def lookup(): if request.method == 'GET': return render_template('homepage.html') elif request.method == 'POST': ticker_symbol = request.form['ticker_symbol'] data = Data() lookup_results = data.lookup(ticker_symbol) return render_template('dashboard.html', lookup_results=lookup_results)
def quote(): if request.method == 'GET': return render_template('homepage.html') elif request.method == 'POST': ticker_symbol = request.form['ticker_symbol'] trade_volume = int(request.form['trade_volume']) data = Data() quote_results = data.quote(ticker_symbol, trade_volume) return render_template('dashboard.html', quote_results=quote_results)
def test_gpp_derivative(): datx = D.dalecData(1096) datdx = D.dalecData(1096) datdx.Cf = datdx.Cf*0.1 lam = 0.00001 mxdxgpp = M.GPP(datx.Cf+lam*datdx.Cf, datx, 0) mxgpp = M.GPP(datx.Cf, datx, 0) Mgpp = M.GPPdiff(datx.Cf, datx, 0) print abs((mxdxgpp-mxgpp)/(Mgpp*lam*datdx.Cf)-1) assert abs(((mxdxgpp-mxgpp) / (Mgpp*lam*datdx.Cf))-1) < 1e-7
def dashboard(): if request.method == 'GET': return render_template('homepage.html') elif request.method == 'POST': look_up_stock = request.form.get('look_up_stock') volume = request.form.get('volume') buy_stock = request.form.get('buy_stock') buy_volume = request.form.get('buy_volume') sell_stock = request.form.get('sell_stock') sell_volume = request.form.get('sell_volume') u = User(session["username"]) users_balance = u.user_balance() users_orders_info = u.user_orders() users_holdings_info = u.user_holdings() data = Data() if volume: volume = int(volume) quote_results = data.quote(look_up_stock, volume) return render_template('dashboard.html', quote_results=quote_results, users_orders_info=users_orders_info, users_holdings_info=users_holdings_info, users_balance=users_balance) elif look_up_stock: lookup_results = data.lookup(look_up_stock) return render_template('dashboard.html', lookup_results=lookup_results, users_orders_info=users_orders_info, users_holdings_info=users_holdings_info, users_balance=users_balance) elif buy_stock: if u.buy(buy_stock, buy_volume): return render_template('dashboard.html', users_orders_info=users_orders_info, users_holdings_info=users_holdings_info, users_balance=users_balance) # This doesn't reload the page with latest data but the order goes through else: return render_template('error.html') elif sell_stock: if u.sell(sell_stock, sell_volume): return render_template('dashboard.html', users_orders_info=users_orders_info, users_holdings_info=users_holdings_info, users_balance=users_balance) # This doesn't reload the page with latest data but the order goes through else: return render_template('error.html') else: error_message = "Your order was not confirmed. Please try again." return render_template('dashboard.html', users_orders_info=users_orders_info, users_holdings_info=users_holdings_info, users_balance=users_balance, message=error_message)
def POST(self): id = web.input().id value = web.input().value if not id or not value: return _response(200, 'no id or value') cfg = _getModel(web.ctx.ip) if not cfg.run: return _response(200, 'not run') for sc in cfg.cases: for scd in sc['data']: if scd['id'] == id: if not scd['resp'] or scd['status'] != '4010': _log.info('4010 redo') return _response(200, 'null') try: scd['status'] = '4010 ' _updatedb(web.ctx.ip, cfg.to_json()) data = 'org=%s&taskName=%s&channel=hywechat&loginType=%s&passWord=%s' \ '&login=%s&extralParams=1001&extralParamsValue=%s&extralParamsA=' \ '&extralParamsValueA=&extralParamsB=&extralParamsValueB=&host=%s&port=%s' \ '&id=%s&timeout=0&signature=&taskey=%s&crawlChange=1000' % ( scd['org'], scd['entry'], scd['logintype'], scd['pwd'], scd['user'], value, cfg.peerip, cfg.peerport, scd['resp']['id'], scd['resp']['taskkey']) sit = _http_post(cfg.server[cfg.envs]['sendtaskurl'], data) singleret = Data() singleret.from_json(sit) tmpp = Data() tmpp.from_json(singleret.result) singleret.result = tmpp scd['resp'] = singleret except: return _response(500, 'single post error') _updatedb(web.ctx.ip, cfg.to_json()) return _response(200, 'ok')
