error('Model Optimizer is not able to read counts file {}'.format(argv.counts) + refer_to_faq_msg(92)) from e apply_biases_to_last_layer(graph, counts) if argv.remove_output_softmax: RemoveLastSoftMaxPattern().find_and_replace_pattern(graph) graph_clean_up(graph) log.debug("After removing softmax") graph.print_graph_stat() # Intentionally after all transformations KaldiRemoveMemoryOutputBackReplacementPattern().find_and_replace_pattern(graph) remove_const_ops(graph) CreateConstNodesReplacement().find_and_replace_pattern(graph) remove_output_ops(graph) prepare_emit_ir(graph, argv.data_type, output_dir, output_model_name, meta_info=meta_info) return 0
def driver(argv: argparse.Namespace, input_model: str, output_model_name: str, output_dir: str): meta_info = get_meta_info(argv) try: model_nodes, model_params, model_name, iteration_number = load_symbol_def( input_model, argv.input_symbol, argv.input, argv.nd_prefix_name, argv.pretrained_model_name, argv.legacy_mxnet_model) except (ValueError, mxnet.base.MXNetError) as e: raise FrameworkError( 'The following error happened while loading mxnet model {}: {}. ' + refer_to_faq_msg(53), input_model, str(e)) from e if argv.nd_prefix_name and argv.pretrained_model_name and argv.save_params_from_nd: save_params_file(model_name, model_params._arg_params, model_params._aux_params, iteration_number) update_extractors_with_extensions(mxnet_op_extractors) graph = symbol2nx(model_nodes, model_params, argv.input) graph.check_empty_graph( 'symbol2nx. It may happen due to problems with loaded model') graph.__setattr__('name', output_model_name) graph.graph['layout'] = 'NCHW' graph.graph['cmd_params'] = argv graph.graph['fw'] = 'mxnet' graph.graph['feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3 if graph.graph['cmd_params'].generate_experimental_IR_V10: version = 10 else: version = 6 graph.graph[ 'ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version extract_node_attrs(graph, mxnet_op_extractor) # --------------------------------- LOAD END ------------------------------------------------------ class_registration.apply_replacements(graph, [ class_registration.ClassType.FRONT_REPLACER, class_registration.ClassType.MIDDLE_REPLACER, class_registration.ClassType.BACK_REPLACER ]) prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name, meta_info=meta_info) return 0
def load(self, graph: Graph): argv = graph.graph['cmd_params'] graph.graph['fw'] = 'pytorch' graph.graph['layout'] = 'NCHW' update_extractors_with_extensions(pytorch_op_extractors) # Create a dummy input if argv.input: placeholder_shapes = argv.placeholder_shapes placeholder_data_types = argv.placeholder_data_types else: placeholder_shapes = {'input': argv.placeholder_shapes} placeholder_data_types = {'input': np.float32} inputs = {} for name, shape in placeholder_shapes.items(): dtype = placeholder_data_types[name] inp = np.random.randint(0, 255, shape).astype(dtype) inp = OpenVINOTensor(torch.tensor(inp)) inputs[name] = inp inp.graph = graph inp.node_name = name graph.add_node(name, kind='op', op='Parameter', name=name, shape=shape) for name, value in argv.freeze_placeholder_with_value.items(): inputs[name] = value model = argv.input_model for module in model.modules(): if len([m for m in module.modules()]) != 1: continue module.register_forward_hook(forward_hook) register_model_hook(model) with torch.no_grad(): if argv.input: model(**inputs) else: model(inputs['input']) extract_node_attrs( graph, lambda node: pytorch_op_extractor( node, check_for_duplicates(pytorch_op_extractors)))
def load(self, graph: Graph): argv = graph.graph['cmd_params'] model_proto = load_onnx_model(argv.input_model) model_graph = model_proto.graph # pylint: disable=no-member # print(model_graph) # assert len(model_graph) == 1, "An ONNX model contains more than 1 graph: unsupported" log.debug("Number of nodes in graph_def: {}".format( len(model_graph.node))) log.debug( "Number of all input ports (not true inputs) in graph_def: {}". format(len(model_graph.input))) log.debug("Number of initializers in graph_def: {}".format( len(model_graph.initializer))) log.debug("Number of real inputs in graph_def: {}".format( len(model_graph.input) - len(model_graph.initializer))) update_extractors_with_extensions(onnx_op_extractors) try: protobuf2nx(graph, model_proto) except Exception as e: raise Error( 'Cannot pre-process ONNX graph after reading from model file "{}". ' \ 'File is corrupt or has unsupported format. Details: {}. ' + refer_to_faq_msg(44), argv.input_model, str(e) ) from e log.debug("Number of nodes in NX graph: {}".format( graph.number_of_nodes())) graph.__setattr__( 'name', argv.model_name if argv.model_name else model_proto.graph.name) # pylint: disable=no-member graph.graph['layout'] = 'NCHW' graph.graph['fw'] = 'onnx' graph.graph['feature_dim'] = 1 if hasattr(model_proto, 'opset_import'): graph.graph['fw_opset_version'] = model_proto.opset_import[ 0].version # pylint: disable=no-member else: graph.graph['fw_opset_version'] = None graph.check_empty_graph( 'protobuf2nx. It may happen due to problems with loaded model') extract_node_attrs( graph, lambda node: onnx_op_extractor( node, check_for_duplicates(onnx_op_extractors))) send_op_names_info('onnx', graph) send_shapes_info('onnx', graph)
def extract_if(cls, if_node: Node): If.update_node_stat(if_node, {}) # check that required body and condition functions exist in the graph library main_graph = if_node.graph then_graph_proto = get_graph_proto(main_graph, 'then_branch', if_node) else_graph_proto = get_graph_proto(main_graph, 'else_branch', if_node) then_graph = create_internal_graph(main_graph) if_node['then_graph'] = then_graph else_graph = create_internal_graph(main_graph) if_node['else_graph'] = else_graph # create Parameter nodes for the then/else graphs for input_index, (body_graph, body_graph_proto) in enumerate( zip((then_graph, else_graph), (then_graph_proto, else_graph_proto))): body_parameters, body_parameter_names = convert_graph_inputs_to_parameters( body_graph, body_graph_proto) # update the If body graph with the body function graph body_results = [] update_body_graph(body_graph, body_graph_proto, body_parameter_names, body_results) body_graph.stage = 'front' # connect external input ports with body parameter nodes except input with condition for idx in range(0, len(body_parameters)): If.connect_body_input(if_node, not input_index, idx + 1, body_parameters[idx]) # connect body outputs with If operation output ports for idx in range(len(body_results)): If.connect_body_output(if_node, not input_index, idx, body_results[idx]) # run function to parse body nodes attributes similar to the main graph extract_node_attrs( body_graph, lambda node: tf_op_extractor( node, check_for_duplicates(tf_op_extractors))) return cls.enabled
def load(self, graph: Graph): argv = graph.graph['cmd_params'] caffe_pb2 = loader.import_caffe_pb2(argv.caffe_parser_path) proto, model = loader.load_caffe_proto_model(caffe_pb2, argv.input_proto, argv.input_model) update_extractors_with_extensions( caffe_type_extractors, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.disable_flattening_optional_params if hasattr( argv, 'disable_flattening_optional_params') else False) try: original_shapes = loader.caffe_pb_to_nx(graph, proto, model) except ValueError as e: raise Error( 'Invalid prototxt file: value error {}. ' + refer_to_faq_msg(11), str(e)) from e graph.check_empty_graph('load_caffe_proto_model') graph.__setattr__('proto_path', argv.input_proto) graph.__setattr__('caffemodel_path', argv.input_model) graph.__setattr__('name', getattr(proto, 'name', None) or argv.model_name) graph.graph['layout'] = 'NCHW' graph.graph['fw'] = 'caffe' graph.graph['original_shapes'] = original_shapes graph.graph['caffe_pb2'] = caffe_pb2 custom_layers_map = custom_layers_mapping.load_layers_xml(argv.k) custom_layers_mapping.update_extractors( caffe_type_extractors, custom_layers_map, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.enable_flattening_nested_params if hasattr( argv, 'enable_flattening_nested_params') else False) extract_node_attrs( graph, lambda node: caffe_extractor( node, check_for_duplicates(caffe_type_extractors)))
def driver(argv): try: graph = load_kaldi_model(argv.input_model) except Exception as e: raise Error('Model Optimizer is not able to parse Kaldi model {}. '. format(argv.input_model) + refer_to_faq_msg(91)) from e graph.check_empty_graph('load_kaldi_nnet_model') graph.graph['layout'] = 'NCHW' graph.graph['cmd_params'] = argv graph.graph['fw'] = 'kaldi' graph.graph['ir_version'] = get_ir_version(argv) update_extractors_with_extensions(kaldi_type_extractors) extract_node_attrs(graph, lambda node: kaldi_extractor(node)) # --------------------------------- LOAD END ------------------------------------------------------ class_registration.apply_replacements(graph, [ class_registration.ClassType.FRONT_REPLACER, class_registration.ClassType.MIDDLE_REPLACER, class_registration.ClassType.BACK_REPLACER ]) return graph
def tf2nx(argv: argparse.Namespace, model_file_name: str, output_model_name: str, outputs: list, output_dir: str, scale: float, is_binary: bool, user_shapes: [None, list, np.array] = None, mean_scale_values: [dict, list] = ()): """ Convert TF GraphDef object to NetworkX representation. The resulting graph is still TF-specific and needs normalization passes to be applied. The specific TF structure assumes each GraphDef node is converted to a single NetworkX node, node id is an original TF node name, and edges go directly from one op to another op. """ meta_info = get_meta_info(argv) if argv.tensorflow_custom_layer_libraries: libraries = argv.tensorflow_custom_layer_libraries.split(',') for library in libraries: log.info('Loading library "{}" with custom operations'.format(library)) tf.load_op_library(library) graph_def, variables_values = load_tf_graph_def(graph_file_name=model_file_name, is_binary=is_binary, checkpoint=argv.input_checkpoint, user_output_node_names_list=outputs, model_dir=argv.saved_model_dir, meta_graph_file=argv.input_meta_graph, saved_model_tags=argv.saved_model_tags) try: tf.import_graph_def(graph_def, name='') except: log.warning("TensorFlow post-processing of loaded model was unsuccessful. " "This is an optional step that Model Optimizer performs for any input model but it is not usually " "required for all models." "It likely means that the original model is ill-formed. " "Model Optimizer will continue converting this model.") log.debug("Number of nodes in graph_def: {}".format(len(graph_def.node))) # pylint: disable=no-member if argv.tensorboard_logdir: tensorboard.dump_for_tensorboard(graph_def, argv.tensorboard_logdir) update_extractors_with_extensions(tf_op_extractors) try: graph = protobuf2nx(graph_def) graph.__setattr__('name', output_model_name) # 'layout' parameter change may cause an issue in EltwiseInputReshape replacer # and convert_nhwc_to_nchw(graph) graph.graph['layout'] = 'NCHW' if argv.disable_nhwc_to_nchw else 'NHWC' graph.graph['cmd_params'] = argv graph.graph['fw'] = 'tf' graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 4 if graph.graph['ir_version'] == 2: # When the deprecated IR version was requested, # we configure only those phases that can lead to # functional regressions in the version 2. # BasicLSTMCell is one such transformation; when it is turned off, # the body of TF basic_lstm_cell is converted as-is in a decomposed form, # and should work in version 2. BasicLSTMCell.enabled = False # placeholder for request from a transformation pass to repeat the entire conversion graph.graph['repeat_conversion'] = False graph = restore_edges(graph, get_tf_edges) graph = remove_control_dependency_inputs(graph) # extract basic attributes earlier to enable some passes that relies on them before full attribute # extractor is called extract_node_attrs(graph, lambda node: (True, common_tf_fields(node))) except Exception as e: raise Error( 'Cannot pre-process TensorFlow graph after reading from model file "{}". ' \ 'File is corrupt or has unsupported format. Details: {}. ' + refer_to_faq_msg(44), model_file_name, str(e) ) from e check_empty_graph(graph, 'protobuf2nx. It may happen due to problems with loaded model') packed_user_shapes, packed_outputs, freeze_placeholder = user_data_repack(graph, user_shapes, outputs, argv.freeze_placeholder_with_value) if freeze_placeholder is not None: FreezePlaceholderValue.enabled = True FreezePlaceholderValue.replacement_dict = freeze_placeholder update_registration() GemmResolver.enabled = False inputs = list(packed_user_shapes.keys()) if packed_user_shapes is not None and isinstance(packed_user_shapes, dict) else None graph.graph['inputs'] = inputs # save user defined inputs for other extensions output_op_nodes = add_output_ops(graph, packed_outputs, inputs=packed_user_shapes) input_op_nodes = add_input_ops(graph, packed_user_shapes, True) # this call of 'graph_clean_up' removes child nodes of outputs which is useful when custom output is specified graph_clean_up_tf(graph) check_empty_graph(graph, 'add_output_ops and add_input_ops. It may happen due to absence of \'Placeholder\' layer ' 'in the model') variables_to_constants(graph, variables_values) del variables_values graph_clean_up_tf(graph) if argv.tensorflow_custom_operations_config_update: if update_custom_replacement_config_file(graph, argv.tensorflow_custom_operations_config_update): return 0 else: return 1 unsupported_ops_to_offload_to_tf = list() MAX_ITERATIONS = 5 cur_iteration = 0 while cur_iteration < MAX_ITERATIONS: graph_copy = copy.deepcopy(graph) # create a copy of graph for the case when some ops are unsupported if argv.tensorflow_subgraph_patterns is not None: csc.replace_subgraph_calls(graph, argv.tensorflow_subgraph_patterns) if argv.tensorflow_operation_patterns is not None: csc.offload_operations_to_tf(graph, argv.tensorflow_operation_patterns) if argv.offload_unsupported_operations_to_tf and len(unsupported_ops_to_offload_to_tf): csc.offload_unsupported_operations_to_tf(graph, unsupported_ops_to_offload_to_tf) extract_node_attrs(graph, lambda node: tf_op_extractor(node, check_for_duplicates(tf_op_extractors))) if argv.tensorflow_use_custom_operations_config is not None: registry = CustomReplacementRegistry() registry.add_custom_replacement_description_from_config(argv.tensorflow_use_custom_operations_config) # automatically generate sub-classes for custom replacements that replace sub-graph with a single node for replacement_desc in registry.get_all_replacements_descriptions(): if replacement_desc.has('op'): type('FrontReplacementFromConfigFileOp' + replacement_desc.op, (FrontReplacementFromConfigFileOp,), {'replacement_id': replacement_desc.id}) update_registration() override_placeholder_shapes(graph, packed_user_shapes) # the user shapes are used to convert TensorFlow Object Detection API models graph.graph['user_shapes'] = packed_user_shapes class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER) override_batch(graph, argv.batch) create_tensor_nodes(graph) graph_clean_up_tf(graph) remove_output_ops(graph) partial_infer(graph) delete_control_flow_edges(graph) replacer = AddIsCyclicAttribute() replacer.find_and_replace_pattern(graph) # TENSOR ITERATOR CREATING BEGINS if graph.graph['is_cyclic']: replacer = DeleteSelect() replacer.find_and_replace_pattern(graph) replacer = SmartInputMatcher() replacer.find_and_replace_pattern(graph) replacer = SmartOutputMatcher() replacer.find_and_replace_pattern(graph) replacer = LoopConditionMatcher() replacer.find_and_replace_pattern(graph) replacer = SimpleConditionMather() replacer.find_and_replace_pattern(graph) replacer = BackEdgesMatching() replacer.find_and_replace_pattern(graph) replacer = ConditionChecks() replacer.find_and_replace_pattern(graph) delete_not_executable(graph) graph_clean_up_tf(graph) if graph.graph['is_cyclic']: replacer = SimpleInputMatcher() replacer.find_and_replace_pattern(graph) replacer = BackEdgeSimpleInputMatcher() replacer.find_and_replace_pattern(graph) # Here will be optimizing path (ops after Enter and before body take out of body) replacer = TensorIteratorMerge() replacer.find_and_replace_pattern(graph) # TENSOR ITERATOR CREATING ENDS check_for_cycle(graph) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) check_empty_graph(graph, 'partial_infer') csc.prepare_tf_call_nodes(graph) graph_clean_up_tf(graph) duplicate_shared_weights(graph) input_op_nodes = add_input_ops(graph, packed_user_shapes, False) graph_clean_up_tf(graph) check_empty_graph(graph, 'add_input_ops') change_placeholders_types_to_FP32(graph) scale_input(graph, scale) add_mean_scale_values(graph, mean_scale_values) convert_dilated_convolution(graph) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) l2_norm_to_norm(graph) graph_clean_up_tf(graph) remove_op_nodes(graph, {'identity': True}) remove_useless_split(graph) class_registration.apply_replacements(graph, class_registration.ClassType.MIDDLE_REPLACER) mean_to_avgpool(graph) convert_nasnet(graph) fuse_pad(graph) graph_clean_up_tf(graph) convert_matmul_to_fully_connected(graph) # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes for_graph_and_each_sub_graph_recursively(graph, lambda graph: mark_unfused_nodes(graph, argv.finegrain_fusing)) # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence # IE doesn't support BN with 4 inputs, so we have to split it to two ScaleShift convert_batch_norm(graph) graph_clean_up_tf(graph) if not argv.disable_fusing: # Converting ScaleShift layer to Mul->Add for_graph_and_each_sub_graph_recursively(graph, convert_scale_shift_to_mul_add) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) # Fusing the sequences of Mul/Add operations for_graph_and_each_sub_graph_recursively(graph, fuse_mul_add_sequence) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) # Fusing linear operation to Convolution for_graph_and_each_sub_graph_recursively(graph, fuse_linear_ops) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) if not argv.disable_gfusing: grouped_convolutions_fusing(graph) graph_clean_up_tf(graph) if not argv.disable_fusing: fuse_linear_ops(graph) graph_clean_up_tf(graph) # Converting Mul->Add to ScaleShift node for_graph_and_each_sub_graph_recursively(graph, convert_muladd_to_scaleshift_or_power) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) for_graph_and_each_sub_graph_recursively(graph, convert_mul_add_to_power) # Need to eliminate dead nodes before doing update_fully_connected_shapes # because update_fully_connected_shapes does partial inference and dead # nodes will lead to sporadic failures. for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) for_graph_and_each_sub_graph_recursively(graph, update_fully_connected_shapes) for_graph_and_each_sub_graph_recursively(graph, convert_mul_eltwise_to_leaky_relu) graph_clean_up_tf(graph) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) for_graph_and_each_sub_graph_recursively(graph, fuse_pad) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) for_graph_and_each_sub_graph_recursively(graph, convert_reshape) for_graph_and_each_sub_graph_recursively(graph, convert_squeeze) for_graph_and_each_sub_graph_recursively(graph, convert_add_to_scaleshift) # scale = 1 for_graph_and_each_sub_graph_recursively(graph, convert_mul_to_scaleshift) # biases = 0 if argv.reverse_input_channels: reverse_input_channels(graph) if argv.move_to_preprocess: move_scaleshift_to_preprocess(graph) graph_clean_up_tf(graph) for_graph_and_each_sub_graph_recursively(graph, fuse_sequence_of_reshapes) pattern = EltwiseInputNormalize() pattern.find_and_replace_pattern(graph) conv_flatten_concat(graph) for_graph_and_each_sub_graph_recursively(graph, apply_nhwc_to_nchw_permutation) for_graph_and_each_sub_graph_recursively(graph, merge_nodes_permutations) for_graph_and_each_sub_graph_recursively(graph, permute_data_nodes_attrs) for_graph_and_each_sub_graph_recursively(graph, permute_op_nodes_attrs) for_graph_and_each_sub_graph_recursively(graph, repack_fully_connected_weights_nhwc_to_nchw) for_graph_and_each_sub_graph_recursively(graph, transpose_fully_connected_weights) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) if argv.offload_unsupported_operations_to_tf: unsupported_ops_to_offload_to_tf = find_unsupported_ops(graph) if len(unsupported_ops_to_offload_to_tf) == 0: log.info('All operations are supported! Exit from the loop.') if not need_to_repeat_conversion(graph): break else: print('After {} iteration there are {} unsupported ops'.format(cur_iteration + 1, len(unsupported_ops_to_offload_to_tf))) else: if not need_to_repeat_conversion(graph): break graph = graph_copy cur_iteration += 1 class_registration.apply_replacements(graph, class_registration.ClassType.BACK_REPLACER) prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name, meta_info=meta_info) return 0