def euclidean_distance(test_data, data_obj): distance = 0 data_list = [data_obj.price, data_obj.weekday(), Data.is_light(data_obj.timestamp) ] test_data = [test_data[1], datetime.fromtimestamp(test_data[2]).weekday(), Data.is_light(test_data[2]) ] for i, elem in enumerate(data_list): distance += pow((Decimal(test_data[i]) - elem), 2) return math.sqrt(distance)
def test_lin_model(): datx = D.dalecData(1096) datdx = D.dalecData(1096) datxdx = D.dalecData(1096) lam = 0.0001 datdx.Clist = lam*0.1*datdx.Clist datxdx.Clist = datxdx.Clist+lam*0.1*datxdx.Clist mxdxgpp = M.Clist(datxdx, 0, 10) mxgpp = M.Clist(datx, 0, 10) Matlist = M.Mlist(datx, 0, 10) Mgpp = M.Clist_lin(datdx, 0, 10, Matlist) print abs(np.linalg.norm(mxdxgpp[10]-mxgpp[10]) / \ np.linalg.norm(Mgpp[10]) - 1) assert abs((np.linalg.norm(mxdxgpp[10]-mxgpp[10]) / \ np.linalg.norm(Mgpp[10]))-1) < 1e-7
def __init__(self, directory: str): self.data = [] self._dir = directory file_names = sorted(fnmatch.filter(os.listdir(self._dir), '*.jpg')) for file_name in file_names: self.data.append(Data(self._dir, file_name.replace('.jpg', '')))
def interfaceCamera(port,dedicatedConnections,orchra,cloudHost, cloudPort): offload = socket.socket(socket.AF_INET,socket.SOCK_STREAM) offload.connect((cloudHost,cloudPort)) print("camera are expected at port",port) s=createNewSocketConnection('0.0.0.0',port) while(True): c, addr = s.accept() while True: try: frameSize = c.recv(1024) imageLength= int(frameSize.decode("utf-8")) c.send((str('True')).encode("utf-8")) i=0 chunk=b'' while(i!=imageLength): imgByte= c.recv(1024) chunk=chunk+imgByte i=i+len(imgByte) if(orchra.atEdge): connectionToUse=orchra.resolution dataResult=sendForComputation(dedicatedConnections[orchra.resolution],frameSize,chunk) else: data=Data(orchra.resolution,chunk) stream=pickle.dumps(data) length=str(len(stream)).encode("utf-8") dataResult=sendForComputation(offload,length,stream) c.send("Helloworld".encode("utf-8")) except: break
def load() -> Tuple[Optional[Data], dict]: response = requests.post(constants.SYNC_ENDPOINT, _prepared_payload()) content = response.json() try: data = Data(**content) return data, content except AttributeError: return None, content
def store(data): session = Session() if Data.compare_last(session, data): item = Data(**data) session.add(item) session.commit() logging.info('Stored!') else: logging.debug('No Changes')
def create_data_entry(entry_type, date, title, subtitle, body): entry = Data(type=entry_type, date=date, title=title, subtitle=subtitle, body=body) session.add(entry) session.commit() return
def get_neighbors(test_data, k=1): Distance.delete().execute() cat = test_data[0] datas = Data.select().where(Data.category == cat) for d in datas: dist = euclidean_distance(test_data, d) Distance.create(distance=dist, data=d) distances = Distance.select().order_by(Distance.distance.desc()).limit(k) return distances
def _parse_block(self, user, block): msg_date = self._get_date(block) msg = self._get_msg(block) if not (msg_date and msg): return data = Data(user=user, date=msg_date, zone='safe') txt = [] content = msg.text_content().strip().split('\n') for index, self.current_line in enumerate(content): self.current_line = self.current_line.strip() if not self.current_line: continue # Первая строка - локация elif not data.location: self._format_location_and_zone(data) # Если строка параметров elif self.PARAMS_REGEXP.match(self.current_line): self._format_km(data) # Если получили локацию, дальше должен идти км # Дополнительно проверяем, не является ли блок пропускаемым elif (data.location and not data.km) or self.check_skipped('all'): return # Проверка, не нужно ли пропустить строку elif self.check_skipped('line'): continue # Обработка полученного хлама elif self.current_line.startswith('Получено'): self._format_received(data) # Обработка полученных бонусов elif self.current_line.startswith('Бонус'): self._format_bonus(data) else: txt.append(self.current_line) # Если получили флаг пропустить блок, или не получили км, или не получили текстовку if not (data.km and txt): return txt = ' '.join(txt) data.txt_id = TXT_DICT_RELATION[txt] self.session.add(data)