def driver_R1(onnx_modelproto_bytes, precision: str, output_model_name: str, outputs: list, output_dir: str, scale: float, user_shapes: [None, list, np.array] = None, mean_scale_values: [dict, list] = ()): try: model_proto = onnx.load_from_string(bytes(onnx_modelproto_bytes)) except Exception as e: print("[python] onnx exception: ", str(e)) model_graph = model_proto.graph # pylint: disable=no-member update_extractors_with_extensions(onnx_op_extractors) try: graph = protobuf2nx(model_proto) log.debug("Number of nodes in NX graph: {}".format( graph.number_of_nodes())) graph.__setattr__( 'name', output_model_name if output_model_name else model_proto.graph.name) # pylint: disable=no-member graph.graph['layout'] = 'NCHW' graph.graph['cmd_params'] = argparse.Namespace( batch=None, data_type='float', disable_fusing=False, disable_gfusing=False, disable_resnet_optimization=False, enable_concat_optimization=False, extensions=mo_extensions, finegrain_fusing=None, framework='onnx', freeze_placeholder_with_value=None, generate_deprecated_IR_V2=False, input=None, input_model=None, input_shape=None, keep_shape_ops=False, log_level='ERROR', mean_scale_values={}, mean_values=(), model_name=None, move_to_preprocess=False, output=None, output_dir='.', placeholder_shapes=None, reverse_input_channels=False, scale=None, scale_values=(), silent=False, version=False) graph.graph['fw'] = 'onnx' graph.graph[ 'feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3 graph.graph['ir_version'] = 5 except Exception as e: raise Error( 'Cannot pre-process ONNX graph after reading from model file "{}". ' 'File is corrupt or has unsupported format. Details: {}. ' + refer_to_faq_msg(44), model_file_name, str(e)) from e graph.check_empty_graph( 'protobuf2nx. It may happen due to problems with loaded model') extract_node_attrs( graph, lambda node: onnx_op_extractor( node, check_for_duplicates(onnx_op_extractors))) # --------------------------------- LOAD END ------------------------------------------------------ class_registration.apply_replacements( graph, class_registration.ClassType.FRONT_REPLACER) class_registration.apply_replacements( graph, class_registration.ClassType.MIDDLE_REPLACER) fuse_pad(graph) graph_clean_up_onnx(graph) mark_unfused_nodes(graph, 'False') convert_batch_norm(graph) graph_clean_up_onnx(graph) convert_scale_shift_to_mul_add(graph) graph_clean_up_onnx(graph) fuse_mul_add_sequence(graph) graph_clean_up_onnx(graph) fuse_linear_ops(graph) graph_clean_up_onnx(graph) grouped_convolutions_fusing(graph) graph_clean_up_onnx(graph) fuse_linear_ops(graph) graph_clean_up_onnx(graph) convert_muladd_to_scaleshift_or_power(graph) graph_clean_up_onnx(graph) convert_mul_add_to_power(graph) graph_clean_up_onnx(graph) convert_reshape(graph) graph_clean_up_onnx(graph) convert_add_or_mul_to_scaleshift(graph) # scale = 1 graph_clean_up_onnx(graph) fuse_pad(graph) graph_clean_up_onnx(graph) fuse_sequence_of_reshapes(graph) graph_clean_up_onnx(graph) pattern = EltwiseInputNormalize() pattern.find_and_replace_pattern(graph) merge_nodes_permutations(graph) permute_data_nodes_attrs(graph) permute_op_nodes_attrs(graph) class_registration.apply_replacements( graph, class_registration.ClassType.BACK_REPLACER) for_graph_and_each_sub_graph_recursively(graph, remove_const_ops) CreateConstNodesReplacement().find_and_replace_pattern(graph) for_graph_and_each_sub_graph_recursively(graph, remove_output_ops) weights, xml_string = prepare_emit_ir(graph=graph, data_type=precision, output_dir=output_dir, output_model_name=output_model_name, meta_info={'unset': []}) return weights, xml_string
def driver_R5(onnx_modelproto_bytes, precision: str, output_model_name: str, outputs: list, output_dir: str, scale: float, user_shapes: [None, list, np.array] = None, mean_scale_values: [dict, list] = ()): try: model_proto = onnx.load_from_string(bytes(onnx_modelproto_bytes)) except Exception as e: print("[python] onnx exception: ", str(e)) model_graph = model_proto.graph # pylint: disable=no-member log.debug("Number of nodes in graph_def: {}".format(len(model_graph.node))) log.debug( "Number of all input ports (not true inputs) in graph_def: {}".format( len(model_graph.input))) log.debug("Number of initializers in graph_def: {}".format( len(model_graph.initializer))) log.debug("Number of real inputs in graph_def: {}".format( len(model_graph.input) - len(model_graph.initializer))) update_extractors_with_extensions(onnx_op_extractors) try: graph = protobuf2nx(model_proto) log.debug("Number of nodes in NX graph: {}".format( graph.number_of_nodes())) graph.__setattr__( 'name', output_model_name if output_model_name else model_proto.graph.name) # pylint: disable=no-member graph.graph['layout'] = 'NCHW' graph.graph['fw'] = 'onnx' graph.graph[ 'feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3 graph.graph['ir_version'] = 4 extract_node_attrs(graph, lambda node: (True, common_onnx_fields(node))) except Exception as e: raise Error( 'Cannot pre-process ONNX graph after reading from model file "{}". ' 'File is corrupt or has unsupported format. Details: {}. ' + refer_to_faq_msg(44), model_file_name, str(e)) from e check_empty_graph( graph, 'protobuf2nx. It may happen due to problems with loaded model') packed_user_shapes, packed_outputs, _ = user_data_repack( graph, user_shapes, outputs, None) output_op_nodes = add_output_ops(graph, packed_outputs) input_op_nodes = add_input_ops(graph, packed_user_shapes, True) graph_clean_up(graph) check_empty_graph(graph, 'add_output_ops and add_input_ops') extract_node_attrs( graph, lambda node: onnx_op_extractor( node, check_for_duplicates(onnx_op_extractors))) class_registration.apply_replacements( graph, class_registration.ClassType.FRONT_REPLACER) create_tensor_nodes(graph) graph_clean_up(graph) override_placeholder_shapes(graph, packed_user_shapes) graph_clean_up(graph) remove_op_nodes(graph, {'op': 'Identity'}) graph_clean_up(graph) remove_output_ops(graph) partial_infer(graph) graph_clean_up(graph) check_empty_graph(graph, 'partial_infer') input_op_nodes = add_input_ops(graph, packed_user_shapes, False) graph_clean_up(graph) check_empty_graph(graph, 'add_input_ops') scale_input(graph, scale) add_mean_scale_values(graph, mean_scale_values) convert_dilated_convolution(graph) graph_clean_up(graph) graph_clean_up(graph) remove_op_nodes(graph, {'op': 'Identity'}) remove_useless_split(graph) class_registration.apply_replacements( graph, class_registration.ClassType.MIDDLE_REPLACER) convert_gemm_to_fully_connected(graph) NormalizeFullyConnected().find_and_replace_pattern(graph) fuse_pad(graph) graph_clean_up(graph) convert_batch_norm(graph) graph_clean_up(graph) convert_scale_shift_to_mul_add(graph) graph_clean_up(graph) fuse_mul_add_sequence(graph) graph_clean_up(graph) fuse_linear_ops(graph) graph_clean_up(graph) grouped_convolutions_fusing(graph) graph_clean_up(graph) fuse_linear_ops(graph) graph_clean_up(graph) convert_muladd_to_scaleshift_or_power(graph) graph_clean_up(graph) convert_mul_add_to_power(graph) graph_clean_up(graph) convert_reshape(graph) convert_add_to_scaleshift(graph) # scale = 1 convert_mul_to_scaleshift(graph) # biases = 0 fuse_pad(graph) graph_clean_up(graph) fuse_sequence_of_reshapes(graph) graph_clean_up(graph) pattern = EltwiseInputNormalize() pattern.find_and_replace_pattern(graph) merge_nodes_permutations(graph) permute_data_nodes_attrs(graph) permute_op_nodes_attrs(graph) class_registration.apply_replacements( graph, class_registration.ClassType.BACK_REPLACER) weights, xml_string = prepare_emit_ir(graph=graph, data_type=precision, output_dir=output_dir, output_model_name=output_model_name, meta_info={'unset': []}) return weights, xml_string
def tf2nx(argv: argparse.Namespace, model_file_name: str, output_model_name: str, output_dir: str, is_binary: bool): """ Convert TF GraphDef object to NetworkX representation. The resulting graph is still TF-specific and needs normalization passes to be applied. The specific TF structure assumes each GraphDef node is converted to a single NetworkX node, node id is an original TF node name, and edges go directly from one op to another op. """ meta_info = get_meta_info(argv) if argv.tensorflow_custom_layer_libraries: libraries = argv.tensorflow_custom_layer_libraries.split(',') for library in libraries: log.info('Loading library "{}" with custom operations'.format(library)) tf.load_op_library(library) graph_def, variables_values = load_tf_graph_def(graph_file_name=model_file_name, is_binary=is_binary, checkpoint=argv.input_checkpoint, user_output_node_names_list=argv.output, model_dir=argv.saved_model_dir, meta_graph_file=argv.input_meta_graph, saved_model_tags=argv.saved_model_tags) try: tf.import_graph_def(graph_def, name='') except: log.warning("TensorFlow post-processing of loaded model was unsuccessful. " "This is an optional step that Model Optimizer performs for any input model but it is not usually " "required for all models." "It likely means that the original model is ill-formed. " "Model Optimizer will continue converting this model.") log.debug("Number of nodes in graph_def: {}".format(len(graph_def.node))) # pylint: disable=no-member if argv.tensorboard_logdir: tensorboard.dump_for_tensorboard(graph_def, argv.tensorboard_logdir) update_extractors_with_extensions(tf_op_extractors) try: graph = protobuf2nx(graph_def) graph.__setattr__('name', output_model_name) # 'layout' parameter change may cause an issue in EltwiseInputReshape replacer # and convert_nhwc_to_nchw(graph) graph.graph['layout'] = 'NCHW' if argv.disable_nhwc_to_nchw else 'NHWC' graph.graph['cmd_params'] = argv graph.graph['fw'] = 'tf' graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 5 graph.graph['variables_values'] = variables_values del variables_values graph = restore_edges(graph, get_tf_edges) graph = remove_control_dependency_inputs(graph) except Exception as e: raise Error( 'Cannot pre-process TensorFlow graph after reading from model file "{}". ' \ 'File is corrupt or has unsupported format. Details: {}. ' + refer_to_faq_msg(44), model_file_name, str(e) ) from e graph.check_empty_graph('protobuf2nx. It may happen due to problems with loaded model') extract_node_attrs(graph, lambda node: tf_op_extractor(node, check_for_duplicates(tf_op_extractors))) # --------------------------------- LOAD END ------------------------------------------------------ class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER) class_registration.apply_replacements(graph, class_registration.ClassType.MIDDLE_REPLACER) fuse_pad(graph) graph_clean_up_tf(graph) convert_matmul_to_fully_connected(graph) # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes for_graph_and_each_sub_graph_recursively(graph, lambda graph: mark_unfused_nodes(graph, argv.finegrain_fusing)) # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence # IE doesn't support BN with 4 inputs, so we have to split it to two ScaleShift convert_batch_norm(graph) graph_clean_up_tf(graph) if not argv.disable_fusing: # Converting ScaleShift layer to Mul->Add for_graph_and_each_sub_graph_recursively(graph, convert_scale_shift_to_mul_add) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) # Fusing the sequences of Mul/Add operations for_graph_and_each_sub_graph_recursively(graph, fuse_mul_add_sequence) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) # Fusing linear operation to Convolution for_graph_and_each_sub_graph_recursively(graph, fuse_linear_ops) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) if not argv.disable_gfusing: grouped_convolutions_fusing(graph) graph_clean_up_tf(graph) if not argv.disable_fusing: fuse_linear_ops(graph) graph_clean_up_tf(graph) # Converting Mul->Add to ScaleShift node for_graph_and_each_sub_graph_recursively(graph, convert_muladd_to_scaleshift_or_power) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) for_graph_and_each_sub_graph_recursively(graph, convert_mul_add_to_power) # Need to eliminate dead nodes before doing update_fully_connected_shapes # because update_fully_connected_shapes does partial inference and dead # nodes will lead to sporadic failures. for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) for_graph_and_each_sub_graph_recursively(graph, update_fully_connected_shapes) for_graph_and_each_sub_graph_recursively(graph, convert_mul_eltwise_to_leaky_relu) graph_clean_up_tf(graph) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) for_graph_and_each_sub_graph_recursively(graph, fuse_pad) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) for_graph_and_each_sub_graph_recursively(graph, convert_reshape) for_graph_and_each_sub_graph_recursively(graph, convert_squeeze) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) for_graph_and_each_sub_graph_recursively(graph, convert_add_or_mul_to_scaleshift) # scale = 1 for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) if argv.reverse_input_channels: reverse_input_channels(graph) if argv.move_to_preprocess: move_scaleshift_to_preprocess(graph) graph_clean_up_tf(graph) fuse_sequence_of_reshapes(graph) pattern = EltwiseInputNormalize() pattern.find_and_replace_pattern(graph) conv_flatten_concat(graph) if argv.enable_concat_optimization: ConcatOptimization().find_and_replace_pattern(graph) LayoutChangeForConstantShapePaths().find_and_replace_pattern(graph) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) for_graph_and_each_sub_graph_recursively(graph, apply_nhwc_to_nchw_permutation) for_graph_and_each_sub_graph_recursively(graph, merge_nodes_permutations) for_graph_and_each_sub_graph_recursively(graph, permute_data_nodes_attrs) for_graph_and_each_sub_graph_recursively(graph, permute_op_nodes_attrs) for_graph_and_each_sub_graph_recursively(graph, repack_fully_connected_weights_nhwc_to_nchw) for_graph_and_each_sub_graph_recursively(graph, transpose_fully_connected_weights) for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf) class_registration.apply_replacements(graph, class_registration.ClassType.BACK_REPLACER) for_graph_and_each_sub_graph_recursively(graph, remove_const_ops) CreateConstNodesReplacement().find_and_replace_pattern(graph) for_graph_and_each_sub_graph_recursively(graph, remove_output_ops) prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name, meta_info=meta_info) return 0
def driver(argv: argparse.Namespace, model_file_name: str, output_model_name: str, output_dir: str): meta_info = get_meta_info(argv) model_proto = load_onnx_model(model_file_name) model_graph = model_proto.graph # pylint: disable=no-member # print(model_graph) # assert len(model_graph) == 1, "An ONNX model contains more than 1 graph: unsupported" log.debug("Number of nodes in graph_def: {}".format(len(model_graph.node))) log.debug("Number of all input ports (not true inputs) in graph_def: {}".format(len(model_graph.input))) log.debug("Number of initializers in graph_def: {}".format(len(model_graph.initializer))) log.debug("Number of real inputs in graph_def: {}".format(len(model_graph.input) - len(model_graph.initializer))) update_extractors_with_extensions(onnx_op_extractors) try: graph = protobuf2nx(model_proto) log.debug("Number of nodes in NX graph: {}".format(graph.number_of_nodes())) graph.__setattr__('name', output_model_name if output_model_name else model_proto.graph.name) # pylint: disable=no-member graph.graph['layout'] = 'NCHW' graph.graph['cmd_params'] = argv graph.graph['fw'] = 'onnx' graph.graph['feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3 graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 5 except Exception as e: raise Error( 'Cannot pre-process ONNX graph after reading from model file "{}". ' \ 'File is corrupt or has unsupported format. Details: {}. ' + refer_to_faq_msg(44), model_file_name, str(e) ) from e graph.check_empty_graph('protobuf2nx. It may happen due to problems with loaded model') extract_node_attrs(graph, lambda node: onnx_op_extractor(node, check_for_duplicates(onnx_op_extractors))) # --------------------------------- LOAD END ------------------------------------------------------ class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER) class_registration.apply_replacements(graph, class_registration.ClassType.MIDDLE_REPLACER) fuse_pad(graph) graph_clean_up_onnx(graph) # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes mark_unfused_nodes(graph, argv.finegrain_fusing) # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence # IE doesn't support BN with 4 inputs, so we have to split it to two ScaleShift convert_batch_norm(graph) graph_clean_up_onnx(graph) if not argv.disable_fusing: # Converting ScaleShift layer to Mul->Add convert_scale_shift_to_mul_add(graph) graph_clean_up_onnx(graph) # Fusing the sequences of Mul/Add operations fuse_mul_add_sequence(graph) graph_clean_up_onnx(graph) # Fusing linear operation to Convolution fuse_linear_ops(graph) graph_clean_up_onnx(graph) if not argv.disable_gfusing: grouped_convolutions_fusing(graph) graph_clean_up_onnx(graph) if not argv.disable_fusing: fuse_linear_ops(graph) graph_clean_up_onnx(graph) AddQuantizeFuse().find_and_replace_pattern(graph) MulQuantizeFuse().find_and_replace_pattern(graph) convert_muladd_to_scaleshift_or_power(graph) graph_clean_up_onnx(graph) convert_mul_add_to_power(graph) graph_clean_up_onnx(graph) convert_reshape(graph) graph_clean_up_onnx(graph) convert_add_or_mul_to_scaleshift(graph) # scale = 1 graph_clean_up_onnx(graph) fuse_pad(graph) graph_clean_up_onnx(graph) if argv.reverse_input_channels: reverse_input_channels(graph) if argv.move_to_preprocess: move_scaleshift_to_preprocess(graph) graph_clean_up_onnx(graph) fuse_sequence_of_reshapes(graph) graph_clean_up_onnx(graph) pattern = EltwiseInputNormalize() pattern.find_and_replace_pattern(graph) merge_nodes_permutations(graph) permute_data_nodes_attrs(graph) permute_op_nodes_attrs(graph) class_registration.apply_replacements(graph, class_registration.ClassType.BACK_REPLACER) for_graph_and_each_sub_graph_recursively(graph, remove_const_ops) CreateConstNodesReplacement().find_and_replace_pattern(graph) for_graph_and_each_sub_graph_recursively(graph, remove_output_ops) prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name, meta_info=meta_info) return 0
def driver(onnx_modelproto_bytes, precision: str, output_model_name: str, output_dir: str): try: model_proto = onnx.load_from_string(bytes(onnx_modelproto_bytes)) except Exception as e: print("[python] onnx exception: ", str(e)) model_graph = model_proto.graph # pylint: disable=no-member log.debug("Number of nodes in graph_def: {}".format(len(model_graph.node))) log.debug( "Number of all input ports (not true inputs) in graph_def: {}".format( len(model_graph.input))) log.debug("Number of initializers in graph_def: {}".format( len(model_graph.initializer))) log.debug("Number of real inputs in graph_def: {}".format( len(model_graph.input) - len(model_graph.initializer))) update_extractors_with_extensions(onnx_op_extractors) try: graph = protobuf2nx(model_proto) log.debug("Number of nodes in NX graph: {}".format( graph.number_of_nodes())) graph.__setattr__( 'name', output_model_name if output_model_name else model_proto.graph.name) # pylint: disable=no-member graph.graph['layout'] = 'NCHW' graph.graph['fw'] = 'onnx' graph.graph[ 'feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3 graph.graph['cmd_params'] = argparse.Namespace( batch=None, data_type='float', disable_fusing=False, disable_gfusing=False, disable_resnet_optimization=False, enable_concat_optimization=False, extensions=mo_extensions, finegrain_fusing=None, framework='onnx', freeze_placeholder_with_value=None, generate_deprecated_IR_V2=False, input=None, input_model=None, input_shape=None, keep_shape_ops=False, log_level='ERROR', mean_scale_values={}, mean_values=(), model_name=None, move_to_preprocess=False, output=None, output_dir='.', placeholder_shapes=None, reverse_input_channels=False, scale=None, scale_values=(), silent=False, version=False, blobs_as_inputs=False, keep_quantize_ops_in_IR=False, generate_experimental_IR_V10=False) graph.graph['ir_version'] = 6 except Exception as e: raise Error( 'Cannot pre-process ONNX graph after reading from model file "{}". ' \ 'File is corrupt or has unsupported format. Details: {}. ' + refer_to_faq_msg(44), model_file_name, str(e) ) from e graph.check_empty_graph( 'protobuf2nx. It may happen due to problems with loaded model') extract_node_attrs( graph, lambda node: onnx_op_extractor( node, check_for_duplicates(onnx_op_extractors))) # --------------------------------- LOAD END ------------------------------------------------------ class_registration.apply_replacements( graph, class_registration.ClassType.FRONT_REPLACER) class_registration.apply_replacements( graph, class_registration.ClassType.MIDDLE_REPLACER) fuse_pad(graph) graph_clean_up_onnx(graph) for_graph_and_each_sub_graph_recursively( graph, convert_matmul_to_fully_connected) # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes mark_unfused_nodes(graph, False) # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence # IE doesn't support BN with 4 inputs, so we have to split it to two ScaleShift convert_batch_norm(graph) graph_clean_up_onnx(graph) # Converting ScaleShift layer to Mul->Add convert_scale_shift_to_mul_add(graph) graph_clean_up_onnx(graph) # Fusing the sequences of Mul/Add operations fuse_mul_add_sequence(graph) graph_clean_up_onnx(graph) # Fusing linear operation to Convolution fuse_linear_ops(graph) graph_clean_up_onnx(graph) grouped_convolutions_fusing(graph) graph_clean_up_onnx(graph) fuse_linear_ops(graph) graph_clean_up_onnx(graph) MarkNodesToFuseUpToFakeQuantize().find_and_replace_pattern(graph) FakeQuantizeFuse().find_and_replace_pattern(graph) AddFakeQuantizeFuse().find_and_replace_pattern(graph) MulFakeQuantizeFuse().find_and_replace_pattern(graph) convert_muladd_to_scaleshift(graph) graph_clean_up_onnx(graph) graph_clean_up_onnx(graph) convert_add_or_mul_to_scaleshift(graph) # scale = 1 graph_clean_up_onnx(graph) fuse_pad(graph) graph_clean_up_onnx(graph) FuseReshapesSequence().find_and_replace_pattern(graph) RemoveRedundantReshapes().find_and_replace_pattern(graph) graph_clean_up_onnx(graph) pattern = EltwiseInputNormalize() pattern.find_and_replace_pattern(graph) merge_nodes_permutations(graph) permute_data_nodes_attrs(graph) permute_op_nodes_attrs(graph) graph_clean_up_onnx(graph) class_registration.apply_replacements( graph, class_registration.ClassType.BACK_REPLACER) for_graph_and_each_sub_graph_recursively(graph, remove_const_ops) CreateConstNodesReplacement().find_and_replace_pattern(graph) for_graph_and_each_sub_graph_recursively(graph, remove_output_ops) weights, xml_string = prepare_emit_ir(graph=graph, data_type=precision, output_dir=output_dir, output_model_name=output_model_name, meta_info={'unset': []}) return weights, xml_string