def hello(): if request.method == 'POST': data = ast.literal_eval(request.data) user_id = data['user_id'] # 秒 datetime_list = data['datetime'].split(',') longitude_list = data['longitude'].split(',') latitude_list = data['latitude'].split(',') pg_db.connect() pg_db.create_table(Data, True) for i in range(len(datetime_list)): Data.create(user_id=user_id, datetime=datetime.fromtimestamp(int(datetime_list[i])), longitude=float(longitude_list[i]), latitude=float(latitude_list[i])) # print datetime_list[i], longitude_list[i], latitude_list[i] pg_db.close() return jsonify({'code': 0, 'msg': 'ok'}) else: return jsonify({'code': 101, 'msg': 'method error!'})
def track(slug_name): if request.method == 'POST': track_id = session.query(Track).filter_by( slugname=slug_name).first().id ride = Data(driver=request.form['driver'], time=request.form['time'].replace(',', '.'), car=request.form['car'], track_id=track_id, added=datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")) session.add(ride) session.commit() return show_track(slug_name)
def POST(self): cfg = _getModel(web.ctx.ip) if cfg.run: return _response(400, u'测试中') cfg.run = True _log.info("starttest") cfg.sc_run = web.input().sc_run cfg.envs = web.input().envs org = web.input().org _log.info('sc_run:' + cfg.sc_run + ' envs:' + cfg.envs + ' org:' + org) if cfg.envs == '0': cfg.peerip = web.ctx.ip if web.ctx.ip == '127.0.0.1': cfg.peerip = '172.18.40.8' cfg.peerport = '8088' else: cfg.peerip = '' cfg.peerport = '' for testi in cfg.cases: for onetask in testi['data']: if org == 'all' or testi['bank'] == org: data = 'org=%s&taskName=%s&channel=hywechat&loginType=%s&passWord=%s' \ '&login=%s&extralParams=1000&extralParamsValue=&extralParamsA=' \ '&extralParamsValueA=&extralParamsB=&extralParamsValueB=&host=%s&port=%s' \ '&id=&timeout=0&signature=&taskey=&crawlChange=1000' % ( onetask['org'], onetask['entry'], onetask['logintype'], onetask['pwd'], onetask['user'], cfg.peerip, cfg.peerport) try: it = _http_post(cfg.server[cfg.envs]['sendtaskurl'], data) oneret = Data() oneret.from_json(it) tmpp = Data() tmpp.from_json(oneret.result) oneret.result = tmpp except: _log.error(traceback.format_exc()) _testshutdown(web.ctx.ip) return _response(500, 'remote server error') onetask['createtime'] = time.time() onetask['status'] = '100' onetask['rawdata'] = '' onetask['resp'] = oneret _updatedb(web.ctx.ip, cfg.to_json()) return _response(200, "success")
def dataprocess(): with engine.connect() as connection: data = Data() data.create_tables(engine) data.excel_to_database(DATA_SOURCE,connection) data.optimize_tables(connection) connection.close() flash("Connection Closed!") return True
def subscribe(self, identifer, callback: Callback, host: bool): # create session of not exist if identifer not in self.sessions: if host: # create session, it will be updated later by set self.set(identifer, Data("", 0, 0, State.Closed)) else: # throw no session error callback.function(None, callback) return self.sessions[identifer].calbacks.append(callback)
def shownodeinfo(): with engine.connect() as connection: data = Data() nodeinfo_out =[] if request.method == 'GET': if request.args["query"] == "nodeinfo": nodeinfo_out = data.query_one_node_information(connection,request.args['nid']) nodeinfo_out.update({"resulttype":"nodeinfo"}) elif request.args["query"] == "price": nodeinfo_out = data.query_nodes_by_price(connection,request.args['minvalue'],request.args['maxvalue']) nodeinfo_out.update({"resulttype":"price"}) elif request.args["query"] == "age": nodeinfo_out = data.query_nodes_by_age(connection,request.args['minvalue'],request.args['maxvalue']) nodeinfo_out.update({"resulttype":"age"}) else: nodeinfo_out.update({"resulttype":"error"}) #print nodeinfo_out return render_template('server/nodeinfo.html',nodeinfo=json.dumps(nodeinfo_out))
def GET(self, id): if not id: return '' web.header('Content-Type', 'text/json; charset=utf-8', unique=True) cfg = _getModel(web.ctx.ip) for vc in cfg.cases: for vcd in vc['data']: if vcd['id'] == id: try: vi = Data() if vcd.has_key('rawdata'): vi.from_json(vcd['rawdata']) if len(vi.result) == 0 and isinstance(vcd['resp'], types.DictType): vi.from_dict(vcd['resp']) else: vi.from_dict(vcd['resp']) return vi.to_json() except: return vcd['resp'] return ''
def get_all_viajes(): if request.method == 'POST': new_data = Data(request.json['firstName'], request.json['lastName'], request.json['emailAddress'], int(request.json['cardNumber']), int(request.json['pointsQty']), int(request.json['milesQty']), request.json['originCity'], request.json['destinationCity'], request.json['startDate'], request.json['endDate']) db.session.add(new_data) db.session.commit() return 'registro insertado exitosamente' else: return jsonify({'viajes': viajes})
def main(): data = Data.select_by_sql("SELECT * FROM data") limpiar = ['Idioma','País', 'formatos'] for dato in data: sujeto = dato.sujeto predicado = dato.predicado objeto = dato.objeto if predicado in limpiar: limpiador(sujeto, predicado, objeto) else: if predicado == "Materias": review(sujeto, predicado, objeto) else: add_data(sujeto, predicado, objeto)
async def data_save(self, data): data = str(data, encoding="utf-8") print(data) data1, data2, data3 = data.split("-") data1 = round(float(data1), 2) data2 = round((1 - float(data2) / 6000) * 100, 2) data3 = round(float(data3), 2) data_set = {'N': [data1 + 100], 'P': [data2 + 100], 'K': [data3 + 100]} x = pd.DataFrame(data_set) output = self.svm_clf.predict(x)[0] level = self.setlevel(output) d = Data(cid=3, illumination=data3, humidity=data2, temperature=data1, level=level, arrivetime=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) await d.save()
def run(self): while not self.event.is_set(): cpu = psutil.cpu_percent() mem = psutil.virtual_memory().available disk = psutil.disk_usage('/').free t = int(time.time()) data = Data(event_time=t, cpu_usage=cpu, free_ram=mem, free_disk=disk) db.session.add(data) db.session.commit() _count = Data.query.count() if _count > 100: deletable = Data.query.order_by(Data.event_time).first() db.session.delete(deletable) db.session.commit() self.event.wait(self.seconds)
def jsonprocess(): with engine.connect() as connection: data = Data() #get json file for node tree raw_data = data.query_node_information(connection) jsontree = Jsontree() jsontree.get_jsonfile_tree_node(raw_data) flash("get json file for node tree") # get json file for equipment ddtree raw_data = data.query_equipment_cost(connection) jsontree = Jsontree() jsontree.get_jsonfile_ddtree_equipment(raw_data) flash("get json file for equipment ddtree") #get json file for equipment tree node_data = data.query_equipment(connection) jsontree = Jsontree() jsontree.get_jsonfile_tree_equipment(node_data) #get json file fro node infomation raw_data = data.query_node_information(connection) jsondata= Jsontree() jsondata.get_jsonfile_parallel(raw_data) flash("get json file fro node infomation") #get json file for forcegraph raw_data = data.query_equipment(connection) jsondata= Jsontree() jsondata.get_jsonfile_forcegraph(raw_data) #get json file for nodeforcegraph raw_data = data.query_node_information(connection) jsontree = Jsontree() jsontree.get_jsonfile_nodeforcegraph(raw_data) flash("get json file for nodeforcegraph") connection.close() flash("Connection Closed!") return True