def driver(argv: argparse.Namespace, proto_file_name: str, model_file_name: str, output_model_name: str, output_dir: str, caffe_proto_path: str, mean_file: str = "", mean_file_offsets: tuple = None, custom_layers_mapping_path: str = None): log_step(argv.steps, 'LOAD') meta_info = get_meta_info(argv) caffe_pb2 = loader.import_caffe_pb2(caffe_proto_path) proto, model = loader.load_caffe_proto_model(caffe_pb2, proto_file_name, model_file_name) update_extractors_with_extensions( caffe_type_extractors, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.disable_flattening_optional_params if hasattr( argv, 'disable_flattening_optional_params') else False) try: graph, original_shapes = loader.caffe_pb_to_nx(proto, model) except ValueError as e: raise Error( 'Invalid prototxt file: value error {}. ' + refer_to_faq_msg(11), str(e)) from e log.debug("After caffe_pb_to_nx") graph.print_graph_stat() graph.check_empty_graph('load_caffe_proto_model') graph.__setattr__('proto_path', proto_file_name) graph.__setattr__('caffemodel_path', model_file_name) graph.__setattr__('name', getattr(proto, 'name', None) or output_model_name) graph.graph['layout'] = 'NCHW' graph.graph['cmd_params'] = argv graph.graph['fw'] = 'caffe' if graph.graph['cmd_params'].generate_experimental_IR_V10: version = 10 else: version = 6 graph.graph[ 'ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version custom_layers_map = custom_layers_mapping.load_layers_xml( custom_layers_mapping_path) custom_layers_mapping.update_extractors( caffe_type_extractors, custom_layers_map, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.enable_flattening_nested_params if hasattr( argv, 'enable_flattening_nested_params') else False) extract_node_attrs( graph, lambda node: caffe_extractor( node, check_for_duplicates(caffe_type_extractors))) # --------------------------------- LOAD END ------------------------------------------------------ log_step(argv.steps, 'FRONT') class_registration.apply_replacements( graph, class_registration.ClassType.FRONT_REPLACER) log_step(argv.steps, 'MIDDLE') class_registration.apply_replacements( graph, class_registration.ClassType.MIDDLE_REPLACER) # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes mark_unfused_nodes(graph, argv.finegrain_fusing) # need this pass even without fusing to convert scale with 2 inputs convert_scale_shift_to_mul_add(graph) graph_clean_up(graph) if not argv.disable_fusing: convert_bn_to_mul_add(graph) graph_clean_up(graph) fuse_mul_add_sequence(graph) graph_clean_up(graph) fuse_linear_ops(graph) graph_clean_up(graph) if not argv.disable_resnet_optimization: stride_optimization(graph) convert_muladd_to_scaleshift(graph) convert_matmul_to_fully_connected(graph) batch_norm_fuse(graph) convert_add_or_mul_to_scaleshift(graph) # scale = 1 graph_clean_up(graph) log.debug("After graph_cleanup") graph.print_graph_stat() if argv.reverse_input_channels: reverse_input_channels(graph) if argv.move_to_preprocess: move_scaleshift_to_preprocess(graph) graph_clean_up(graph) FuseReshapesSequence().find_and_replace_pattern(graph) RemoveRedundantReshapes().find_and_replace_pattern(graph) input_names = find_inputs(graph) mf = [] try: if mean_file and len(original_shapes) == 1: mf = loader.parse_mean(mean_file, original_shapes[input_names[0]], mean_file_offsets, caffe_pb2) elif mean_file: raise Error( 'Mean file for topologies with multiple inputs is not supported. ' + refer_to_faq_msg(9)) except ValueError as e: raise Error( 'Cannot load or process mean file: value error {}. ' + refer_to_faq_msg(10), str(e)) from e merge_nodes_permutations(graph) permute_data_nodes_attrs(graph) permute_op_nodes_attrs(graph) graph_clean_up(graph) log_step(argv.steps, 'BACK') class_registration.apply_replacements( graph, class_registration.ClassType.BACK_REPLACER) remove_const_ops(graph) CreateConstNodesReplacement().find_and_replace_pattern(graph) remove_output_ops(graph) log_step(argv.steps, 'EMIT') prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name, mean_data=mf, input_names=input_names, meta_info=meta_info) return 0
def extract(cls, loop_node): Loop.update_node_stat(loop_node, {}) loop_name = loop_node.soft_get('name', loop_node.id) # check that required body and condition functions exist in the graph library main_graph = loop_node.graph body_graph_name = loop_node.pb.attr['body'].func.name cond_graph_name = loop_node.pb.attr['cond'].func.name assert 'library' in main_graph.graph, 'The graph does not contain a library that is required ' \ 'by node with name "{}".'.format(loop_name) library_graph = main_graph.graph['library'] assert body_graph_name in library_graph, 'The library does not contain a function with name "{}" ' \ 'that is required by node ' \ 'with name "{}".'.format(body_graph_name, loop_name) body_graph_proto = library_graph[body_graph_name] assert cond_graph_name in library_graph, 'The library does not contain a function with name "{}" ' \ 'that is required by node ' \ 'with name "{}".'.format(cond_graph_name, loop_name) cond_graph_proto = library_graph[cond_graph_name] body_graph = Graph() # fill the body graph for attr_key in main_graph.graph.keys(): if attr_key != 'library': body_graph.graph[attr_key] = copy.deepcopy(main_graph.graph[attr_key]) else: # it is sufficient to have a link to the library body_graph.graph['library'] = main_graph.graph['library'] loop_node['body'] = body_graph # create Parameter nodes for the body graph body_parameters = [] body_parameter_names = [] for idx, pb_node in enumerate(body_graph_proto['input_arg']): param_id = body_graph.unique_id(pb_node.name) body_graph.add_node(param_id, name=param_id, kind='op', op='Parameter', pb=None, shape=None) parameter_node = Node(body_graph, pb_node.name) Parameter.update_node_stat(parameter_node, {'data_type': tf_dtype_extractor(pb_node.type), 'permute_attrs': PermuteAttrs().update_attrs(attrs=[('shape', 'output:0')])} ) body_parameters.append(parameter_node) body_parameter_names.append(param_id) # update the loop body graph with the body function graph body_results = [] update_body_graph(body_graph, body_graph_proto, body_parameter_names, body_results) # update the loop body graph with the condition function graph update_body_graph(body_graph, cond_graph_proto, body_parameter_names, body_results) # add 'internal_layer_id' attribute which is a must have attribute for the loop body node for idx, body_node in enumerate(body_graph.get_op_nodes()): body_node['internal_layer_id'] = idx body_graph.stage = 'front' # Currently, # Loop Inputs Order: # 0 - current iteration # 1 - trip count # 2.. - "loop carried" dependencies variables # # Body Inputs Order: # 0 - current iteration # 1 - trip count # 2.. - "loop carried" dependencies variables # # Body Outputs Order: # 0 - current iteration # 1 - trip count # 2.. - "loop carried" dependencies variables # # Loop Outputs Order: # 0 - current iteration # 1 - trip count # 2.. - "loop carried" dependencies variables # # so inputs must be reordered and execution condition must be created in the front transformation # to be aligned with the specification # connect external input ports with body parameter nodes except current iteration # since it must be disconnected from external port for idx in range(1, len(body_parameters)): Loop.connect_body_input(loop_node, idx, body_parameters[idx]) # mark current iteration input Parameter node and execution condition Result node Loop.mark_current_iteration_parameter_node(loop_node, body_parameters[0]) Loop.mark_execution_condition_result_node(loop_node, body_results[-1]) # connect back edges in the body except current iteration for idx in range(1, len(body_parameters)): Loop.add_back_edge(loop_node, body_parameters[idx], body_results[idx]) # connect body outputs with Loop operation output ports except the execution condition result for idx in range(len(body_results)-1): Loop.connect_body_output(loop_node, idx, body_results[idx]) # run function to parse body nodes attributes similar to the main graph extract_node_attrs(body_graph, lambda node: tf_op_extractor(node, check_for_duplicates(tf_op_extractors))) return cls.enabled