def query(dataset_dir: str, query_dir: str, methods: List[AbstractMethod]): data = Data(dataset_dir) file_names = fnmatch.filter(os.listdir(query_dir), '*.jpg') print('Training...') texts_recs = [method.train(data.pictures) for method in methods] print('Querying...') query_pictures = seq(file_names).map(lambda query_name: Picture(query_dir, query_name)).to_list() results = [] for method in methods: print('\tRunning method', method.__class__.__name__) mres = [] for picture in tqdm(query_pictures, file=sys.stdout): mres.append((picture,) + get_result(method, picture)) results.append(mres) return results, texts_recs
def experiment(data_dir): data = Data.load(data_dir) data.v = data.v[:, sum(data.v > 0) > 0] model = Model.default_model(1e-5, data.v.shape[1], 0) print('filtering...') result = model.filter(data.v) result.evaluate(data.s) print('\tF-score : ' + str(result.score)) print('smoothing...') result = model.smooth(data.v) result.evaluate(data.s) print('\tF-score : ' + str(result.score)) print('online smoothing...') result = model.online_smooth(data.v, lag=10) result.evaluate(data.s) print('\tF-score : ' + str(result.score))
def callbackFunction(data: Data, callback: Callback): if type(callback.payload) is socket.socket: client: socket = callback.payload # if no data (subscribe failed) if data is None: send_msg( client, json.dumps({ 'status': 'error', 'description': 'Session not found', 'code': '9' })) return # else send data try: msg = json.dumps({'status': 'ok', 'new_data': data.dictValue()}) send_msg(client, msg) except: manager.unsubscribe(callback)
def visualize_data(dirname, m, n): data = Data.load(dirname) v = data.v.transpose() t = v.shape[1] print(t) if m > 0: fig = plt.figure(figsize=(12, 4)) ax = fig.gca() ax.pcolormesh(v[0:m, :], cmap=plt.cm.Greys) ax.vlines(np.arange(0, t), 0, data.s * m, colors='r', linestyles='-', linewidth=2) ax.legend(['change points']) if n > 0: fig = plt.figure(figsize=(12, 4)) gs = gridspec.GridSpec(n, 1, height_ratios=np.ones(n)) for i in range(n): ax = plt.subplot(gs[i]) y = v[m + i, :] y_lim_max = np.max(y) * 1.1 ax.plot(range(t), y, 'b-') ax.vlines(np.arange(0, t), 0, data.s * y_lim_max, colors='r', linestyles='-', linewidth=2) ax.set_ylim([0, y_lim_max]) plt.show()
def adminlogin(): if request.method == 'GET': return render_template('adminlogin.html') elif request.method == 'POST': username = request.form['username'] password = request.form['password'] adminkey = request.form['adminkey'] d = Data() users = d.users() holdings = d.holdings() orders = d.orders() leaderboard = d.leaderboard() u = User(username) if u.admin(password, adminkey): return render_template('admindashboard.html', users=users, holdings=holdings, orders=orders, leaderboard=leaderboard) else: return render_template('adminlogin.html')
def superuser(): if request.method == 'GET': return render_template('secretlogin.html') elif request.method == 'POST': username = request.form['username'] password = request.form['password'] superkey = request.form['superkey'] d = Data() users = d.users() holdings = d.holdings() orders = d.orders() leaderboard = d.leaderboard() super_balance = 10000000000000 u = User(username) if u.superuser(password, superkey): return render_template('superuser.html', users=users, holdings=holdings, orders=orders, leaderboard=leaderboard, super_balance=super_balance) else: return render_template('secretlogin.html')
def load_data(file_path, teachers_empty_space, groups_empty_space, subjects_order): """ Loads and processes input data, initialises helper structures. :param file_path: path to file with input data :param teachers_empty_space: dictionary where key = name of the teacher, values = list of rows where it is in :param groups_empty_space: dictionary where key = group index, values = list of rows where it is in :param subjects_order: dictionary where key = (name of the subject, index of the group), value = [int, int, int] where ints represent start times (row in matrix) for types of classes P, V and L respectively. If start time is -1 it means that that subject does not have that type of