def driver(argv: argparse.Namespace, input_model: str, output_model_name: str, outputs: list, output_dir: str, scale: float, placeholder_shapes: [None, list, np.array] = None, mean_scale_values: [dict, list] = ()): meta_info = get_meta_info(argv) try: model_nodes, model_params, model_name, iteration_number = load_symbol_def(input_model, argv.input_symbol, argv.input, argv.nd_prefix_name, argv.pretrained_model_name, argv.legacy_mxnet_model) except (ValueError, mxnet.base.MXNetError) as e: raise FrameworkError( 'The following error happened while loading mxnet model {}: {}. ' + refer_to_faq_msg(53), input_model, str(e) ) from e if argv.nd_prefix_name and argv.pretrained_model_name and argv.save_params_from_nd: save_params_file(model_name, model_params._arg_params, model_params._aux_params, iteration_number) update_extractors_with_extensions(mxnet_op_extractors) graph = symbol2nx(model_nodes, model_params, argv.input) check_empty_graph(graph, 'symbol2nx. It may happen due to problems with loaded model') graph.__setattr__('name', output_model_name) graph.graph['layout'] = 'NCHW' graph.graph['cmd_params'] = argv graph.graph['fw'] = 'mxnet' graph.graph['feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3 graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 4 graph = extract_node_attrs(graph, mxnet_op_extractor) check_softmax_node_inputs(graph) user_shapes, packed_outputs, _ = user_data_repack(graph, placeholder_shapes, outputs, None) output_op_nodes = add_output_ops(graph, packed_outputs) input_op_nodes = add_input_ops(graph, user_shapes, True) try: override_placeholder_shapes(graph, user_shapes, argv.batch) except ValueError as err: raise Error( 'The following error happened while processing input shapes: {}. ' + refer_to_faq_msg(54), str(err) ) from err check_empty_graph(graph, 'add_output_ops and add_input_ops') class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER) add_input_data_to_prior_boxes(graph, argv.input) graph = create_tensor_nodes(graph) graph_clean_up(graph) remove_output_ops(graph) mark_outputs(graph) remove_output_ops(graph) graph_clean_up(graph) log.debug("After removing specific nodes for output") print_graph_stat(graph) graph = partial_infer(graph) graph_clean_up(graph) check_empty_graph(graph, 'partial_infer') duplicate_shared_weights(graph) scale_input(graph, scale) add_mean_scale_values(graph, mean_scale_values) remove_op_nodes(graph, {'identity': True}) graph_clean_up(graph) class_registration.apply_replacements(graph, class_registration.ClassType.MIDDLE_REPLACER) fuse_pad(graph) # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes mark_unfused_nodes(graph, argv.finegrain_fusing) # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence convert_batch_norm(graph) graph_clean_up(graph) if not argv.disable_fusing: # Converting ScaleShift layer to Mul->Add convert_scale_shift_to_mul_add(graph) graph_clean_up(graph) # Fusing the sequences of Mul/Add operations fuse_mul_add_sequence(graph) graph_clean_up(graph) # Fusing linear operation to Convolution fuse_linear_ops(graph) graph_clean_up(graph) if not argv.disable_resnet_optimization: stride_optimization(graph) fuse_pad(graph) # Converting Mul->Add to ScaleShift node convert_muladd_to_scaleshift_or_power(graph) graph_clean_up(graph) convert_mul_add_to_power(graph) convert_add_to_scaleshift(graph) # scale = 1 convert_mul_to_scaleshift(graph) # biases = 0 if argv.reverse_input_channels: reverse_input_channels(graph) if argv.move_to_preprocess: move_scaleshift_to_preprocess(graph) graph_clean_up(graph) pattern = EltwiseInputNormalize() pattern.find_and_replace_pattern(graph) class_registration.apply_replacements(graph, class_registration.ClassType.BACK_REPLACER) prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name, meta_info=meta_info) return 0
def driver(argv, input_model, output_model_name, output_dir): log_step(argv.steps, 'LOAD') meta_info = get_meta_info(argv) EltwiseChecker.enabled = False try: graph = load_kaldi_model(input_model) except Exception as e: raise Error('Model Optimizer is not able to parse Kaldi model {}. '.format(input_model) + refer_to_faq_msg(91)) from e graph.check_empty_graph('load_kaldi_nnet_model') graph.graph['cmd_params'] = argv graph.graph['fw'] = 'kaldi' if graph.graph['cmd_params'].generate_experimental_IR_V10: version = 10 else: version = 6 graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version update_extractors_with_extensions(kaldi_type_extractors) extract_node_attrs(graph, lambda node: kaldi_extractor(node)) # --------------------------------- LOAD END ------------------------------------------------------ log_step(argv.steps, 'FRONT') ReplaceLSTMNodePattern().find_and_replace_pattern(graph) class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER) log_step(argv.steps, 'MIDDLE') graph = partial_infer(graph) ReplacePNormNodePattern().find_and_replace_pattern(graph) ReplaceMemoryOffsetNodePattern().find_and_replace_pattern(graph) ReplaceMemoryOffsetWithMemoryNodePattern().find_and_replace_pattern(graph) RemoveMemoryDuplicationPattern().find_and_replace_pattern(graph) MergeNeighborSplicePattern().find_and_replace_pattern(graph) RemoveUselessCropsPattern().find_and_replace_pattern(graph) RemoveIdentity().find_and_replace_pattern(graph) graph_clean_up(graph) AddSelectBeforeMemoryNodePattern().find_and_replace_pattern(graph) ReplaceSpliceNodePattern().find_and_replace_pattern(graph) graph_clean_up(graph) # The order is intentional, firstly eliminate repeated, then remove redundant FuseRepeatedReshapes().find_and_replace_pattern(graph) EliminateRedundantReshape().find_and_replace_pattern(graph) graph_clean_up(graph) graph.check_empty_graph('partial_infer') if argv.counts: try: counts = read_counts_file(argv.counts) except Exception as e: raise Error('Model Optimizer is not able to read counts file {}'.format(argv.counts) + refer_to_faq_msg(92)) from e apply_biases_to_last_layer(graph, counts) if argv.remove_output_softmax: RemoveLastSoftMaxPattern().find_and_replace_pattern(graph) graph_clean_up(graph) log.debug("After removing softmax") graph.print_graph_stat() log_step(argv.steps, 'BACK') LeakyReluToReluWithNegativeSlope().find_and_replace_pattern(graph) TransposeToPermute().find_and_replace_pattern(graph) DivideToEltwises().find_and_replace_pattern(graph) SubtractToEltwises().find_and_replace_pattern(graph) SimpleEltwiseToEltwiseOp().find_and_replace_pattern(graph) for_graph_and_each_sub_graph_recursively(graph, convert_matmul_to_fully_connected) # Intentionally after all transformations if argv.remove_memory: CutMemory().find_and_replace_pattern(graph) graph_clean_up(graph) ParameterToInput().find_and_replace_pattern(graph) KaldiRemoveMemoryOutputBackReplacementPattern().find_and_replace_pattern(graph) ForceStrictPrecision().find_and_replace_pattern(graph) remove_const_ops(graph) CreateConstNodesReplacement().find_and_replace_pattern(graph) remove_output_ops(graph) log_step(argv.steps, 'EMIT') prepare_emit_ir(graph, argv.data_type, output_dir, output_model_name, meta_info=meta_info) return 0
def tf2nx(argv: argparse.Namespace, model_file_name: str, output_model_name: str, output_dir: str, is_binary: bool): """ Convert TF GraphDef object to NetworkX representation. The resulting graph is still TF-specific and needs normalization passes to be applied. The specific TF structure assumes each GraphDef node is converted to a single NetworkX node, node id is an original TF node name, and edges go directly from one op to another op. """ meta_info = get_meta_info(argv) if argv.tensorflow_custom_layer_libraries: libraries = argv.tensorflow_custom_layer_libraries.split(',') for library in libraries: log.info( 'Loading library "{}" with custom operations'.format(library)) tf.load_op_library(library) graph_def, variables_values = load_tf_graph_def( graph_file_name=model_file_name, is_binary=is_binary, checkpoint=argv.input_checkpoint, user_output_node_names_list=argv.output, model_dir=argv.saved_model_dir, meta_graph_file=argv.input_meta_graph, saved_model_tags=argv.saved_model_tags) try: tf.import_graph_def(graph_def, name='') except: log.warning( "TensorFlow post-processing of loaded model was unsuccessful. " "This is an optional step that Model Optimizer performs for any input model but it is not usually " "required for all models." "It likely means that the original model is ill-formed. " "Model Optimizer will continue converting this model.") log.debug("Number of nodes in graph_def: {}".format(len(graph_def.node))) # pylint: disable=no-member if argv.tensorboard_logdir: tensorboard.dump_for_tensorboard(graph_def, argv.tensorboard_logdir) update_extractors_with_extensions(tf_op_extractors) try: graph = protobuf2nx(graph_def) graph.__setattr__('name', output_model_name) # 'layout' parameter change may cause an issue in EltwiseInputReshape replacer # and convert_nhwc_to_nchw(graph) graph.graph['layout'] = 'NCHW' if argv.disable_nhwc_to_nchw else 'NHWC' graph.graph['cmd_params'] = argv graph.graph['fw'] = 'tf' if graph.graph['cmd_params'].generate_experimental_IR_V10: version = 10 else: version = 6 graph.graph[ 'ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version graph.graph['variables_values'] = variables_values del variables_values graph = restore_edges(graph, get_tf_edges) graph = remove_control_dependency_inputs(graph) except Exception as e: raise Error( 'Cannot pre-process TensorFlow graph after reading from model file "{}". ' \ 'File is corrupt or has unsupported format. Details: {}. ' + refer_to_faq_msg(44), model_file_name, str(e) ) from e graph.check_empty_graph( 'protobuf2nx. It may happen due to problems with loaded model') extract_node_attrs( graph, lambda node: tf_op_extractor( node, check_for_duplicates(tf_op_extractors))) # --------------------------------- LOAD END ------------------------------------------------------ class_registration.apply_replacements(graph, [ class_registration.ClassType.FRONT_REPLACER, class_registration.ClassType.MIDDLE_REPLACER, class_registration.ClassType.BACK_REPLACER ]) prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name, meta_info=meta_info) return 0
def driver(argv: argparse.Namespace, proto_file_name: str, model_file_name: str, output_model_name: str, output_dir: str, caffe_proto_path: str, custom_layers_mapping_path: str = None): meta_info = get_meta_info(argv) caffe_pb2 = loader.import_caffe_pb2(caffe_proto_path) proto, model = loader.load_caffe_proto_model(caffe_pb2, proto_file_name, model_file_name) update_extractors_with_extensions( caffe_type_extractors, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.disable_flattening_optional_params if hasattr( argv, 'disable_flattening_optional_params') else False) try: graph, original_shapes = loader.caffe_pb_to_nx(proto, model) except ValueError as e: raise Error( 'Invalid prototxt file: value error {}. ' + refer_to_faq_msg(11), str(e)) from e graph.check_empty_graph('load_caffe_proto_model') graph.__setattr__('proto_path', proto_file_name) graph.__setattr__('caffemodel_path', model_file_name) graph.__setattr__('name', getattr(proto, 'name', None) or output_model_name) graph.graph['layout'] = 'NCHW' graph.graph['cmd_params'] = argv graph.graph['fw'] = 'caffe' if graph.graph['cmd_params'].generate_experimental_IR_V10: version = 10 else: version = 6 graph.graph[ 'ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version graph.graph['original_shapes'] = original_shapes graph.graph['caffe_pb2'] = caffe_pb2 custom_layers_map = custom_layers_mapping.load_layers_xml( custom_layers_mapping_path) custom_layers_mapping.update_extractors( caffe_type_extractors, custom_layers_map, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.enable_flattening_nested_params if hasattr( argv, 'enable_flattening_nested_params') else False) extract_node_attrs( graph, lambda node: caffe_extractor( node, check_for_duplicates(caffe_type_extractors))) # --------------------------------- LOAD END ------------------------------------------------------ class_registration.apply_replacements(graph, [ class_registration.ClassType.FRONT_REPLACER, class_registration.ClassType.MIDDLE_REPLACER, class_registration.ClassType.BACK_REPLACER ]) prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name, mean_data=graph.graph['mf'], input_names=graph.graph['input_names'], meta_info=meta_info) return 0
def extract(cls, loop_node): Loop.update_node_stat(loop_node, {}) body_graph_proto = onnx_attr(loop_node, 'body', 'g', None) main_graph = loop_node.graph # create a Graph object for the body and take graph attributes from the main graph body_graph = Graph() main_graph_attrs_copy = copy.deepcopy(main_graph.graph) del main_graph_attrs_copy['tensor_mapping'] body_graph.graph.update(main_graph_attrs_copy) loop_node['body'] = body_graph # maps a tensor name to a node produced it and the node port: str -> (node_id, node_port) data_nodes_map = {} body_graph.graph[ 'tensor_mapping'] = data_nodes_map # save mapping for possible Loop inside the Loop body_parameters = add_initializers_and_inputs_to_graph( body_graph, body_graph_proto, data_nodes_map) external_edges = [ ] # (src_node, src_out_port), dest_body_parameter_node additional_params = { } # (src_node, src_out_port) -> parameter_node (for manually added Parameters) # Go through all nodes in the original model order because data nodes are defined on-the-fly and order matters for pb_node in body_graph_proto.node: # create an NX node id = body_graph.unique_id(node_id(pb_node)) body_graph.add_node(id, pb=pb_node, kind='op') # add incoming edges based on data_nodes_map for dst_port, inp in enumerate(pb_node.input): # should add edge inp --> id if inp not in data_nodes_map: if inp == '': # input is omitted; most likely it corresponds to an optional input for an operator continue elif inp in main_graph.graph['tensor_mapping']: log.debug( 'The edge between outer and inner graphs detected: {} -> {}' .format(inp, id)) if main_graph.graph['tensor_mapping'][ inp] not in additional_params: # create new Parameter body node and connect the body node with the outer graph using it param_id = str(inp) body_graph.add_node(param_id, kind='op', op='Parameter', name=param_id, pb=None, shape=None) parameter_node = Node(body_graph, param_id) # need to manually update necessary attrs for the node because extractor will not be called # for it because the node does not have .pb attribute Parameter.update_node_stat(parameter_node, {}) external_edges.append( (main_graph.graph['tensor_mapping'][inp], parameter_node)) src_id, src_port = param_id, 0 additional_params[main_graph.graph[ 'tensor_mapping'][inp]] = parameter_node else: src_id, src_port = additional_params[ main_graph.graph['tensor_mapping'][inp]].id, 0 else: raise Error( 'Reference to "{}" is not satisfied. A node refer not existing data tensor. ONNX ' 'model is not consistent. Protobuf fragment: {}', inp, pb_node) else: src_id, src_port = data_nodes_map[inp] assert (body_graph.has_node(src_id)) edge_attrs = { 'out': src_port, 'in': dst_port, 'name': inp, 'fw_tensor_debug_info': [(inp, inp)], 'in_attrs': ['in', 'name'], 'out_attrs': ['out', 'name'], 'data_attrs': ['fw_tensor_debug_info'] } body_graph.add_edge(src_id, id, **edge_attrs) # add outgoing edges to data_nodes_map for src_port, out in enumerate(pb_node.output): if out in data_nodes_map: log.debug("Detected reuse of blob {}.".format(out)) data_nodes_map[out] = (id, src_port) body_results = [] for output in body_graph_proto.output: tensor_name = str(output.name) node_name, output_port = data_nodes_map[tensor_name] assert body_graph.has_node( node_name ), 'The body graph does not contain output with name "{}"'.format( node_name) body_results.append( Node(body_graph, add_opoutput(body_graph, node_name, output_port, False))) # add 'internal_layer_id' attribute which is a must have attribute for the loop body node for idx, body_node in enumerate(body_graph.get_op_nodes()): body_node['internal_layer_id'] = idx loop_carried_dependencies_count = len(body_graph_proto.input) - 2 scan_outputs_count = len( body_graph_proto.output) - 1 - loop_carried_dependencies_count # Loop inputs: # 0 - trip count # 1 - execution condition # 2 .. - loop carried dependencies # Loop outputs: # 0 .. loop_carried_dependencies_count - 1 - loop carried dependencies # loop_carried_dependencies_count .. - scan outputs # Body inputs: # 0 - iteration number # 1 - execution condition # 2 .. - loop carried dependencies # Body outputs: # 0 - execution condition # 1 .. loop_carried_dependencies_count - loop carried dependencies # loop_carried_dependencies_count + 1 .. - scan outputs body_graph.stage = 'front' # some of the inputs/outputs may not be connected but the normalization transformation will take care of it # connection Loop body nodes with external input edges next_loop_input_port_idx = sorted(loop_node.in_edges().keys())[-1] + 1 for (src_node, src_port), body_node in external_edges: main_graph.add_edge( src_node, loop_node.id, **{ 'out': src_port, 'in': next_loop_input_port_idx, 'name': src_node, 'fw_tensor_debug_info': [(src_node, src_node)], 'in_attrs': ['in', 'name'], 'out_attrs': ['out', 'name'], 'data_attrs': ['fw_tensor_debug_info'] }) connect_body_input(loop_node, next_loop_input_port_idx, body_node) next_loop_input_port_idx += 1 # mark current iteration input Parameter node Loop.mark_current_iteration_parameter_node(loop_node, body_parameters[0]) # connect initial value for "execution condition" input of the loop connect_body_input(loop_node, 1, body_parameters[1]) # add back edge with "execution condition" Loop.add_back_edge(loop_node, body_parameters[1], body_results[0]) # mark "execution condition" Result node Loop.mark_execution_condition_result_node(loop_node, body_results[0]) # connect initial value for "loop carried" dependencies variables for idx in range(loop_carried_dependencies_count): connect_body_input(loop_node, idx + 2, body_parameters[idx + 2]) # add back edge for "loop carried" dependencies variables for idx in range(loop_carried_dependencies_count): Loop.add_back_edge(loop_node, body_parameters[idx + 2], body_results[idx + 1]) # connect final value for "loop carried" dependencies variables for idx in range(loop_carried_dependencies_count): connect_body_output(loop_node, idx, body_results[idx + 1]) # connect "scan outputs" and mark axis for concatenation for idx in range(loop_carried_dependencies_count, loop_carried_dependencies_count + scan_outputs_count): connect_body_output(loop_node, idx, body_results[idx + 1], axis=0) # run function to parse body nodes attributes similar to the main graph extract_node_attrs( body_graph, lambda node: onnx_op_extractor( node, check_for_duplicates(onnx_op_extractors))) return cls.enabled
def extract(cls, loop_node): Loop.update_node_stat(loop_node, {}) # check that required body and condition functions exist in the graph library main_graph = loop_node.graph body_graph_proto = get_graph_proto(main_graph, 'body', loop_node) cond_graph_proto = get_graph_proto(main_graph, 'cond', loop_node) body_graph = create_internal_graph(main_graph) loop_node['body'] = body_graph # create Parameter nodes for the body graph body_parameters, body_parameter_names = convert_graph_inputs_to_parameters( body_graph, body_graph_proto) # update the loop body graph with the body function graph body_results = [] update_body_graph(body_graph, body_graph_proto, body_parameter_names, body_results) # update the loop body graph with the condition function graph update_body_graph(body_graph, cond_graph_proto, body_parameter_names, body_results) # add 'internal_layer_id' attribute which is a must have attribute for the loop body node for idx, body_node in enumerate(body_graph.get_op_nodes()): body_node['internal_layer_id'] = idx body_graph.stage = 'front' # Currently, # Loop Inputs Order: # 0 - current iteration # 1 - trip count # 2.. - "loop carried" dependencies variables # # Body Inputs Order: # 0 - current iteration # 1 - trip count # 2.. - "loop carried" dependencies variables # # Body Outputs Order: # 0 - current iteration # 1 - trip count # 2.. - "loop carried" dependencies variables # # Loop Outputs Order: # 0 - current iteration # 1 - trip count # 2.. - "loop carried" dependencies variables # # so inputs must be reordered and execution condition must be created in the front transformation # to be aligned with the specification # connect external input ports with body parameter nodes except current iteration # since it must be disconnected from external port for idx in range(1, len(body_parameters)): Loop.connect_body_input(loop_node, idx, body_parameters[idx]) # mark current iteration input Parameter node and execution condition Result node Loop.mark_current_iteration_parameter_node(loop_node, body_parameters[0]) Loop.mark_execution_condition_result_node(loop_node, body_results[-1]) # connect back edges in the body except current iteration for idx in range(1, len(body_parameters)): Loop.add_back_edge(loop_node, body_parameters[idx], body_results[idx]) # connect body outputs with Loop operation output ports except the execution condition result for idx in range(len(body_results) - 1): Loop.connect_body_output(loop_node, idx, body_results[idx]) # run function to parse body nodes attributes similar to the main graph extract_node_attrs( body_graph, lambda node: tf_op_extractor( node, check_for_duplicates(tf_op_extractors))) return cls.enabled