class. :return: Data(groups, teachers, classes, classrooms) """ with open(file_path) as file: data = json.load(file) # classes: dictionary where key = index of a class, value = class classes = {} # classrooms: dictionary where key = index, value = classroom name classrooms = {} # teachers: dictionary where key = teachers' name, value = index teachers = {} # groups: dictionary where key = name of the group, value = index groups = {} class_list = [] for cl in data['Time']: new_group = cl['Group'] new_teacher = cl['Teacher'] # initialise for empty space of teachers if new_teacher not in teachers_empty_space: teachers_empty_space[new_teacher] = [] new = Class(new_group, new_teacher, cl['Subject'], cl['Type'], cl['Duration'], cl['Classroom']) # add groups for group in new_group: if group not in groups: groups[group] = len(groups) # initialise for empty space of groups groups_empty_space[groups[group]] = [] # add teacher if new_teacher not in teachers: teachers[new_teacher] = len(teachers) class_list.append(new) # shuffle mostly because of teachers random.shuffle(class_list) # add classrooms for cl in class_list: classes[len(classes)] = cl # every class is assigned a list of classrooms he can be in as indexes (later columns of matrix) for type in data['Classrooms']: for name in data['Classrooms'][type]: new = Classroom(name, type) classrooms[len(classrooms)] = new # every class has a list of groups marked by its index, same for classrooms for i in classes: cl = classes[i] classroom = cl.classrooms index_classrooms = [] # add classrooms for index, c in classrooms.items(): if c.type == classroom: index_classrooms.append(index) cl.classrooms = index_classrooms class_groups = cl.groups index_groups = [] for name, index in groups.items(): if name in class_groups: # initialise order of subjects if (cl.subject, index) not in subjects_order: subjects_order[(cl.subject, index)] = [-1, -1, -1] index_groups.append(index) cl.groups = index_groups return Data(groups, teachers, classes, classrooms)
import os BASE = os.path.abspath(os.path.dirname(__file__)) ## learning rate of 0.4 ## normalization ADDMISSIONS_DATASET = os.path.join( BASE, 'example_datasets', 'Admission_Predict.csv') ## learning rate of 0.4 is good ## learning rate of 0.03 ## no normalization CRIME_RATE_DATASET = os.path.join(BASE, 'example_datasets', 'Crime_normalized.csv') if __name__ == '__main__': d = Data(ADDMISSIONS_DATASET) x = d(1, 2) y = d(d.size[1]) x = Matrix(x) y = Vector(y) x_norm = Model.normalize(x) y_norm = Model.normalize(y) model = Model(x_norm, y, learning_rate=0.4) print('INITIAL WEIGHTS : ') print(model.weights) # learning
def on_new_client(clientsocket, addr): logger.info('Client connected: ' + str(addr)) identifer = None #session identifer token = None #access token subscribeCallback = None disconnect = False while not disconnect: msg = recv_msg(clientsocket) # Check connection if (msg is None or len(msg) == 0): break coomnds = msg.split('<EOF>') for command in coomnds: # skip empty command if (len(command) == 0): continue # Parse try: responce = json.loads(msg) except ValueError: send_msg( clientsocket, json.dumps({ 'status': 'error', 'description': 'Not valid JSON', 'code': '1' })) disconnect = True break #disconnect user # Access variables if 'token' in responce: token = responce['token'] if 'identifer' in responce: identifer = responce['identifer'] if token is None: send_msg( clientsocket, json.dumps({ 'status': 'error', 'description': 'No token', 'code': '2' })) disconnect = True break #disconnect user if token != SECRET_TOKEN: send_msg( clientsocket, json.dumps({ 'status': 'error', 'description': 'Wrong token', 'code': '4' })) disconnect = True break #disconnect user if identifer is None: send_msg( clientsocket, json.dumps({ 'status': 'error', 'description': 'No identifer', 'code': '3' })) continue # Commands if 'command' in responce: command = responce['command'] # Get info if (command == 'get'): logger.info('Client ' + str(addr) + " get ifo about " + identifer) data = manager.get(identifer) if data is None: send_msg( clientsocket, json.dumps({ 'status': 'error', 'description': 'Session not found', 'code': '9' })) else: send_msg( clientsocket, json.dumps({ 'status': 'ok', 'new_data': data.dictValue() })) # Subscribe if (command == 'subscribe' or command == 'host'): #remove old callback if (subscribeCallback is not None): manager.unsubscribe(identifer, subscribeCallback) subscribeCallback = Callback(callbackFunction, clientsocket) manager.subscribe(identifer, subscribeCallback, (command == 'host')) logger.info('Client ' + str(addr) + " subscribed " + identifer) send_msg(clientsocket, json.dumps({ 'status': 'ok', 'code': '0' })) # Set info if (command == 'set'): if 'file' in responce: file = responce['file'] else: send_msg( clientsocket, json.dumps({ 'status': 'error', 'description': 'No file', 'code': '5' })) continue if 'duration' in responce: duration = float(responce['duration']) else: send_msg( clientsocket, json.dumps({ 'status': 'error', 'description': 'No duration', 'code': '6' })) continue if 'position' in responce: position = float(responce['position']) else: send_msg( clientsocket, json.dumps({ 'status': 'error', 'description': 'No position', 'code': '7' })) continue if 'state' in responce: state = int(responce['state']) else: send_msg( clientsocket, json.dumps({ 'status': 'error', 'description': 'No state', 'code': '8' })) continue logger.info('Client ' + str(addr) + " set info " + identifer) manager.set(identifer, Data(file, duration, position, state)) send_msg(clientsocket, json.dumps({ 'status': 'ok', 'code': '0' })) logger.info('Client disconnected: ' + str(addr)) # Force unsubscribe if (subscribeCallback is not None): manager.unsubscribe(identifer, subscribeCallback) clientsocket.close()
def add_data(sub, pred, obj): try: Data(sujeto=sub.strip(), predicado=pred.strip(), objeto=obj.strip()) except Exception as e: print e pass
import numpy as np import sys sys.path.append('../../../') from logistic_regression import LogisticRegression from model import Data from utilities import * train_data = np.load('data/train_data.npy') test_data = np.load('data/test_data.npy') train_inputs, train_target = Data.normalize( train_data[:, :-1]), train_data[:, -1:].astype(int).flatten() test_inputs, test_target = Data.normalize( test_data[:, :-1]), test_data[:, -1:].astype(int).flatten() model = LogisticRegression(input_dim=7, num_classes=3, batch_size=8, epochs=50, learning_rate=1e-3) model.train(train_inputs, train_target) print('After training the model accuracy is about ', accuracy(model.predict(test_inputs), test_target)) confusion_plot(model, test_inputs, test_target, outfile='plots/confusion_matrix')
def test(): engine = ConnectDatabase().connect_sqlalchemy() connection = engine.connect() data = Data() raw_data = data.query_equipment_cost(connection) return "Test data"
outputs = model(inputs.cuda()) loss = criterion(outputs, targets.cuda()) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() return loss.item() trainer = Engine(update) #trainer = create_supervised_trainer(model, optimizer, criterion, device='cuda') val_metrics = {"accuracy": Accuracy(), "loss": Loss(criterion)} evaluator = create_supervised_evaluator(model, metrics=val_metrics, device='cuda') data = Data(x=X, y=y) loader = DataLoader(dataset=data, shuffle=True, batch_size=args.batch_size) @trainer.on(Events.EPOCH_COMPLETED) def log_training_results(trainer): evaluator.run(data=loader) metrics = evaluator.state.metrics print("Training Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}" .format(trainer.state.epoch, metrics["accuracy"], metrics["loss"])) trainer.add_event_handler(Events.ITERATION_COMPLETED, scheduler)
def test_nee(): dC=D.dalecData(1095) assert M.NEE(0,0,0,0,0,0,dC) == 0
def add_data(sensor, data): s = Session() s.add(Data(sensor, data)) s.commit()