def driver(argv, input_model, output_model_name, outputs, output_dir, scale, placeholder_shapes=None, mean_scale_values=()): meta_info = get_meta_info(argv) EltwiseChecker.enabled = False try: graph, input_shapes = load_kaldi_model(input_model) except Exception as e: raise Error('Model Optimizer is not able to read Kaldi model {}. '. format(input_model) + refer_to_faq_msg(91)) from e check_empty_graph(graph, 'load_kaldi_nnet_model') graph.graph['cmd_params'] = argv graph.graph['fw'] = 'kaldi' graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 4 update_extractors_with_extensions(kaldi_type_extractors) extract_node_attrs(graph, lambda node: kaldi_extractor(node)) class_registration.apply_replacements( graph, class_registration.ClassType.FRONT_REPLACER) output_op_nodes = add_output_ops( graph, outputs) # TODO pass real outputs instead of None log.debug("After adding specific nodes for outputs") print_graph_stat(graph) check_empty_graph(graph, 'add_output_ops') create_tensor_nodes(graph) graph_clean_up(graph) log.debug("After removing specific nodes for output") print_graph_stat(graph) override_placeholder_shapes(graph, placeholder_shapes) override_batch(graph, argv.batch) graph_clean_up(graph) log.debug("After setting input shapes") print_graph_stat(graph) graph_clean_up(graph) remove_output_ops(graph) log.debug("After removing specific nodes for output") print_graph_stat(graph) # You need to pass required network outputs here # but we don't have a way yet, so just passing all discovered sinks mark_outputs(graph) graph_clean_up(graph) log.debug("After graph_cleanup") print_graph_stat(graph) graph = partial_infer(graph) # The order is intentional, firstly eliminate repeated, then remove redundant FuseRepeatedReshapes().find_and_replace_pattern(graph) EliminateRedundantReshape().find_and_replace_pattern(graph) check_empty_graph(graph, 'partial_infer') if argv.counts: try: counts = read_counts_file(argv.counts) except Exception as e: raise Error('Model Optimizer is not able to read counts file {}'. format(argv.counts) + refer_to_faq_msg(92)) from e apply_biases_to_last_layer(graph, counts) if argv.remove_output_softmax: RemoveLastSoftMaxPattern().find_and_replace_pattern(graph) graph_clean_up(graph) log.debug("After removing softmax") print_graph_stat(graph) # Intentionally after all transformations KaldiRemoveMemoryOutputBackReplacementPattern().find_and_replace_pattern( graph) prepare_emit_ir(graph, argv.data_type, output_dir, output_model_name, meta_info=meta_info) return 0
def load(self, graph: Graph): argv = graph.graph['cmd_params'] if argv.tensorflow_custom_layer_libraries: libraries = argv.tensorflow_custom_layer_libraries.split(',') for library in libraries: log.info('Loading library "{}" with custom operations'.format( library)) tf_v1.load_op_library(library) graph_def, variables_values, framework = load_tf_graph_def( graph_file_name=argv.input_model, is_binary=not argv.input_model_is_text, checkpoint=argv.input_checkpoint, user_output_node_names_list=argv.output, model_dir=argv.saved_model_dir, meta_graph_file=argv.input_meta_graph, saved_model_tags=argv.saved_model_tags) send_framework_info(framework) try: tf_v1.import_graph_def(graph_def, name='') except: log.warning( "TensorFlow post-processing of loaded model was unsuccessful. " "This is an optional step that Model Optimizer performs for any input model but it is not usually " "required for all models. " "It likely means that the original model is ill-formed. " "Model Optimizer will continue converting this model.") log.debug("Number of nodes in graph_def: {}".format(len( graph_def.node))) # pylint: disable=no-member if argv.tensorboard_logdir: tensorboard_util.dump_for_tensorboard(graph_def, argv.tensorboard_logdir) update_extractors_with_extensions(tf_op_extractors) try: protobuf2nx(graph, graph_def) except Exception as e: raise Error( 'Cannot pre-process TensorFlow graph after reading from model file "{}". ' \ 'File is corrupt or has unsupported format. Details: {}. ' + refer_to_faq_msg(44), argv.model_name, str(e) ) from e graph.__setattr__('name', argv.model_name) # 'layout' parameter change may cause an issue in EltwiseInputReshape replacer # and convert_nhwc_to_nchw(graph) graph.graph['layout'] = 'NCHW' if argv.disable_nhwc_to_nchw else 'NHWC' graph.graph['fw'] = 'tf' graph.graph['variables_values'] = variables_values del variables_values used_tensors = restore_edges(graph, get_tf_edges) # Tensor names information corresponding to a node is stored on outgoing edges. # As output nodes do not have outgoing edges, fake outputs are required. In the following code # for each output Identity node is added, and tensor name for the output is kept # on (output, fake output) edge. After Result nodes adding transformation fake outputs # are deleted from graph. add_outputs_identity( graph, graph.nodes - used_tensors, lambda g, output, fake_node_name: g.add_edges_from( [create_tf_edge(output, fake_node_name, 0)])) remove_control_dependency_inputs(graph) graph.check_empty_graph( 'protobuf2nx. It may happen due to problems with loaded model') extract_node_attrs( graph, lambda node: tf_op_extractor( node, check_for_duplicates(tf_op_extractors))) # try to detect layout from the nodes of the graph. If there are no convolution nodes in N(D)HWC layout then we # consider that the graph is in NCHW layout and no layout conversion should be performed if not argv.disable_nhwc_to_nchw and not argv.silent and not graph_or_sub_graph_has_nhwc_ops( graph): log.error( 'The TensorFlow model does not contain Convolution operations with N(D)HWC layout. Most likely ' 'the model should be converted using additional "--disable_nhwc_to_nchw" command line parameter ' 'which disables model layout conversion inside the Model Optimizer.', extra={'is_warning': True}) send_op_names_info(framework, graph) send_shapes_info(framework, graph)
def driver(argv: argparse.Namespace, proto_file_name: str, model_file_name: str, output_model_name: str, outputs: list, output_dir: str, scale: float, user_shapes: [None, list, np.array] = None, mean_scale_values: [dict, list] = (), mean_file: str = "", mean_file_offsets: tuple = None, custom_layers_mapping_path: str = None): meta_info = get_meta_info(argv) FusePermutesSequence.enabled = False proto, model = loader.load_caffe_proto_model(proto_file_name, model_file_name) update_extractors_with_extensions( caffe_type_extractors, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.disable_flattening_optional_params if hasattr( argv, 'disable_flattening_optional_params') else False) try: graph, original_shapes = loader.caffe_pb_to_nx(proto, model) except ValueError as e: raise Error( 'Invalid prototxt file: value error {}. ' + refer_to_faq_msg(11), str(e)) from e log.debug("After caffe_pb_to_nx") print_graph_stat(graph) check_empty_graph(graph, 'load_caffe_proto_model') graph.__setattr__('proto_path', proto_file_name) graph.__setattr__('caffemodel_path', model_file_name) graph.__setattr__('name', getattr(proto, 'name', None) or output_model_name) graph.graph['layout'] = 'NCHW' graph.graph['cmd_params'] = argv graph.graph['fw'] = 'caffe' graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 4 extract_node_attrs(graph, lambda node: (True, common_caffe_fields(node))) log.debug("After adding specific nodes for outputs") print_graph_stat(graph) custom_layers_map = custom_layers_mapping.load_layers_xml( custom_layers_mapping_path) custom_layers_mapping.update_extractors( caffe_type_extractors, custom_layers_map, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.enable_flattening_nested_params if hasattr( argv, 'enable_flattening_nested_params') else False) extract_node_attrs( graph, lambda node: caffe_extractor( node, check_for_duplicates(caffe_type_extractors))) log.debug("After extract_node_attr") print_graph_stat(graph) packed_user_shapes, packed_outputs, freeze_placeholder = user_data_repack( graph, user_shapes, outputs, argv.freeze_placeholder_with_value) if argv.freeze_placeholder_with_value is not None: FreezePlaceholderValue.enabled = True FreezePlaceholderValue.replacement_dict = freeze_placeholder class_registration.update_registration([FrontReplacementSubgraph]) output_op_nodes = add_output_ops(graph, packed_outputs) input_op_nodes = add_input_ops(graph, packed_user_shapes, True) override_placeholder_shapes(graph, packed_user_shapes) override_batch(graph, argv.batch) graph_clean_up(graph) check_empty_graph(graph, 'add_output_ops and add_input_ops') class_registration.apply_replacements( graph, class_registration.ClassType.FRONT_REPLACER) graph = create_tensor_nodes(graph) log.debug("After create_tensor_nodes") print_graph_stat(graph) remove_op_nodes(graph, {'op': 'Identity'}) remove_output_ops(graph) graph_clean_up(graph) log.debug("After removing specific nodes for output") print_graph_stat(graph) # you need to pass required network outputs here # but we don't have a way yet, so just passing all discovered sinks mark_outputs(graph) graph_clean_up(graph) log.debug("After graph_cleanup") print_graph_stat(graph) graph = partial_infer(graph) log.debug("After partial_infer") print_graph_stat(graph) check_empty_graph(graph, 'partial_infer') duplicate_shared_weights(graph) input_op_nodes = add_input_ops(graph, packed_user_shapes, False) graph_clean_up(graph) check_empty_graph(graph, 'add_input_ops') scale_input(graph, scale) add_mean_scale_values(graph, mean_scale_values) log.debug("Split multi input convolutions") convert_multi_input_conv(graph) graph_clean_up(graph) log.debug("After graph_cleanup") print_graph_stat(graph) remove_op_nodes(graph, {'op': 'Dropout'}) remove_op_nodes(graph, {'phase': 0}) graph_clean_up(graph) class_registration.apply_replacements( graph, class_registration.ClassType.MIDDLE_REPLACER) mean_to_avgpool(graph) # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes mark_unfused_nodes(graph, argv.finegrain_fusing) #need this pass even without fusing to convert scale with 2 inputs convert_scale_shift_to_mul_add(graph) graph_clean_up(graph) if not argv.disable_fusing: convert_bn_to_mul_add(graph) graph_clean_up(graph) fuse_mul_add_sequence(graph) graph_clean_up(graph) fuse_linear_ops(graph) graph_clean_up(graph) if not argv.disable_resnet_optimization: stride_optimization(graph) convert_muladd_to_scaleshift_or_power(graph) convert_matmul_to_fully_connected(graph) batch_norm_fuse(graph) convert_mul_add_to_power(graph) convert_add_to_scaleshift(graph) # scale = 1 convert_mul_to_scaleshift(graph) # biases = 0 graph_clean_up(graph) log.debug("After graph_cleanup") print_graph_stat(graph) if argv.reverse_input_channels: reverse_input_channels(graph) if argv.move_to_preprocess: move_scaleshift_to_preprocess(graph) graph_clean_up(graph) fuse_sequence_of_reshapes(graph) input_names = find_inputs(graph) mf = [] try: if mean_file and len(original_shapes) == 1: mf = loader.parse_mean(mean_file, original_shapes[input_names[0]], mean_file_offsets) elif mean_file: raise Error( 'Mean file for topologies with multiple inputs is not supported. ' + refer_to_faq_msg(9)) except ValueError as e: raise Error( 'Cannot load or process mean file: value error {}. ' + refer_to_faq_msg(10), str(e)) from e class_registration.apply_replacements( graph, class_registration.ClassType.BACK_REPLACER) prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name, mean_data=mf, input_names=input_names, meta_info=meta_info) return 0